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Personally, I am a fan of hybrid cars because I don’t feel like going 100% electric yet.

Similarly, I am a fan of hybrid programming languages, also known as multi-paradigm

programming languages.

Although there are multiple programming paradigms, to keep it simple, I’m only going

to talk about functional and objected-oriented. If we go back to the car ideology,
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functional are electric cars and object-oriented are regular gas cars. We know that cars

can run on water, natural gas, and who knows what else, but let’s just take the

mainstream ones. Gas and electric; functional and object-oriented.

Just to mention a few; Python, Java, C++11, and Swift are hybrid programming

languages. Using these languages, one can design programs with a functional or object-

oriented approach in mind. If you want to learn more about functional programming,

check this post. Below is a C++ example of two common way of going through

containers, a functional way and using a loop:

In the code, we declared a vector and initialized it with a series of numbers using an

initializer list, since C++11. Later, we applied some operations on those numbers inside

the vector. From the ‘algorithm’ library, we can use the ‘std::for_each’ function that takes

a section of a container to apply the lambda that we pass to it. We passed a reference to

the beginning and end of the vector. Something that is easy to overlook is ‘rbegin()’ and

‘rend()’. These methods return a reference iterator and what that means is that any

mutation to the value that the iterator is holding will affect the actual value inside the

vector, it is not a copy. This breaks one of the fundamental rules of functional languages,
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FunctionalC++.cpp hosted with ❤ by GitHub

#include <iostream>

#include <vector>

#include <algorithm>

int main() {

    std::vector<int> v = {1, 2, 3, 4, 6, 7};

    std::for_each(v.rbegin(), v.rend(), [] (int& num) {

      num += 1;

    });

    for(auto num : v) {

      std::cout << num << std::endl;

    }

    return 0;

}
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that is, to avoid mutation. Remember, we are hybrid, we can break one or two rules. But

for the curious, without mutation:
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#include <iostream>

#include <vector>

#include <algorithm>

int main() {

    std::vector<int> v = {1, 2, 3, 4, 6, 7};

    std::vector<int> newVector;

    std::for_each(v.begin(), v.end(), [&newVector] (int num) {

      num += 1; // No change in 'v'

      newVector.push_back(num );

    });

    std::cout << "New old:" << std::endl;

    for(auto num : v) {

      std::cout << num << std::endl;

    }

    std::cout << "New vector:" << std::endl;

    for(auto num : newVector) {

      std::cout << num << std::endl;

    }

    return 0;

}

/* OUTPUT:

New old:

1

2

3

4

6

7

New vector:

2

3

4

5
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Here we have to major changes; ‘v.begin()’ and ‘v.end()’, and ‘&newVector’. We don’t need

a reference to the values in the vector, we call the methods that return a copy iterator. Be

careful with those because it might hurt your performance if you have a large amount of

data in a container. ‘&newVector’ is a ‘lambda-capture’, check syntax here, which is

basically capturing a reference to ‘newVector’ inside the lambda, so we can push the

numbers to the vector in the outer scope. The output we get is an untouched ‘v’ and a

filled ‘newVector’. The output shows the values in ‘v’ are the same although we mutated

‘num’ inside the lambda, ‘num += 1’.

We just saw some high-order function concept in action, we passed a function to a

function. Now can I return a function from a function? Check this example:
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#include <iostream>

#include <vector>

#include <algorithm>

#include <functional>

inline std::function<void()> makeReporter(std::vector<int>& vector,

                             std::function<void(const int)> printer) {

  return [&] () {

    std::for_each(vector.cbegin(), vector.cend(), printer);

  };

}

int main() {

    std::vector<int> vector {1, 2, 3, 4};

    auto report = makeReporter(vector, [](const int num) {

      std::cout << "************** "

                << "The number is: "

                << num

                << " **************"

                << std::endl;

    });

    report();
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If you don’t understand what this code those, please check my post on functional

programming languages. In summary, ‘makeReporter’ is a function that returns a

function at runtime. I believe this is a clear example of a hybrid programming language

like C++. Inside ‘makeReporter’, we are calling a method, which is an objected-oriented

concept, and we return a function from a function, which is a functional concept.

These examples show the power of combining these two powerful ideas. Trust me, my

examples are very basic and trivial compared to real applications. I am just trying to

transfer these ideas. Nowadays many robust and popular frameworks relied on the

power of these two ideas, functional and object-oriented. Just to mention a few, iOS

(UIKit, etc), React, Express, Vapor, Qt, and many others.

Have fun discovering the power of hybrid programming languages and happy coding!

Functional Programming Programming Hybrid Object Oriented Cpp
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    return 0;

}

/* OUTPUT:

************** The number is: 1 **************

************** The number is: 2 **************

************** The number is: 3 **************

************** The number is: 4 **************

*/
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