
9/15/2020 Hybrid Programming Languages — You Are Probably Using One | by Daniel Santos | Medium

https://medium.com/@imdanielsp/hybrid-programming-languages-you-are-probably-using-one-77011e12363a#:~:text=Just to mention a few,object-ori… 1/5

Hybrid Programming Languages — You Are
Probably Using One

Daniel Santos Follow

May 7, 2017 · 3 min read

Personally, I am a fan of hybrid cars because I don’t feel like going 100% electric yet.

Similarly, I am a fan of hybrid programming languages, also known as multi-paradigm

programming languages.

Although there are multiple programming paradigms, to keep it simple, I’m only going

to talk about functional and objected-oriented. If we go back to the car ideology,

You have 2 free stories left this month. Sign up and get an extra one for free.

https://medium.com/@imdanielsp?source=post_page-----77011e12363a----------------------
https://medium.com/@imdanielsp?source=post_page-----77011e12363a----------------------
https://medium.com/@imdanielsp/hybrid-programming-languages-you-are-probably-using-one-77011e12363a?source=post_page-----77011e12363a----------------------
https://en.wikipedia.org/wiki/Programming_paradigm#Multi-paradigm
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Fmedium.com%2F%40imdanielsp%2Fhybrid-programming-languages-you-are-probably-using-one-77011e12363a&source=-----77011e12363a---------------------smart_meter-

9/15/2020 Hybrid Programming Languages — You Are Probably Using One | by Daniel Santos | Medium

https://medium.com/@imdanielsp/hybrid-programming-languages-you-are-probably-using-one-77011e12363a#:~:text=Just to mention a few,object-ori… 2/5

functional are electric cars and object-oriented are regular gas cars. We know that cars

can run on water, natural gas, and who knows what else, but let’s just take the

mainstream ones. Gas and electric; functional and object-oriented.

Just to mention a few; Python, Java, C++11, and Swift are hybrid programming

languages. Using these languages, one can design programs with a functional or object-

oriented approach in mind. If you want to learn more about functional programming,

check this post. Below is a C++ example of two common way of going through

containers, a functional way and using a loop:

In the code, we declared a vector and initialized it with a series of numbers using an

initializer list, since C++11. Later, we applied some operations on those numbers inside

the vector. From the ‘algorithm’ library, we can use the ‘std::for_each’ function that takes

a section of a container to apply the lambda that we pass to it. We passed a reference to

the beginning and end of the vector. Something that is easy to overlook is ‘rbegin()’ and

‘rend()’. These methods return a reference iterator and what that means is that any

mutation to the value that the iterator is holding will affect the actual value inside the

vector, it is not a copy. This breaks one of the fundamental rules of functional languages,

view raw

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

FunctionalC++.cpp hosted with ❤ by GitHub

#include <iostream>

#include <vector>

#include <algorithm>

int main() {

 std::vector<int> v = {1, 2, 3, 4, 6, 7};

 std::for_each(v.rbegin(), v.rend(), [] (int& num) {

 num += 1;

 });

 for(auto num : v) {

 std::cout << num << std::endl;

 }

 return 0;

}

https://medium.com/@danielsantos_97388/lets-talk-functional-a-problem-solving-approach-fb151bef24cd
http://en.cppreference.com/w/cpp/language/list_initialization
https://gist.github.com/imdanielsp/ebe27f24fac620ebbea4a60b139312e6/raw/a3d61f098da51798ef5f48f5bcc50b1bdf7119f5/FunctionalC++.cpp
https://gist.github.com/imdanielsp/ebe27f24fac620ebbea4a60b139312e6#file-functionalc-cpp
https://github.com/

9/15/2020 Hybrid Programming Languages — You Are Probably Using One | by Daniel Santos | Medium

https://medium.com/@imdanielsp/hybrid-programming-languages-you-are-probably-using-one-77011e12363a#:~:text=Just to mention a few,object-ori… 3/5

that is, to avoid mutation. Remember, we are hybrid, we can break one or two rules. But

for the curious, without mutation:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

#include <iostream>

#include <vector>

#include <algorithm>

int main() {

 std::vector<int> v = {1, 2, 3, 4, 6, 7};

 std::vector<int> newVector;

 std::for_each(v.begin(), v.end(), [&newVector] (int num) {

 num += 1; // No change in 'v'

 newVector.push_back(num);

 });

 std::cout << "New old:" << std::endl;

 for(auto num : v) {

 std::cout << num << std::endl;

 }

 std::cout << "New vector:" << std::endl;

 for(auto num : newVector) {

 std::cout << num << std::endl;

 }

 return 0;

}

/* OUTPUT:

New old:

1

2

3

4

6

7

New vector:

2

3

4

5

9/15/2020 Hybrid Programming Languages — You Are Probably Using One | by Daniel Santos | Medium

https://medium.com/@imdanielsp/hybrid-programming-languages-you-are-probably-using-one-77011e12363a#:~:text=Just to mention a few,object-ori… 4/5

Here we have to major changes; ‘v.begin()’ and ‘v.end()’, and ‘&newVector’. We don’t need

a reference to the values in the vector, we call the methods that return a copy iterator. Be

careful with those because it might hurt your performance if you have a large amount of

data in a container. ‘&newVector’ is a ‘lambda-capture’, check syntax here, which is

basically capturing a reference to ‘newVector’ inside the lambda, so we can push the

numbers to the vector in the outer scope. The output we get is an untouched ‘v’ and a

filled ‘newVector’. The output shows the values in ‘v’ are the same although we mutated

‘num’ inside the lambda, ‘num += 1’.

We just saw some high-order function concept in action, we passed a function to a

function. Now can I return a function from a function? Check this example:

view raw

41

42

43

44

FunctionalC++NoMutation.cpp hosted with ❤ by GitHub

5

7

8

* */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

#include <iostream>

#include <vector>

#include <algorithm>

#include <functional>

inline std::function<void()> makeReporter(std::vector<int>& vector,

 std::function<void(const int)> printer) {

 return [&] () {

 std::for_each(vector.cbegin(), vector.cend(), printer);

 };

}

int main() {

 std::vector<int> vector {1, 2, 3, 4};

 auto report = makeReporter(vector, [](const int num) {

 std::cout << "************** "

 << "The number is: "

 << num

 << " **************"

 << std::endl;

 });

 report();

http://en.cppreference.com/w/cpp/language/lambda#Lambda_capture
https://gist.github.com/imdanielsp/604444315f9c8d4e6613646e1803acd9/raw/3b7c3f4bdf962793c0b5b81bef7577843a98f844/FunctionalC++NoMutation.cpp
https://gist.github.com/imdanielsp/604444315f9c8d4e6613646e1803acd9#file-functionalc-nomutation-cpp
https://github.com/

9/15/2020 Hybrid Programming Languages — You Are Probably Using One | by Daniel Santos | Medium

https://medium.com/@imdanielsp/hybrid-programming-languages-you-are-probably-using-one-77011e12363a#:~:text=Just to mention a few,object-ori… 5/5

If you don’t understand what this code those, please check my post on functional

programming languages. In summary, ‘makeReporter’ is a function that returns a

function at runtime. I believe this is a clear example of a hybrid programming language

like C++. Inside ‘makeReporter’, we are calling a method, which is an objected-oriented

concept, and we return a function from a function, which is a functional concept.

These examples show the power of combining these two powerful ideas. Trust me, my

examples are very basic and trivial compared to real applications. I am just trying to

transfer these ideas. Nowadays many robust and popular frameworks relied on the

power of these two ideas, functional and object-oriented. Just to mention a few, iOS

(UIKit, etc), React, Express, Vapor, Qt, and many others.

Have fun discovering the power of hybrid programming languages and happy coding!

Functional Programming Programming Hybrid Object Oriented Cpp

About Help Legal

Get the Medium app

view raw

24

25

26

27

28

29

30

31

HighOrderFunctionCpp.cpp hosted with ❤ by GitHub

 return 0;

}

/* OUTPUT:

************** The number is: 1 **************

************** The number is: 2 **************

************** The number is: 3 **************

************** The number is: 4 **************

*/

https://medium.com/@danielsantos_97388/lets-talk-functional-a-problem-solving-approach-fb151bef24cd
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSFrameworks/iPhoneOSFrameworks.html
https://facebook.github.io/react/
https://expressjs.com/
https://vapor.codes/
https://www.qt.io/
https://medium.com/tag/functional-programming
https://medium.com/tag/programming
https://medium.com/tag/hybrid
https://medium.com/tag/object-oriented
https://medium.com/tag/cpp
https://medium.com/?source=post_page-----77011e12363a----------------------
https://medium.com/about?autoplay=1&source=post_page-----77011e12363a----------------------
https://help.medium.com/hc/en-us?source=post_page-----77011e12363a----------------------
https://policy.medium.com/medium-terms-of-service-9db0094a1e0f?source=post_page-----77011e12363a----------------------
https://itunes.apple.com/app/medium-everyones-stories/id828256236?pt=698524&mt=8&ct=post_page&source=post_page-----77011e12363a----------------------
https://play.google.com/store/apps/details?id=com.medium.reader&source=post_page-----77011e12363a----------------------
https://gist.github.com/imdanielsp/4b9c179b215dba31fcde19cc89e96d2c/raw/6dbac0d9d214f90d3b6774acca45b6b96870b068/HighOrderFunctionCpp.cpp
https://gist.github.com/imdanielsp/4b9c179b215dba31fcde19cc89e96d2c#file-highorderfunctioncpp-cpp
https://github.com/

