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Chapter 1

Financial Derivatives

Assume that the price of a stock is given, at time t, by St. We want to study
the so called market of options or derivatives.

Definition 1.0.1 An option is a contract that gives the right (but not the
obligation) to buy (CALL) or shell (PUT) the stock at price K (strike) at time
T (maturity of the contract).

The profit or payoff of this contract is:

(ST −K)+

in the case of a CALL or
(K − ST )+

for a PUT.
Problem 1: ¿How much should the buyer pay for the option? This is called

the pricing problem.
Problem 2: How the seller of the contract can guarantee the quantity (ST −

K)+ (in the case of a CALL) from the price charged. This is the hedging
problem.

Assumption: we are going to assume that the financial market is free of
making profit without risk or free of arbitrage opportunities. We also assume
that there is a continuous interest rate r in such a way that one euro becomes
erT euros at time T. We have the following result.

Proposition 1.0.1 (PUT-CALL parity) If the market is free of arbitrage op-
portunities and Ct is the price of a CALL, at time t, with strike K and maturity
T and Pt the put price, with the same strike and maturity, we have

Ct − Pt = St −Ke−r(T−t), for all 0 ≤ t ≤ T

Proof. We shall see that otherwise there will be arbitrage. Assume for
instance that

Ct − Pt > St −Ke−r(T−t).

3



4 CHAPTER 1. FINANCIAL DERIVATIVES

Then at time t we buy a unit of stock, one PUT and we sell one CALL. The
profit we obtain by this trade is

Ct − Pt − St.

If this quantity is positive we can put it in a bank account until time T with
interest rate r. If it is negative we can borrow it with the same interest rate At
time T we can have two situations: 1) If ST > K the owner of the CALL will
exercise the option, then we will give him the stock by K, in total we will have

(Ct − Pt − St) er(T−t) + K

=
(
Ct − Pt − St + Ke−r(T−t)

)
er(T−t) > 0.

2) If ST ≤ K, we will exercise the PUT and we will sell the stock by K, we
will have again (Ct − Pt − St) er(T−t) + K that is positive. So there will be an
arbitrage opportunity. An analogous situation happens if

Ct − Pt < St −Ke−r(T−t).

1.1 Discrete time models

The values of the stocks (shares, commodities or other stocks) will be random
variables defined in a certain probability space (Ω,F , P ). We will consider
an increasing sequence of σ-fields (filtration) : F0 ⊆ F1 ⊆ ... ⊆ FN ⊆ F .
Fn represents the available information at the instant n. The horizon N , will
correspond with the maturity of the options. We shall assume that Ω is finite,
F0 = {∅,Ω}, and FN = F = P(Ω) and that P ({ω}) > 0, for all ω ∈ Ω.

The financial market will consist on (d + 1) stocks whose prices at instant n
will be given by positive random variables S0

n, S1
n, ..., Sd

n measurable with respect
to Fn (that is, the prices depend on what has been observed so far, there is not
privilege information). In many cases we shall assume that Fn = σ(S1

k, ...,
Sd

k , 0 ≤ k ≤ n), in such a way that whole the information will be in the prices
observed until this moment.

The super-index zero corresponds to the riskless stock (a bank account) and
by convention we take S0

0 = 1. If the relative profit of the riskless stock is
constant:

S0
n+1 − S0

n

S0
n

= r ≥ 0

we will have
S0

n+1 = S0
n(1 + r) = S0

0(1 + r)n+1.

The factor βn = 1
S0

n
= (1 + r)−n will be called the dicount factor.
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1.1.1 Strategies of investment

A strategy of investment is a stochastic processes (a sequence or random vari-
ables in the discrete time setting) φ = ((φ0

n, φ1
n, ..., φd

n))0≤n≤N in Rd+1. φi
n

indicates the number of stocks of i kind in the portfolio at the instant n. φ es
predictable that is:{

φi
0 is F0-measurable

φi
n es Fn−1-measurable, for all 1 ≤ n ≤ N.

This means that the positions in the portfolio at n were decided at n − 1. In
other words, during the period (n− 1, n] the quantity of stocks of i kind is φi

n.
The value of the portfolio at n is given by the scalar product

Vn(φ) = φn · Sn =
d∑

i=0

φi
nSi

n,

and its discounted value

Ṽn(φ) = βnVn(φ) = φn · S̃n

with
S̃n = (1, βnS1

n, ..., βnSd
n) = (1, S̃1

n, ..., S̃d
n)

Definition 1.1.1 An investment strategy is said to be self-financing if

φn · Sn = φn+1 · Sn, 0 ≤ n ≤ N − 1

Remark 1.1.1 The meaning is tat at n, once the new prices Sn are an-
nounced, the investors relocate their portfolio without add or take out wealth: if
there is an increment φn+1−φn of stocks the cost of this trade is (φn+1−φn)·Sn,
and we want to do this without any cost so φn · Sn = φn+1 · Sn, 0 ≤ n ≤ N − 1.

Proposition 1.1.1 An investment strategy is self-financing iff:

Vn+1(φ)− Vn(φ) = φn+1 · (Sn+1 − Sn), 0 ≤ n ≤ N − 1

Proposition 1.1.2 The following statements are equivalent: (i) the strategy φ
is self-financing, (ii) for all 1 ≤ n ≤ N

Vn(φ) = V0(φ)+
n∑

j=1

φj ·(Sj−Sj−1) = V0(φ)+
n∑

j=1

φj ·∆Sj = V0(φ)+
n∑

j=1

d∑
i=0

φi
j∆Si

j

(iii) for all 1 ≤ n ≤ N

Ṽn(φ) = V0(φ)+
n∑

j=1

φj ·(S̃j−S̃j−1) = V0(φ)+
n∑

j=1

φj ·∆S̃j = V0(φ)+
n∑

j=1

d∑
i=1

φi
j∆S̃i

j
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Proof. (i) is equivalent to (ii):

Vn(φ) = V0(φ) +
n∑

j=1

(Vj(φ)− Vj−1(φ))

= V0(φ) +
n∑

j=1

φj · (Sj − Sj−1) ,(previous proposition)

(i) is equivalent to (iii): the self-financing condition can be written as φn · S̃n =
φn+1 · S̃n, 0 ≤ n ≤ N − 1, so

Ṽn+1(φ)− Ṽn(φ) = φn+1 · (S̃n+1 − S̃n), 0 ≤ n ≤ N − 1

and

Ṽn(φ) = Ṽ0(φ) +
n∑

j=1

(Ṽj(φ)− Ṽj−1(φ))

= V0(φ) +
n∑

j=1

φj · (S̃j − S̃j−1)

The previous proposition tell us that any self-financing strategy is defined
by its initial value V0 and for the positions in the risky stocks. More precisely:

Proposition 1.1.3 For any predictable process φ̂ = ((φ1
n, ..., φd

n))0≤n≤N and
any random variable V0 F0-measurable, there exists a unique predictable process(
φ0

n

)
such that the strategy φ = ((φ0

n, φ1
n, ..., φd

n))0≤n≤N is self-financing with
initial value V0.

Proof.

Ṽn(φ) = V0(φ) +
n∑

j=1

φj · (S̃j − S̃j−1)

= V0(φ) +
n∑

j=1

φj · (S̃j − S̃j−1)

= φn · S̃n = φ0
n +

d∑
i=1

φi
nS̃i

n.

Therefore

φ0
n = V0(φ) +

n−1∑
j=1

φj · (S̃j − S̃j−1)−
d∑

i=1

φi
nS̃i

n−1 ∈ Fn−1
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1.1.2 Admissible strategies and arbitrage

First of all note that we are not doing any assumption about the sign of the
quantities φi

n. φi
n < 0 means that we borrowed this number of stocks and con-

verted in cash (short-selling) or, if i = 0, we borrowed this number of monetary
units and converted in stocks (a loan to buy stocks). We assume that any unit
of cash at 0 becomes (1+ r)n at n. We shall assume that loans and short-selling
are allowed provided the value of the portfolio is always positive.

Definition 1.1.2 A strategy φ is admissible if it is self-financing and Vn(φ) ≥
0, for all 0 ≤ n ≤ N.

Definition 1.1.3 A strategy of arbitrage is an admissible strategy with zero
initial value and with final value different from zero.

Remark 1.1.2 Note that if there is an arbitrage we can get a strictly positive
wealth with a null initial investment. Most of the models of prices exclude ar-
bitrage opportunities. A market without arbitrage opportunities is said to be
viable. The next purpose will be to characterize viable markets with the aid of
the notion of martingale.

Exercise 1.1.1 Consider a portfolio with initial value V0 = 1000a and formed
by the following quantities of risky stocks:

Stock 1 Stock 2
n > 0 200 100
n > 1 150 120
n > 2 500 60

The prices of he stocks are

Stock 1 Stock 2
n = 0 3.4 2.3
n = 1 3.5 2.1
n = 2 3.7 1.8.

To find out, at any time, the amount invested in the riskless stock in the portfolio
assuming that r = 0.05 and that the portfolio is self-financing.

Solution 1.1.1 Assuming that the value at time t = 0 is V0 = 1000, we can
calculate the initial composition of the portfolio according with the positions in
the risky stocks φ1 = (200, 100) and leaving the remainder of the 1000 euros
in the bank account 1 y 2. Later we calculate how the value of the portfolio
change in terms of change of prices between instants 0 and 1. We rebuilt our
portfolio according with e positions φ2 = (150, 120), in the bank account we leave
the remainder after buying the indicated quantities of stocks 1 and 2. Later we
calculate again how the value of the portfolio evolves.
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Stock No shares Price t = 0 Value t = 0 Precio t = 1 Valor t = 1
0 90 1 90 1,05 94,5
1 200 3,4 680 3,5 700
2 100 2,3 230 2,1 210

Total 1000 1004,5

Stock No assets Price t = 1 Value t = 1 Price t = 2 Value t = 2
0 216,67 1,05 2227,5 1,103 238,88
1 150 3,5 525 3,7 555
2 120 2,1 252 1,8 216

Total 1004,5 1009,88

Exercise 1.1.2 Consider a financial market with one single period, with inter-
est rate r and one stock S. Suppose that S0 = 1 and, for n = 1, S1 can take
two different values: 2, 1/2. ¿For which values of r the market is viable viable
(free of arbitrage opportunities)? ¿what if S1 can also take the value 1?

Solution 1.1.2 We want to calculate the values of r such that there is an arbi-
trage opportunity. We take a portfolio with zero initial value V0 = 0. Then we
invest the amount q in the stock without risk, we have to invest −q in the risky
stock (q can be negative or positive). We calculate the value of this portfolio in
the time 2.
V1(ω1) = q(r − 1)
V1(ω2) = q(r + 1/2)
So, if r > 1 there is an arbitrage oppportunity taking q positive (money in the
bank account and short position in the risky stock) and if r < −1/2 we have
an arbitrage opportunity with q positive (borrowing money and investing in the
risky stock). The situation does not change if S1 can take the value 1.

Exercise 1.1.3 Consider a financial market with two risky stocks (d = 2) and
such that the values at t = 0 are S1

0 = 9.52 Eur. and S2
0 = 4.76 Euros. The

simple interest rate is 5% during the period [0, 1]. We also assume that at time
1, S1

1 and S2
1 can take three different values, depending of the market state:

ω1, ω2, ω3: S1
1(ω1) = 20 Eur., S1

1(ω2) = 15 Eur. and S1
1(ω3) = 7.5 Eur, and

S2
1(ω1) = 6 Eur, S2

1(ω2) = 6 Eur. and S2
1(ω3) = 4. ¿Is that a viable market?

Solution 1.1.3 To know if he market is viable we have to check if there are
arbitrage opportunities. We take a portfolio with initial value equal to zero and
we see if the yield can be non-negative in all states of time 1 with some of them
strictly positive yield. Let q1 and q2 be the amounts invested in the stocks 1
and 2 respectively. Since the initial value of the portfolio es zero, we should
have −9.52q1 − 4.76q2 in the bank account. Then we calculate the value of our
portfolio at time 1 for all possible states.
V1(ω1) = 10.004q1 + 1.002q2

V1(ω2) = 5.004q1 + 1.002q2

V1(ω3) = −2.4964q1 − 0.998q2.



1.1. DISCRETE TIME MODELS 9

It is easy to see that there is a region of the plane where the three expres-
sions are positive at the same time (see Figure 1), therefore there are arbitrage
opportunities.

Figura 1

1.1.3 Martingales and opportunities of arbitrage

et (Ω,F , P ) a finite probability space. With F = P(Ω) y P ({ω}) > 0, for all
todo ω. Consider a filtration (Fn)0≤n≤N .

Definition 1.1.4 We say that a sequence of random variables X = (Xn)0≤n≤N

are adapted if Xn es Fn-measurable, 0 ≤ n ≤ N.

Definition 1.1.5 An adapted sequence (Mn)0≤n≤N , is said to be a

submartingale if E(Mn+1|Fn) ≥ Mn

martingale if E(Mn+1|Fn) = Mn

supermartingale if E(Mn+1|Fn) ≤ Mn

for all 0 ≤ n ≤ N − 1

Remark 1.1.3 This definition can be extended to the multi-dimensional case
in a component-wise fashion. If (Mn)0≤n≤N is a martingale is easy to see that
E(Mn+j |Fn) = Mn, j ≥ 0;E(Mn) = E(M0), n ≥ 0 and that if (Nn) is another
martingale, (aMn + bNn) is also a martingale. We shall omit the sub-index.

Proposition 1.1.4 Let (Mn) be a martingale and (Hn) a predictable sequence,
let ∆Mn = Mn −Mn−1. Then, the sequence defined by

X0 = H0M0

Xn = H0M0 +
n∑

j=1

Hj∆Mj , n ≥ 1 is a martingale

Proof. It is enough to see that for all n ≥ 0

E(Xn+1 −Xn|Fn) = E(Hn+1∆Mn+1|Fn) = Hn+1E(∆Mn+1|Fn) = 0

Remark 1.1.4 The previous transform is called martingale transform of (Mn)
by (Hn). Remind that

Ṽn(φ) = V0(φ) +
n∑

j=1

φj ·∆S̃j

with (φi) predictable. Then if (S̃i) is a martingale, we will have that (Ṽn) is a
martingale and in particular E(Ṽn(φ)) = E(V0(φ)) = V0(φ).
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Proposition 1.1.5 An adapted process (Mn) is a martingale iff for all pre-
dictable process (Hn) we have

E(
N∑

j=1

Hj∆Mj) = 0 (1.1)

Proof. Assume that (Mn) is a martingale Then (??mart) follows by the
previous proposition. Assume that (1.1) is satisfied, then we can take Hn =
0, 0 ≤ n ≤ j, Hj+1 = 1A with A ∈ Fj , Hn = 0, n > j. So

E(1A(Mj+1 −Mj)) = 0.

Since this is true for all A this is equivalent to E(Mj+1 −Mj |Fj) = 0. But this
is true for all j.

Theorem 1.1.1 A financial market is viable (free of arbitrage opportunities)
if and only if there exists P ∗ equivalent to P such that the discounted prices of
the stocks ((S̃j

n), j = 1, ..., d) are P ∗- martingales.

Proof. Assume there exists P ∗ and let ϕ and admissible strategy with zero
initial value, then

Ṽn =
n∑

i=1

ϕi ·∆S̃i

es una P ∗ martingale and consequently

EP∗(ṼN ) = 0

and since ṼN ≥ 0 we have ṼN = 0 (because P ∗(ω) > 0 for all ω). So, there is
not arbitrage.

We identify each random variable X to a vector in RCard(Ω) (X(ω1), ..., X(ωCard(Ω)).
Suppose now that there is not arbitrage and let Γ be the set of random variables
strictly positive define in Ω (that is random non-negative variables such that for
some ω ∈ Ω their value is strictly greater than zero). Consider the subset, S,
compact and convex of the random variables in Γ such that

∑
X (ωi) = 1. Let

L = {VN (ϕ), ϕ be a self-financing strategy, V0(ϕ) = 0} (it is clear that L is a
vectorial of RCard(Ω)). Also, (we shall see it later) L∩S = φ. As a result of the
hyperplane separation theorem there exists a linear map A such that A(Y ) > 0
for all Y ∈ S and A(Y ) = 0 if Y ∈ L. A(Y ) =

∑
λiY (ωi). Then all λi > 0

(since A(Y ) > 0 for all Y ∈ S) and we can define

P ∗(ωi) =
λi∑
λi

and for all φ predictable

EP∗(
N∑

i=1

φi ·∆S̃i) = EP∗(ṼN ) =
A(ṼN )∑

λi
= 0.
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So, by the previous proposition, S̃ is a P ∗-martingale (proposition anterior).
See know that L ∩ Γ = φ (and a fortiori L ∩ S = φ). Assume it is not true

in such a way that there exists ϕ self-financing with VN (ϕ) ∈ Γ. Then, from ϕ,
you can built an arbitrage strategy: let

n = sup{k, Vk(ϕ) 6≥ 0 }

note that n ≤ N − 1 since VN (ϕ) ≥ 0. Let A = {Vn(ϕ) < 0}, define the self-
financing strategy such that for all i = 1, ..., d

θi
j =

{
0 j ≤ n
1Aϕi

j j > n

Then, for all k > n

Ṽk(θ) =
k∑

j=n+1

1Aϕj ·∆S̃j = 1A

 k∑
j=1

ϕj ·∆S̃j −
n∑

j=1

ϕj ·∆S̃j


= 1A

(
Ṽk(ϕ)− Ṽn(ϕ)

)
so θ is admissible and ṼN (θ) > 0 in A.

Remark 1.1.5 P ∗ is named martingale measure or neutral probability.

Exercise 1.1.4 Consider a sequence {Xn}n≥1 of independent random variables
with law N(0, σ2). Define the sequence Yn = exp

(
a
∑n

i=1 Xi − nσ2
)
, n ≥ 1,

for a a real parameter, and Y0 = 1. Find the values of a such that the sequence
{Yn}n≥0 is a martingale (supermartingale) (submartingale).

Exercise 1.1.5 Let {Yn}n≥1 be a sequence of independent, identically distributed
random variables

P (Yi = 1) = P (Yi = −1) =
1
2
.

Set S0 = 0 and Sn = Y1 + · · ·+ Yn if n ≥ 1.
Check if the following sequences are martingales:

M (1)
n =

eθSn

(cosh θ)n , n ≥ 0

M (2)
n =

n∑
k=1

sign(Sk−1)Yk, n ≥ 1, M
(2)
0 = 0

M (3)
n = S2

n − n
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Exercise 1.1.6 Consider a discrete-time financial market, with two periods,
interest rate r ≥ 0, and a single risky stock, S. Suppose that S evolves as:

n = 0 n = 1 n = 2
9

8↗
p2

↘1−p2

5↗
p1

↘1−p1
6

4↗
p3

↘1−p3

3

a) Find p1, p2 i p3, in terms of r such that the probability is neutral. b) Assuming
that r = 0.1, give the initial value of a derivative with maturity N = 2 and payoff
S1+S2

2 . Construct first the portfolio that covers the risk of the derivative and see
its initial value. Check that this value coincides with the expectation, with respect
to the neutral probability, of the discounted payoff.

Exercise 1.1.7 Find the neutral probabilities in the market model of Exercise
1.1.3 assuming that only stock 1 is tradable.

Theorem 1.1.2 (Hyperplane Separation Theorem) Let L a subspace of Rn and
K a convex and compact subset of Rn without intersection with L. Then there
exists a linear functional φ : Rn → R such that φ(x) = 0 for all x ∈ L and
φ(x) > 0 for all x ∈ K.

The proof is based in the following lemma:

Lemma 1.1.1 Let C be a closed convex set of Rn not containing the origin,
then there exists φ : Rn → R, linear, such that φ(x) > 0 for all x ∈ C.

Proof. Let B(0, r) a ball of radius r and centered at the origin, take r
sufficiently big in such a way that B(0, r) ∩ C 6= φ. The map

B(0, r) ∩ C → R+

x 7−→ ||x|| =

(
n∑

i=1

x2
i

)1/2

is continuous and since it is defined in a compact set there will exist z ∈ B(0, r)∩
C such that ||z|| = infx∈B(0,r)∩C ||x|| and it satisfies ||z|| > 0 since C does not
contain the origin. Let x ∈ C, since C is convex λx + (1 − λ)z ∈ C for all
0 ≤ λ ≤ 1. It is obvious that

‖λx + (1− λ)z‖ ≥ ||z|| > 0,

then
λ2x · x + 2λ(1− λ)x · z + (1− λ)2z · z ≥ z · z,

equivalently
λ2(x · x + z · z) + 2λ(1− λ)x · z − 2λz · z ≥ 0.
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Take λ > 0, then

λ(x · x + z · z) + 2(1− λ)x · z ≥ 2z · z

and taking the limit when λ → 0 we have

x · z ≥ z · z > 0.

Then it is enough to take φ (x) = x · z.
Proof. (of the theorem) K−L = {u ∈ Rn, u = k− l, k ∈ K, l ∈ L} is closed

and convex. In fact, let 0 ≤ λ ≤ 1 and u, ũ ∈ K − L

λu + (1− λ)ũ = λk + (1− λ)k̃ − (λl + (1− λ)l̃)
= k̄ − l̄

where k̄ ∈ K (by convexity of K) and l̄ ∈ L (since it is a vectorial space), then
it is convex. Furthermore, if we take a sequence (un) ∈ K −L converging to u,
we have that un = kn − ln with kn ∈ K, ln ∈ L, that is ln = kn − un. But since
K is compact, there exists a subsequence knr that converges to a certain k ∈ K,
so lnr

will converge to k − u, and since lnr
is a convergent sequence in a closed

vectorial space (Rd is for all d) we will have k − u = l ∈ L, in such a way that
u = k − l ∈ K −L. Now K −L does not contain the origin and by the previous
proposition there exists φ linear such that

φ(k)− φ(l) > 0, para todo k ∈ K y todo l ∈ L.

Moreover, since L is a vectorial space φ(l) has to be zero. In fact if we assume
for instance that φ(l) > 0, then λl ∈ L for all λ > 0 arbitrary big and we will
have that

φ(k) > λφ(l),

but this is impossible if φ(k) es finite. Finally, since φ(l) = 0 we have that
φ(k) > 0 for all k ∈ K.

1.1.4 Complete markets and option pricing

We define a European option, derivative or contingent claim as a contract with
maturity N and with a payoff h ≥ 0, where h is FN - measurable.

For instance a call is a European option with payoff h = (S1
N −K)+, and

a put h = (K − S1
N )+, and an Asian option is a European one! with h =

( 1
N

∑N
j=0 S1

j −K)+

Definition 1.1.6 A derivative defined by h is said to replicable if there exists
an admissible strategy φ such that replicates h that is VN (φ) = h.

Proposition 1.1.6 If φ is a self-financing strategy that replicates h and the
market is viable then it is admissible.
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Proof. ṼN (φ) = h̃ and since there exists P ∗ such that Ep∗(ṼN (φ)|Fn) =
Ṽn(φ), we have Ṽn(φ) ≥ 0.

Definition 1.1.7 A market is said to be complete if any derivative is replicable.

Theorem 1.1.3 A viable market is complete if and only if there is a unique
probability P ∗ equivalent to P under which the discounted prices are martingales

Proof. Assume that the market is viable and complete, then, given h FN -
measurable there exists φ admissible, such that VN (φ) = h that is:

ṼN (φ) = V0(φ) +
N∑

j=1

φj ·∆S̃j =
h

S0
N

.

Assume there exist P1 and P2 martingale measures, then

EP1(
h

S0
N

) = V0(φ)

EP2(
h

S0
N

) = V0(φ)

and since this is true for all h FN -measurable both probability are the same in
FN = F .

Assume now that the market is viable but incomplete, we shall see that we
can built more than on e neutral probability. Let H be the subset of random
variables of the form

V0 +
N∑

j=1

φj ·∆S̃j

with V0 F0-measurable and φ = ((φ1
n, ..., φd

n))0≤n≤N predictable. H is a vectorial
subspace of the vectorial space, E, formed by all random variables. Moreover it
is not trivial, in fact since the market is incomplete there will exist h such that
h

S0
n
6∈ H. Let P ∗ be a neutral probability in E, we can define the scalar product

〈X, Y 〉 = EP∗(XY ). Let X be an random variable orthogonal to H and define

P ∗∗(ω) = (1 +
X(ω)

2||X||∞
)P ∗(ω).

Then we have an equivalent probability to P ∗ :

P ∗∗(ω) = (1 +
X(ω)

2||X||∞
)P ∗(ω) > 0

∑
P ∗∗(ω) =

∑
P ∗(ω) +

EP∗(X)
2||X||∞

= 1

since 1 ∈ H and X is orthogonal to H. Also, by this orthogonality

EP∗∗(
N∑

j=1

φj ·∆S̃j) = EP∗(
N∑

j=1

φj ·∆S̃j) +
EP∗(X

∑N
j=1 φj ·∆S̃j)

2||X||∞
= 0

in such a way that S̃ is a P ∗∗-martingale by Proposition 1.1.5.
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Pricing and hedging in complete markets

Assume we have a derivative with payoff h ≥ 0 and that the market is viable
and complete. We know that there exists φ admissible, such that VN (φ) = h
and if P ∗ is the neutral probability neutral we have that

Ṽn(φ) = V0(φ) +
n∑

j=1

φj ·∆S̃j

is a P ∗-martingale, in particular

EP∗(
h

S0
N

|Fn) = EP∗(ṼN (φ)|Fn) = Ṽn(φ)

that is
Vn(φ) = S0

nEP∗(
h

S0
N

|Fn) = EP∗(
h

(1 + r)N−n
|Fn)

so, the value of the replicating portfolio of h is given by the previous formula
and this gives us the price of the derivative at time n that we shall denote by
Cn, that is Cn = Vn(φ). Note that if we have a single risky stock (d = 1) then

C̃n − C̃n−1

∆S̃n

= φn

and we can calculate the hedging portfolio if we have an expression of C as a
function of S.

The binomial model of Cox-Ross-Rubinstein (CRR)

Assume a model with one risky stock that evolves as:

Sn(ω) = S0(1 + b)Un(ω)(1 + a)n−Un(ω)

where
Un(ω) = ξ1(ω) + ξ2(ω) + ... + ξn(ω)

and where ξi are random variables wit values 0 or 1, that is Bernoulli random
variables, and a < r < b :

n = 0 n = 1 n = 2...

S0(1 + b)2 ↗
↘

S0(1 + b) ↗↘
S0

↗
↘ S0(1 + b)(1 + a) ↗↘

S0(1 + a)↗↘
S0(1 + a) 2 ↗

↘.

We can also write
Sn = Sn−1(1 + b)ξn(1 + a)1−ξn(ω),
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then

S̃n = S0

(
1 + b

1 + r

)Un
(

1 + a

1 + r

)n−Un

= S̃n−1

(
1 + b

1 + r

)ξn
(

1 + a

1 + r

)1−ξn

.

For S̃n to be a martingale with respect to P ∗ we need

EP∗(S̃n|Fn−1) =S̃n−1

and if we take Fn = σ(S0, S1, ..., Sn) we have that the previous condition is
equivalent to

EP∗(
(

1 + b

1 + r

)ξn
(

1 + a

1 + r

)1−ξn

|Fn−1) =1

that is (
1 + b

1 + r

)
P ∗(ξn = 1|Fn−1) +

(
1 + a

1 + r

)
P ∗(ξn = 0|Fn−1) = 1

and consequently

P ∗(ξn = 1|Fn−1) =
r − a

b− a
,

P ∗(ξn = 0|Fn−1) = 1− P ∗(ξn = 1|Fn−1) =
b− r

b− a

Note that this conditional probability is deterministic and does not depends on
n, so under it ξi, i = 1, ..., N are independent, identically distributed random
variables with common distribution Bernoulli(p), for p = r−a

b−a . P ∗ is unique as
well, so the market is viable and complete. So, under the neutral probability
P ∗

SN = Sn(1 + b)ξn+1+...+ξN (1 + a)N−n−(ξn+1+...+ξN )

= Sn(1 + b)Wn,N (1 + a)N−n−Wn,N

with Wn,N ∼Bin(N − n, p) independent of Sn, Sn−1, ...S1. Since we have the
neutral probability we can calculate the price of a call at time n

Cn = EP∗

(
(SN −K)+
(1 + r)N−n

|Fn

)
= EP∗

(
(Sn(1 + b)Wn,N (1 + a)N−n−Wn,N −K)+

(1 + r)N−n
|Fn

)
=

N−n∑
k=0

(Sn(1 + b)k(1 + a)N−n−k −K)+
(1 + r)N−n

(
N − n

k

)
pk (1− p)N−n−k

= Sn

N−n∑
k=k∗

(
N − n

k

)
(p(1 + b))k((1− p)(1 + a))N−n−k

(1 + r)N−n

−K(1 + r)n−N
N−n∑
k=k∗

(
N − n

k

)
pk (1− p)N−n−k
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where

k∗ = inf{k, Sn(1 + b)k(1 + a)N−n−k > K}

= inf{k, k >
log K

Sn
− (N − n) log(1 + a)

log( 1+b
1+a )

}

Note that
p(1 + b)
1 + r

+
(1− p)(1 + a)

1 + r
= 1,

so, if we define

p̄ =
p(1 + b)
1 + r

we can write

Cn = Sn

N−n∑
k=k∗

(
N − n

k

)
p̄k(1− p̄)N−n−k

−K(1 + r)n−N
N−n∑
k=k∗

(
N − n

k

)
pk (1− p)N−n−k

= Sn Pr{Bin(N − n, p̄) ≥ k∗} −K(1 + r)n−N Pr{Bin(N − n, p) ≥ k∗}

Hedging portfolio in the CRR model

We have that
Vn = φ0

n(1 + r)n + φ1
nSn.

Fixed Sn−1, Sn can take two value Su
n = Sn−1(1 + b) ó Sd

n = Sn−1(1 + a) and
analogously Vn. Then

φ1
n =

V u
n − V d

n

Sn−1(b− a)
. (1.2)

and

φ0
n =

V u
n − φ1

nSu
n

(1 + r)n

In the case of a call, if we take n = N we have:

φ1
N =

V u
N − V d

N

SN−1(b− a)
=

(SN−1(1 + b)−K)+ − (SN−1(1 + a)−K)+
SN−1(b− a)

.

Now we can calculate by the self-financing condition the value of the portfolio
at N − 1:

VN−1 = φ0
N (1 + r)N−1 + φ1

NSN−1

and from here φ1
N−1 using (1.2) again.

Example 1.1.1 The following example is a compute program written in Math-
ematica to calculate the value of a call and put for a CRR mode with the
following data: S0 = 100 eur., K = 100 eur. b = 0.2, a = −0.2, r = 0.02, n = 4
periods.



18 CHAPTER 1. FINANCIAL DERIVATIVES

Clear[s, call, pu];
s[0] = Table[100, {1}];
a = -0.2; b = 0.2; r = 0.02; n = 4;
p = (r - a)/(b - a);
s[x_] := s[x] = Prepend[(1 + a)*s[x - 1], (1 + b)*s[x - 1][[1]]];
ColumnForm[Table[s[i], {i, 0, n}], Center]
pp[x_] := Max[x, 0]
call[n] = Map[pp, s[n] - 100]; pu[n] = Map[pp, 100 - s[n]];
call[x_] := call[x] =

Drop[p*call[x + 1]/(1 + r) + (1 - p)*RotateLeft[call[x +
1], 1]/(1 + r), -1]

ColumnForm[Table[call[i], {i, 0, n}], Center]
pu[x_] := pu[x] = Drop[p*pu[x + 1]/(1 +
r) + (1 - p)*RotateLeft[pu[x + 1], 1]/(1 + r), -1]
ColumnForm[Table[pu[i], {i, 0, n}], Center]

Example 1.1.2 Consider a CRR model with 91 periods a = −b. We want to
calculate the initial value of a European call where the underlying is a share of
Telefónica.

• Maturity: 3 months (91 days= n) (T = 91/365).

• Current price of the share of Telefónica 15.54 euros.

• Strike 15.54 euros.

• Interest rate 4.11 % annual.

• Annual volatility: 23,20% ( b2=volatility2 × T/n)

Clear[s, c];
n = 91;
so = 15.54;
K = 15.54;
vol = 0.232;
T = 91/365;
r = 0.0411*T/n;
b =vol*Sqrt[T/n];
a =-b;
p = (r - a)/(b - a);
q = 1 - p;
s[0] = Table[so, {1}];
s[x_] := s[x] = Prepend[(1 + a)*s[x - 1], (1 + b)*s[x - 1][[1]]];
pp[x_] := Max[x, 0];
c[n] = Map[pp, s[n] - K];
c[x_] := c[x] = Drop[p*c[x + 1]/(1 + r) +

q*RotateLeft[c[x + 1], 1]/(1 + r), -1];
c[0][[1]]
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Exercise 1.1.8 Consider a financial market with two periods, interest rate
r = 0, and a single risky asset S1. Suppose that S1

0 = 1 and for n = 1, 2,
S1

n = S1
n−1ξn, where the random variables ξ1, ξ2 are independent, and take two

different values: 2, 3
4 , with the same a probability. a) Is that a viable market?

Is it complete? Find the price of a European option with maturity N = 2 and
payoff max0≤n≤2 S1

n. Find the hedging portfolio of this option.
Assume now that we have a second risky asset in this market with S2

n such
that S2

0 = 1 and for n = 1, 2

S2
n = S2

n−1ηn,

where the random variables ηn take three different values s 2, 1, 1
2 , η1 y η2 are

independent and

P (ηn = 2|ξn = 2) = 1,

P (ηn = 1|ξn =
3
4
) =

1
3
,

P (ηn =
1
2
|ξn =

3
4
) =

2
3
,

in such a way that the vector (ξn, ηn) takes only the values (2, 2), ( 3
4 , 1), ( 3

4 , 1
2 )

with probabilities 1
2 , 1

6 , 1
3 . b) Prove that these two assets S1

n, S2
n form a viable

and complete market and calculate the neutral probability. Is it possible to know
the value of the European option mentioned in a) without doing any calculation?
Why?

Exercise 1.1.9 Prove that if Xn
L→ X, X absolutely continuous, and an →

a ∈ R̄, then P{Xn ≤ an} → P{X ≤ a}.

Exercise 1.1.10 Let {Xnj , j = 1, ..., kn, n = 1}, where kn
n→ ∞ , a tri-

angular system of centered and independent random variables, fixed n, with
Xnj = O(k−1/2

n ), and such that
∑kn

j=1 E(X2
nj) → σ2 > 0, prove that Sn =∑kn

j=1 Xnj
L→ N(0, σ2).

Exercise 1.1.11 Assume now a sequence of CRR binomial models where the
number of periods depends of n and such that

1 + r(n) = e
rT
n ,

1 + b(n) = eσ
√

T
n ,

1 + a(n) = e−σ
√

T
n ,

Prove that for n big enough the markets are viable. Calculate the limit of the
price of a call at the initial time when n →∞.
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Exercise 1.1.12 Consider the analogous situation as in the previous exercise
but with

1 + b(n) = eτ ,

1 + a(n) = eλ T
n ,

where τ > 0 y 0 < λ < r.
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1.1.5 American options

An American option can be exercised in any time between 0 and N, and we shall
define an (Fn)-adapted positive sequence (Zn) to indicate the immediate payoff
when it is exercised at time n. In the case of an American call Zn = (Sn−K)+
and in the case of an American put Zn = (K − Sn)+. To obtain the price, Un,
at time n, we proceed by doing a backward induction. Define UN = ZN . At
time N − 1, the owner of the option can choose between receiving ZN−1 or the
equivalent amount to a ZN at time N − 1 that is the amount to replicate ZN

at N − 1 given by S0
N−1EP∗(Z̃N |FN−1) (we are assuming that the market is

viable and complete and that P ∗ is the neutral probability). Obviously he will
choose the maximum of the two amounts, so we have

UN−1 = max(ZN−1, S
0
N−1EP∗(Z̃N |FN−1))

and by backward induction

Un = max(Zn, S0
nEP∗(Ũn+1|Fn))

or analogously

Ũn = max(Z̃n, EP∗(Ũn+1|Fn)), 0 ≤ n ≤ N − 1

Proposition 1.1.7 The sequence (Ũn) is the smallest a P ∗-supermartingale
that dominates the sequence(Z̃n)

Proof. (Ũn) is adapted and by construction

EP∗(Ũn+1|Fn) ≤ Ũn.

Let (Tn) be another supermartingale that dominates (Z̃n), then TN ≥ Z̃N =
ŨN . Assume that Tn+1 ≥ Ũn+1. Then, by the monotony of the expectation and
since (Tn) is a supermartingale

Tn ≥ EP∗(Tn+1|Fn) ≥ EP∗(Ũn+1|Fn)

moreover (Tn) dominates (Z̃n), so

Tn ≥ max(Z̃n, EP∗(Ũn+1|Fn)) = Ũn

Remark 1.1.6 If we exercise the option at time n, we receive Zn and the initial
value of this is

V0 = EP∗(Z̃n|F0),

since we can exercise the American option at any time {0, 1, .., N} one wonders
if

U0 = sup
ν

EP∗(Z̃ν |F0),

where ν is a random time, where the decision on stopping at time n is made
according with the information we have till this time n. That is {ν = n} ∈ Fn.
The answer, as we shall see later, is positive.
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1.1.6 The optimal stopping problem

Definition 1.1.8 A random variable ν taking values in {0, 1, ..., N} is a stop-
ping time if

{ν = n} ∈ Fn, 0 ≤ n ≤ N

Remark 1.1.7 Equivalently ν is a stooping time if {ν ≤ n} ∈ Fn, 0 ≤ n ≤
N , definition that can be extended to the continuous case.

Now we introduce the concept of a stochastic process ”stopped” by a stop-
ping time. Let (Xn) be an adapted stochastic process and ν a stopping time,
then we define

Xν
n = Xn∧ν para todo n.

Note that

Xν
n(ω) =

{
Xn si n ≤ ν(ω)
Xν(ω) si n > ν(ω)

Proposition 1.1.8 Let (Xn) adapted, then (Xν
n) is adapted and if (Xn) is a

martingale (sup, super), then (Xν
n) is a martingale (sub, super).

Xν
n = Xn∧ν = X0 +

n∧ν∑
j=1

(Xj −Xj−1)

= X0 +
n∑

j=1

1{j≤ν}(Xj −Xj−1),

but {j ≤ ν} = {ν ≤ j − 1} ∈ Fj−1 con lo que 1{j≤ν} es Fj−1-measurable
and the sequence (φj) con φj = 1{j≤ν} is predictable. Obviously Xν

n es Fn-
measurable and

E(Xν
n+1 −Xν

n|Fn) = E(1{n+1≤ν}(Xn+1 −Xn)|Fn)

= 1{n+1≤ν}E(Xn+1 −Xn|Fn) ≶ 0 if (Xn) es
super
martingala
sub

The Snell envelope

Let (Yn) an adapted process (to (Fn)), define

XN = YN

Xn = max(Yn, E(Xn+1|Fn)), 0 ≤ n ≤ N − 1,

we say that (Xn) is the Snell envelope of (Yn).

Remark 1.1.8 Note that (Ũn), the sequence of the discounted prices of the
American options is the Snell envelope of discounted payoffs (Z̃n).
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Remark 1.1.9 By Proposition 1.1.7 the Snell envelope of an adapted process
is the smallest supermartingale that dominates it.

Remark 1.1.10 Fixed ω if Xn is strictly greater than Yn, Xn = E(Xn+1|Fn)
so Xn behaves, until this n as a martingale, this indicates that if we ”stop” Xn

properlywe can have a martingale.

Proposition 1.1.9 The random variable

ν = inf{n ≥ 0, Xn = Yn}

is a stopping time and (Xν
n) is a martingale.

Proof.

{ν = n} = {X0 > Y0} ∩ ... ∩ {Xn−1 > Yn−1} ∩ {Xn = Yn} ∈ Fn.

And

Xν
n = X0 +

n∑
j=1

1{j≤ν}(Xj −Xj−1)

therefore
Xν

n+1 −Xν
n = 1{n+1≤ν}(Xn+1 −Xn)

and
E(Xν

n+1 −Xν
n|Fn) = E(1{n+1≤ν}Xn+1 − 1{n+1≤ν}Xn|Fn),

but

1{n+1≤ν}Xn = 1{n+1≤ν}max(Yn, E(Xn+1|Fn))
= max(1{n+1≤ν}Yn, E(1{n+1≤ν}Xn+1|Fn))
= E(1{n+1≤ν}Xn+1|Fn)),

since
1{n+1≤ν}Xn > 1{n+1≤ν}Yn.

We denote τn,N stopping times with values in {n, n + 1, ..., N}.

Corollary 1.1.1

X0 = E(Yν |F0) = sup
τ∈τ0,N

E(Yτ |F0)

Proof. (Xν
n) is a martingale and consequently

X0 = E(Xν
N |F0) = E(XN∧ν |F0)

= E(Xν |F0) = E(Yν |F0).



24 CHAPTER 1. FINANCIAL DERIVATIVES

On the other hand (Xn) is supermartingale and then (Xτ
n) as well for all τ ∈

τ0,N , so
X0 ≥ E(Xτ

N |F0) = E(Xτ |F0) ≥ E(Yτ |F0),

therefore
E(Yν |F0) ≥ E(Yτ |F0), ∀τ ∈ τ0,N

Remark 1.1.11 Analogously we could prove

Xn = E(Yνn |Fn) = sup
τ∈τn,N

E(Yτ |Fn),

where
νn = inf{j ≥ n, Xj = Yj}

Definition 1.1.9 A stopping time ν is said to be optimal for the sequence (Yn)
if

E(Yν |F0) = sup
τ∈τ0,N

E(Yτ |F0).

Remark 1.1.12 The stopping time ν = inf{n, Xn = Yn} (where X is the Snell
envelope of Y ) is then an optimal stopping time for Y . We shall see the it is
the smallest optimal stopping time.

The following theorem characterize the optimal stopping times.

Theorem 1.1.4 τ is an optimal stopping time if and only if{
Xτ = Yτ

(Xτ
n) is a martingale

Proof. If (Xτ
n) is a martingale and Xτ = Yτ

X0 = E(Xτ
N |F0) = E(XN∧τ |F0)

= E(Xτ |F0) = E(Yτ |F0).

On the other hand for all stopping time π, (Xπ
n ) is a supermartingale, so

X0 ≥ E(Xπ
N |F0) = E(Xπ|F0) ≥ E(Yπ|F0).

Reciprocally, we know, by the previous corollary, that X0 = supτ∈τ0,N
E(Yτ |F0).

Then, if τ is optimal

X0 = E(Yτ |F0) ≤ E(Xτ |F0) ≤ X0,

where the last inequality is due to the fact that (Xτ
n) is a supermartingale. So,

we have
E(Xτ − Yτ |F0) = 0
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and since Xτ − Yτ ≥ 0, we conclude that Xτ = Yτ .
Now we can also see that (Xτ

n) is a martingale. We know that it is a super-
martingale, then

X0 ≥ E(Xτ
n |F0) ≥ E(Xτ

N |F0) = E(Xτ |F0) = X0

as we saw before. Then, for all n

E(Xτ
n − E(Xτ |Fn)|F0) = 0,

and since (Xτ
n) is supermartingale,

Xτ
n ≥ E(Xτ

N |Fn) = E(Xτ |Fn)

therefore Xτ
n = E(Xτ |Fn).

Decomposition of supermartingales

Proposition 1.1.10 Any supermartingale (Xn) has a unique decomposition:

Xn = Mn −An

where (Mn) is a martingale and (An) is non-decreasing predictable with A0 = 0.

Proof. It is enough to write

Xn =
n∑

j=1

(Xj − E(Xj |Fj−1))−
n∑

j=1

(Xj−1 − E(Xj |Fj−1)) + X0

and to identify

Mn =
n∑

j=1

(Xj − E(Xj |Fj−1)) + X0,

An =
n∑

j=1

(Xj−1 − E(Xj |Fj−1))

where we define M0 = X0 and A0 = 0. So (Mn) is a martingale:

Mn −Mn−1 = Xn − E(Xn|Fn−1), 1 ≤ n ≤ N

in such a way that

E(Mn −Mn−1|Fn−1) = 0, 1 ≤ n ≤ N.

Finally since (Xn) is supermartingale

An −An−1 = Xn−1 − E(Xn|Fn−1) ≥ 0, 1 ≤ n ≤ N.
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Now we can see the uniqueness. If

Mn −An = M ′
n −A′n, 0 ≤ n ≤ N

we have
Mn −M ′

n = An −A′n, 0 ≤ n ≤ N,

but then since (Mn) y (M ′
n) are martingales and (An) y (A′n) predictable, it

turns out that

An−1 −A′n−1 = Mn−1 −M ′
n−1 = E(Mn −M ′

n|Fn−1)
= E(An −A′n|Fn−1) = An −A′n, 1 ≤ n ≤ N,

that is
AN −A′N = AN−1 −A′N−1 = ... = A0 −A′0 = 0,

since by hypothesis A0 = A′0 = 0.
This decomposition is known as the Doob decomposition.

Proposition 1.1.11 The biggest optimal stopping time for (Yn) is given by

νmax =
{

N si AN = 0
inf{n, An+1 > 0} si AN > 0 ,

where (Xn), Snell envelope of (Yn), has a Doob decomposition Xn = Mn −An.

Proof. {νmax = n} = {A1 = 0, A2 = 0, ..., An = 0, An+1 > 0} ∈ Fn,
0 ≤ n ≤ N − 1, {νmax = N} = {AN = 0} ∈ FN−1. So, it is a stopping time.

Xνmax
n = Xn∧νmax = Mn∧νmax −An∧νmax = Mn∧νmax

since An∧νmax = 0. Therefore (Xνmax
n ) is a martingale. So, to see that this

stopping time is optimal we have to prove that

Xνmax = Y
νmax

Xνmax =
N−1∑
j=1

1{νmax=j}Xj + 1{νmax=N}XN

=
N−1∑
j=1

1{νmax=j}max(Yj , E(Xj+1|Fj)) + 1{νmax=N}YN ,

but in {νmax = j}, Aj = 0, Aj+1 > 0 so

E(Xj+1|Fj) = E(Mj+1|Fj)−Aj+1 < E(Mj+1|Fj) = Mj = Xj

therefore Xj = Yj en {νmax = j} and consequently Xνmax = Yνmax . Finally we see
that is the biggest optimal stopping time. Let τ ≥ νmax and P{τ > νmax} > 0.
Then

E(Xτ ) = E(Mτ )− E(Aτ ) = E(M0)− E(Aτ )
= X0 − E(Aτ ) < X0

so (Xτ∧n) cannot be a martingale.
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1.1.7 Application to American options

Another expression for the price of American options
We already saw that the price of an American option with payoffs (Zn) was

given by {
UN = ZN

Un = max(Zn, S0
nEP∗(Un+1|Fn)) si n ≤ N − 1.

In other words, the sequence of discounted prices (Ũn) is the Snell envelope of
the discounted payoffs (Z̃n). The previous results allow us to say that

Ũn = sup
τ∈τn,N

EP∗(Z̃τ |Fn),

or equivalently

Un = S0
n sup

τ∈τn,N

EP∗(
Zτ

S0
τ

|Fn).

Hedging of American options

By the previous results we know that we can decompose

Ũn = M̃n − Ãn

where (M̃n) is a P ∗-martingale and (Ãn) is an increasing and predictable with
zero value at n = 0. If we receive the amount U0 we can built the self-financing
portfolio replicating MN In fact, since the market is complete, any positive
payoff (we assume that (Zn) ≥ 0), can be replicated, so there will exist φ such
that

VN (φ) = MN

or what is the same
ṼN (φ) = M̃N

but (Ṽn(φ)) and (M̃n) are P ∗-martingales in such away that Ṽn(φ) = M̃n, 0 ≤
n ≤ N. Note that then we have

Un = Mn −An = Vn(φ)−An

and therefore
Vn(φ) = Un + An ≥ Un.

In other words with the money we receive we can super-hedge the derivative.

Optimal exercise of the American option

Assume we buy an American option and we want when to exercise the option.
That is, we want to know which stopping time τ to use. If τ is such that
Uτ(ω)(ω) > Zτ(ω)(ω) it is not worth to exercise the option since its value Uτ(ω)(ω)
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is greater than we would obtain if we exercised: Zτ(ω)(ω). So, we will look for
τ such that Ũτ = Z̃τ . On the other hand we will look for An = 0, for all
1 ≤ n ≤ τ, (or equivalently Aτ = 0) otherwise, from certain time it would be
better to exercise the option and to built a portfolio with the strategy φ. In
such a way that Vτ∧n(φ) = Uτ∧n, but then (Ũτ

n) is a P ∗-martingale and this
together with Ũτ = Z̃τ are the two conditions for τ to be an optimal stopping
time for (Z̃n).

Note that from the point of view of a seller, if the buyer does not exercise
the option at an optimal stopping time then or Uτ > Zτ or Aτ > 0 and in
both cases, since the seller has invested the prime to built a portfolio with the
strategy φ, he will have the profit

Vτ (φ)− Zτ = Uτ + Aτ − Zτ > 0.

Example 1.1.3 Here it is shown how to calculate the premium of an American
put option with maturity of 3 months on stocks whose current value is 60 euros,
the strike price is also 60 euros ( at the money) , the annual interest rate is 10%
and the annual volatility 45%. We assume a CRR model with 12 periods. It is
also analyzed in which nodes is convenient to exercise the option.

Clear[s, pa, vc, vi];
T = 1/4;n =12;so = 60;K = 60;vol = 0.45;ra = 0.10;
r = ra*T/n;b =vol*Sqrt[T/n];a=-b;
p = (r - a)/(b - a);
q = 1 - p;
pp[x ] := Max[x, 0]
s[0] = Table[so, {1}];
s[x ] := s[x] = Prepend[(1 + a)*s[x - 1], (1 + b)*s[x - 1][[1]]];
ColumnForm[Table[s[i], {i, 0, n}], Center]
pa[n] = Map[pp, K - s[n]];
pa[x ] := pa[x] = K - s[
x] + Map[pp, Drop[p*pa[x + 1]/(1 + r) + q*RotateLeft[pa[x + 1],
1]/(1 + r), -1] - K + s[x]]
ColumnForm[Table[pa[i], {i, 0, n}], Center]
vc[n] = Map[pp, K - s[n]];
vc[x ] := Drop[p*pa[x + 1]/(1 + r) + q*RotateLeft[pa[x +
1], 1]/(1 + r), -1]
vi[i ] := Map[pp, K - s[i]]
ColumnForm[Table[vc[i] - vi[i], {i, 0, n}], Center]
ColumnForm[Table[pa[i] - vi[i], {i, 0, n}], Center]

Exercise 1.1.13 Obtain the following bounds for the call prices (C) and for
the put ones (P ) European (E) and American (A):

max(Sn −K, 0) ≤ Cn(E) ≤ Cn(A);

max(0, (1 + r)−(N−n)K − Sn) ≤ Pn(E) ≤ (1 + r)−(N−n)K



1.2. CONTINUOUS-TIME MODELS 29

Exercise 1.1.14 Consider a viable and complete market with N periods of trad-
ing. Show that, with the usual notations,

sup
τ , stopping time

EQ

(
(Sτ −K)+
(1 + r)τ

)
= EQ

(
(SN −K)+
(1 + r)N

)
where Q is the risk neutral probability.

Exercise 1.1.15 Let {CE
n }N

n=0 be the price of a European option with payoff
ZN and let {Zn}N

n=0 be the payoffs of an American option. Demonstrate that if
CE

n ≥ Zn, n = 0, 1, ..., N − 1, then {CA
n }N

n=0 (the prices of the American option)
coincide with {CE

n }N
n=0.

Exercise 1.1.16 Let Xn = ξ1 + ξ2 + ... + ξn, n ≥ 1, where the ξi are i.i.d. such
that P (ξi = 1) = P (ξi = −1) = 1/2. Find the Doob decomposition of |X|.

1.2 Continuous-time models

We are going to consider now continuous-time models and even thought the
basic ideas are the same, the technical aspects are more delicate.

The main reason to consider such models is not necessary to fix the time
between trades, the models are more realistic and we can get close formulas
for pricing derivatives. It was Louis Bachelier in 1900 with his ”Théorie de
la spéculation” the first in considering the Brownian motion to describe stock
prices and in obtaining formulas to price options. However his work was not
understood at that time and consequently undervalued.

We start by giving some definitions and basic results to understand the
new framework. In particular we define the Brownian motion, which is the
basic ingredient of the Black-Scholes model. Later we introduce the concept
of continuous-time martingale and the differential calculus associated with the
Brownian motion, that is the Itô calculus, and finally we apply all these tools
to study the Black-Scholes model.

Definition 1.2.1 An stochastic process is a family of real random variables
(Xt)t∈R+ define in a probability space (Ω,F , P ).

Remark 1.2.1 Usually, index t indicates time and it takes values between 0
and T .

Remark 1.2.2 A stochastic process can be also seen as a random map: for all
ω ∈ Ω we can associate the map from R+ to R: t 7−→ Xt(ω) named trajectory
of the process. If the trajectories are continuous then the process is said to be
continuous.

Remark 1.2.3 Moreover a stochastic process can be also described as a map
from R+×Ω to R. We shall assume that in R+×Ω we have the σ-field B(R+)⊗F
and that the map is measurable (measurable process). This condition is a bit
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stronger that the condition of being simply a process. Nevertheless if the process
has continuous trajectories on the left or right sides, then there is always a
measurable version, say Y . That is, there exists Y measurable such that P (Xt =
Yt) = 1, for all t.

Definition 1.2.2 Let (Ω,F , P ) a probability space, a filtration (Ft)t≥0 is an
increasing family of sub-σ-fields of F . We say that (Xt) is an adapted process
if for all t, Xt es Ft-measurable.

Remark 1.2.4 W shall work with filtrations satisfying the property

If A ∈ F y P (A) = 0 then A ∈ Ft para todo t.

That is F0 contents all the P -null sets of F . The importance of this is that if
Xt = Yt a.s. and Xt is Ft-measurable then Yt is Ft-measurable. Then if a
process (Xt) is adapted and (Yt) is a version of it then (Yt) is adapted.

Remark 1.2.5 We can built the filtration generated by a process (Xt) and
write Ft = σ(Xs, 0 ≤ s ≤ t). In general this filtration does not satisfy the
previous condition and we shall substitute for Ft by F̄t =Ft ∨ N where N is
the collection of null sets of F . We call it the natural filtration generated by
(Xt).

The Brownian motion describes the random movement that is possible to
observe in some microscopic particles in a fluid mean (for instance pollen in a
water drop). This name is due to the botanist Robert Brown who first observed
this phenomenon en 1828.

The zigzagging of these particles is due to the fact that they are buffeted
by the molecules of the fluid in an intense way depending of the temperature of
the fluid.

The mathematical description of this phenomenon was elaborated by Albert
Einstein in 1905. Lately around the twenties 20 Norbert Wiener gave a charac-
terization of the Brownian motion as an stochastic process and this is the reason
why Wiener process is also used to name the Brownian motion. We consider
the one-dimensional case.

Definition 1.2.3 We say that (Xt)t≥0 is a process with independent increments
if for all 0 ≤ t1 < ... < tn, Xt1 , Xt2 −Xt1 , ..., Xtn

−Xtn−1 are independent.

Definition 1.2.4 A Brownian motion is a continuous process with independent
and stationary increments. That is:

P -c.s s 7−→ Xs(ω) is continuous.
s ≤ t, Xt −Xs is independent of Fs = σ(Xu, 0 ≤ u ≤ s).
s ≤ t, Xt −Xs ∼ Xt−s −X0.

We deduce that the law of Xt −X0 is Gaussian:
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Theorem 1.2.1 If (Xt) is a Brownian motion then

Xt −X0 ∼ N(rt, σ2t)

Proposition 1.2.1 If (Xt) is a process with independent increments, continu-
ous and 0 = t0n ≤ t1n ≤ ... ≤ tnn ≤ t is a sequence of partitions of [0, t] with
limn→∞ sup |tin − ti−1,n| = 0, then for all ε > 0

lim
n→∞

n∑
i=1

P{|Xtin
−Xti−1,n

| > ε} = 0.

Proof. We have that for all ε > 0

lim
n→∞

P{sup
i
|Xtin

−Xti−1,n
| > ε} = 0,

but

P

{
sup

i
|Xtin

−Xti−1,n
| > ε

}
= 1−

n∏
i=1

P{|Xtin
−Xti−1,n

| ≤ ε}

= 1−
n∏

i=1

(1− P{|Xtin
−Xti−1,n

| > ε})

≥ 1− exp{−
n∑

i=1

P{|Xtin −Xti−1,n | > ε}} ≥ 0

Proposition 1.2.2 Let {Ykn, k = 1, ..., n} be independent random variables
such that |Ykn| ≤ εn con εn ↓ 0. Then if lim inf V ar(

∑n
k=1 Ykn) > 0∑n

k=1 Ykn − E(
∑n

k=1 Ykn)√
V ar(

∑n
k=1 Ykn)

→ N(0, 1)

Proof. Write Xkn = Ykn − E(Ykn) and v2
n = V ar(

∑n
k=1 Ykn)

log E(exp{it 1
vn

n∑
k=1

Xkn})

= log(
n∏

i=1

E(exp it
Xkn

vn
)) =

n∑
i=1

log(E(exp it
Xkn

vn
))

= −1
2
t2
∑n

k=1 E(X2
kn)

v2
n

− i

3!
t3
∑n

k=1 E(X3
kn)

v3
n

+ ...

= −1
2
t2 + O(

εn

vn
),

since ∣∣∣∣∑n
k=1 E(X3

kn)
v3

n

∣∣∣∣ ≤ ∣∣∣∣2εn

∑n
k=1 E(X2

kn)
v3

n

∣∣∣∣ .
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Remark 1.2.6 Note that if lim inf V ar(
∑n

k=1 Ykn) = 0 we will have that e∑nr

k=1 Ykn − E(
∑nr

k=1 Ykn) P→ 0 for certain subsequence.

Proof. (Theorem) Given the partition 0 = t0n ≤ t1n ≤ ... ≤ tnn ≤ t define

Ynk = (Xtkn
−Xtk−1,n

)1{|Xtkn
−Xtk−1,n

|≤εn},

then, by a slight extension of the previous proposition (here ε depends on n),

P (Xt −X0 6=
n∑

k=1

Ynk) ≤
n∑

k=1

P (|Xtkn
−Xtk−1,n

| > εn) n→∞→ 0.

So
∑n

k=1 Ynk
P→ Xt − X0. On the other hand, by the second proposition, if

lim inf V ar(
∑n

k=1 Ykn) > 0,∑n
k=1 Ykn − E(

∑n
k=1 Ykn)√

V ar(
∑n

k=1 Ykn)
→ N(0, 1)

consequently Xt − X0 has a normal law (or it is a constant). We have then
that the law of all increments are normal. If we take as definition of r, σ2 that
X1 −X0 ∼ N(r, σ2), since increments are homogeneous and independent, and
from the continuity we obtain that Xt −X0 ∼ N(rt, σ2t) :

X1 −X0 =
p∑

i=1

(Xi/p −X(i−1)/p),

then X1/p − X0 ∼ N(r/p, σ2/p). Analogously Xq/p − X0 ∼ N(qr/p, qσ2/p).
Now we can approximate any real time t by a rational one and to apply the
continuity of X.

Definition 1.2.5 We say that a Brownian motion is standard if X0 = 0 P a.s.
r = 0 and σ2 = 1. We shall always assume that it is standard.

In a discrete-time model, with a single risky stock S, the discounted value
of a self-financing portfolio φ is given by

Ṽn = V0 +
n∑

j=1

φj∆S̃j ,

the analogous in a continuous-time model will be

V0 +
∫ t

0

φsdS̃s.

We will see that these differentials (or integrals ) will be well defined whenever
we have a definition of ∫ t

0

φsdWs
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where (Ws) is a Brownian motion. In a first glance we can think in a definition
ω to ω (path-wise) but though Ws(ω) is continuous in s, it is not a function
with bounded variation and we cannot associate a measure with the increments
of the path to build a Lebesgue-Stieltjes integral.

Proposition 1.2.3 The trajectories of a Brownian motion has not bounded
variation with probability one.

Proof. Given the partition 0 = t0n ≤ t1n ≤ ... ≤ tnn ≤ t de [0, t] con
limn→∞ sup |tin − ti−1,n| = 0, we have:

∆n =
n∑

i=1

(Wtin −Wti−1,n)2 L2

→ t.

In fact:

E((∆n − t)2) = E(∆2
n − 2t∆n + t2)

= E(∆2
n)− 2t2 + t2,

but

E(∆2
n) = E

 n∑
i=1

n∑
j=1

(Wtin −Wti−1,n)2(Wtjn −Wtj−1,n)2


=

n∑
i=1

E((Wtin
−Wti−1,n

)4) + 2
n∑

i=1

∑
j<i

E((Wtin
−Wti−1,n

)2(Wtjn
−Wtj−1,n

)2)

= 3
n∑

i=1

(tin − ti−1,n)2 + 2
n∑

i=1

∑
j<i

(tin − ti−1,)((tjn − tj−1,n)

= t2 + 2
n∑

i=1

(tin − ti−1,n)2

so

E((∆n − t)2) = 2
n∑

i=1

(tin − ti−1,n)2 ≤ 2t sup |tin − ti−1,n| → 0.

Then

P{|∆n − t| > ε} ≤ 2t sup |tin − ti−1,n|
ε2

,

and if the sequence of partitions is such that
∑∞

n=1 sup |tin − ti−1,n| < ∞, by
applying the Borel-Cantelli Lemma, we have ∆n

a.s.→ t.

n∑
i=1

|Wtin
−Wti−1n

| ≥
∑n

i=1 |Wtin
−Wti−1,n

|2

supi |Wti,n
−Wti−1,n

|
=

∆n

supi |Wtin
−Wti−1,n

|
c.s.→ t

0
.
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Proposition 1.2.4 If (Xt) is a Brownian motion and 0 < t1 < ... < tn , then
(Xt1 , Xt2 , ..., Xtn) is a Gaussian vector.

Proof. (Xt1 , Xt2 , ..., Xtn) is a linear transformation of (Xt1 , Xt2−Xt1 , ..., Xtn−
Xtn−1) and this is a vector of independent normal random variables.

Proposition 1.2.5 If (Xt) is a Brownian motion then Cov(Xt, Xs) = s ∧ t.

Proof. V ar(Xt−Xs) = V ar(Xt)+V ar(Xs)−2Cov(Xt, Xs). That is t−s =
t + s− 2Cov(Xt, Xs).

Definition 1.2.6 A continuous process (Xt) is an (Ft)- Brownian motion if

• Xt es Ft-measurable.

• Xt −Xs es independent of Fs, s ≤ t.

• Xt −Xs ∼ Xt−s −X0

Example 1.2.1 Let (Xt) be Brownian motion. Fixed T > 0, define Ft =
σ(Xs, T − t ≤ s ≤ T ), 0 ≤ t < T then

Yt = XT−t −XT +
∫ T

T−t

Xs

s
ds, 0 ≤ t < T

is an(Ft)-Brownian motion.

Proof. It is obvious that Y is (Ft)-adapted, continuous, Gaussian and that
Y0 = 0. It has independent increments, in fact, let 0 ≤ u < v < T

Yv − Yu = XT−v −XT−u +
∫ T−u

T−v

Xs

s
ds,

then E(Yv − Yu) = 0 and

V ar(Yv − Yu) = v − u + 2
∫ T−u

T−v

E ((XT−v −XT−u) Xs)
s

ds

+ 2
∫ T−u

T−v

(∫ r

T−v

E (XsXr)
sr

ds

)
dr

= v − u + 2
∫ T−u

T−v

T − v − s

s
ds

+ 2
∫ T−u

T−v

∫ r

T−v

1
r
dsdr

= v − u + 2
∫ T−u

T−v

T − v − s

s
ds

+ 2
∫ T−u

T−v

r − (T − v)
r

dr

= v − u.
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Finally, Yv−Yu is independent of Fu. Since the random variables are Gaussian,
it is enough to see that E(Yv − Yu|Fu) = 0, but

E(Yv − Yu|Fu) = E(Yv − Yu|XT−u) = 0,

since

E((Yv − Yu) XT−u) = T − v − (T − u) +
∫ T−u

T−v

E(XT−uXs)
s

du

= u− v + v − u = 0.

1.2.1 Continuous-time Martingales

Definition 1.2.7 Let (Mt) be a family of adapted random variables to (Ft) with
moments of first order, then it is:

• a martingale if E(Mt|Fs) = Ms, for all s ≤ t

• a submartingale if E(Mt|Fs) ≥ Ms, for all s ≤ t

• a supermartingale if E(Mt|Fs) ≤ Ms, for all s ≤ t.

In the previous definition equalities and inequalities are almost surely.

Proposition 1.2.6 If (Xt) is an (Ft)-Brownian motion then:

• (Xt) is an (Ft)-martingale.

• (X2
t − t) is an (Ft)-martingale.

• (exp(σXt − σ2

2 t)) is an (Ft)-martingale.

Proof.

E(Xt|Fs) = E(Xt −Xs + Xs|Fs)
= E(Xt −Xs|Fs) + Xs

= E(Xt −Xs) + Xs = Xs,

E(X2
t − t|Fs) = E((Xt −Xs + Xs)2|Fs)− t

= E((Xt −Xs)2 + X2
s + 2(Xt −Xs)|Fs)− t

= t− s + X2
s − t

= X2
s − s,
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E(exp(σXt −
σ2

2
t)|Fs) = exp(σXs −

σ2

2
t)E(exp(σ(Xt −Xs))|Fs)

= exp(σXs −
σ2

2
t)E(exp(σ(Xt −Xs))

= exp(σXs −
σ2

2
t) exp(

σ2

2
(t− s)) (since Xt −Xs ∼ N(0, t− s))

= exp(σXs −
σ2

2
s)

Exercise 1.2.1 Prove that the following stochastic processes, defined from a a
Brownian motion B, are martingales, respect to Ft = σ(Bs, 0 ≤ s ≤ t),

Xt = t2Bt − 2
∫ t

0

sBsds

Xt = et/2 cos Bt

Xt = et/2 sinBt

Xt = (Bt + t) exp(−Bt −
1
2
t)

Xt = B1
t B2

t .

In the last case B1
t y B2

t are two independent Brownian motion and Ft =
σ(B1

s , B2
s , 0 ≤ s ≤ t).

Exercise 1.2.2 Let c > 0 and let (Bt)t≥0 be a Brownian motion. Prove that:

(1) (Bc+t −Bc) t≥0 is a Brownian motion.
(2) (cBt/c2) t≥0 is a Brownian motion.

Exercise 1.2.3 Let (Xt) be a Brownian motion, prove that

Xt −
∫ t

0

XT −Xs

T − s
ds, 0 ≤ t < T

is an (Ft)-Brownian motion between 0 and T with Ft = σ(Xs, 0 ≤ s ≤ t, XT ).

1.2.2 Stochastic Integration

Let (Wt) be a Brownian motion, and (τn) a sequence of partitions: 0 = t0n ≤
t1n ≤ ... ≤ tnn = t, with dn := limn→∞ sup |tin − ti−1,n| = 0, such that for all
0 ≤ s ≤ t

lim
n→∞

∑
ti,n∈τn

ti,n≤s

|Wtin
−Wti−1,n

|2 c.s.= s. (1.3)

Let f a C2 map in R. Then, fixed ω,

f(Wtin)−f(Wti−1,n) = f ′(Wti−1,n)(Wtin−Wti−1,n)+
1
2
f
′′
(Wt̃i−1,n

)(Wtin−Wti−1,n)2,
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where t̃i−1,n ∈ (ti−1,n, tin). Since f
′′

is uniformly continuous in a the compact
set (Ws(ω))0≤s≤t, we have

n∑
i=1

|f
′′
(Wt̃i−1,n

)−f
′′
(Wti−1,n

)|(Wtin
−Wti−1,n

)2 ≤ εn

n∑
i=1

(Wtin
−Wti−1,n

)2 →
n→∞

0,

For each n, µn(A)(ω) :=
∑n

i=1 |Wtin
(ω)−Wti−1,n

(ω)|21A(ti−1,n) defines a mea-
sure in [0, t] that converges, by (1.3), to the Lebesgue measure in [0, t] . So

n∑
i=1

f
′′
(Wti−1,n)(Wtin −Wti−1,n)2 =

∫ t

0

f
′′
(Ws)µn(ds)

→
n→∞

∫ t

0

f
′′
(Ws)ds.

Therefore,

f(Wt)− f(0) = lim
n→∞

∑
(f(Wtin

)− f(Wti−1,n
)) = lim

n→∞

∑
f ′(Wti−1,n

)(Wtin
−Wti−1,n

)

+
1
2

∫ t

0

f
′′
(Ws)ds.

Consequently
lim

n→∞

∑
f ′(Wti−1,n

)(Wtin
−Wti−1,n

)

is well defined since it coincides with f(Wt) − f(0) − 1
2

∫ t

0
f
′′
(Ws)ds and then

we can define∫ t

0

f ′(Ws)dWs = lim
n→∞

∑
f ′(Wti−1,n

)(Wtin
−Wti−1,n

).

The drawback of this construction is that this integral depends on the sequences
of partitions. Nevertheless if we get that our Riemann sums converge in proba-
bility or L2) independently of the partitions we choose, the limit will be the same
by the uniqueness of the limit in probability. In this way we have established
that ∫ t

0

f ′(Ws)dWs = f(Wt)− f(0)− 1
2

∫ t

0

f
′′
(Ws)ds

and this result modifies the chain rule of the classical analysis.

Example 1.2.2 ∫ t

0

WsdWs =
1
2
W 2

t −
1
2
t,∫ t

0

exp{Ws}dWs = exp{Wt} − 1− 1
2

∫ t

0

exp{Ws}ds
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It is straightforward to see that we can extend the previous result to inte-
grands that are C1,2-functions f : [0, t]×R → R in such a way that

f(t,Wt) = f(0, 0) +
∫ t

0

ft(s,Ws)ds +
∫ t

0

fx(s,Ws)dWs +
1
2

∫ t

0

fxx(s,Ws)ds,

where

ft(s, x) =
∂

∂t
f(t, x), fx(s, x) =

∂

∂x
f(t, x),

fxx(s, x) =
∂2

∂x2
f(t, x).

Example 1.2.3 If we take f(t, x) = exp(ax− 1
2a2t), a ∈ R, we have

exp(aWt −
1
2
a2t) = 1− a2

2

∫ t

0

exp(aWs −
1
2
a2s)ds

+ a

∫ t

0

exp(aWs −
1
2
a2s)dWs

+
a2

2

∫ t

0

exp(aWs −
1
2
a2s)ds.

That is,

exp(aWt −
1
2
a2t) = 1 + a

∫ t

0

exp(aWs −
1
2
a2s)dWs.

Example 1.2.4 Suppose a financial market with a single risky stock, St = Wt,
and a bank account with interest rate r = 0. Given a strategy φt = (φ0

t , φ
1
t ) the

value of our portfolio at time t, is

Vt = φ0
t + φ1

t Wt,

If the strategy is self-financing we will have

dVt = φ1
t dWt

Assume now that Vt = V (t, St), then, by applying the previous stochastic calculus

dVt = dV (t, St) = Vt(t, Wt)dt + Vx(t,Wt)dWt +
1
2
Vxx(t, Wt)dt,

therefore

Vt(t,Wt) +
1
2
Vxx(t,Wt) = 0 (1.4)

Vx(t,Wt) = φ1
t (1.5)

if we want to replicate H = F (WT ), we have to find a solution of (1.4) with the
boundary condition V (T,WT ) = F (WT ). The equation 1.5 solves the hedging
problem.
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The definite integral

We are going to build a stochastic integral in the sense of L2 convergence.

Definition 1.2.8 (Ht)0≤t≤T is a simple process if it can be written

Ht =
n∑

i=1

φi1(ti−1,ti](t),

where 0 = t0 < t1 < ... < tn = T and φ is
(
Fti−1

)
-measurable and bounded.

Definition 1.2.9 If (Ht)0≤t≤T is a simple process, we define∫ T

0

HsdWs =
n∑

i=1

φi(Wti
−Wti−1)

Proposition 1.2.7 If (Ht)0≤t≤T is a simple process E(
∫ T

0
HsdWs)2 =

∫ T

0
E(H2

s )ds
(isometry property)

Proof.

E(
∫ T

0

HsdWs)2 = E(
n∑

i=1

φi(Wti
−Wti−1)

n∑
j=1

φj(Wtj
−Wti−1))

= E(
n∑

i=1

φ2
i (Wti

−Wti−1)
2)

+ 2
n−1∑
i=1

∑
j>i

E(φi(Wti −Wti−1)φjE(Wtj −Wti−1 |Ftj−1))

=
n∑

i=1

E(φ2
i E(Wti

−Wti−1)
2|Fti−1))

=
n∑

i=1

E(φ2
i )(ti − ti−1) = E

∫ t

0

H2
s ds =

∫ t

0

E(H2
s )ds

Now we extend the class of simple integrands, S to the class H :

H = {(Ht)0≤t≤T , (Ft)-adaptado,
∫ T

0

E(H2
s )ds < ∞}.

It can be seen that the classH with the scalar product 〈(Ht), (Ft)〉 =
∫ T

0
E(HsFs)ds

is a Hilbert space. Note that, by the previous proposition, we have defined a
linear map I : S →M = { square integrable FT -measurable random variables},
I(H) =

∫ T

0
HsdWs. In M we can also define a scalar product producto escalar

〈M,L〉 := E(ML). We have then that I is an isometry.
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Proposition 1.2.8 The class S is dense in H (with respect to the norm
||Ht||2 :=

∫ T

0
E(H2

s )ds).

Definition 1.2.10 If H is a process of the class H, the integral is defined as
the L2 limit ∫ T

0

HsdWs = lim
n→∞

∫ T

0

Hn
s dWs, (1.6)

where Hn
s is a sequence of simple processes such that

lim
n→∞

∫ T

0

E(Hn
s −Hs)2ds = 0.

The existence of the limit (1.6) is due to the fact that the sequence of random
variables

∫ T

0
Hn

s dWs is a Cauchy sequence and L2(Ω) is complete, in fact due
to the isometry property

E(
∫ T

0

Hn
s dWs −

∫ T

0

Hm
s dWs)2 =

∫ T

0

E(Hn
s −Hm

s )2ds

≤ 2
∫ T

0

E(Hn
s −Hs)2ds

+ 2
∫ T

0

E(Hm
s −Hs)2ds.

Analogously it can be seen that the limit does not depend on the sequence Hn.
It is easy to show that for all H in the class H

• The isometry property is satisfied,

E(
∫ T

0

HsdWs)2 =
∫ T

0

E(H2
s )ds,

• The integral has zero expectation,

E(
∫ T

0

HsdWs) = 0,

• The integral is linear,∫ T

0

(aHs + bFs)dWs = a

∫ T

0

HsdWs + b

∫ T

0

FsdWs

The indefinite integral

If H is in the class H then H1[0,t] it is as well and we can define∫ t

0

HsdWs :=
∫ T

0

Hs1[0,t](s)dWs,
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we have then the process{
I(H)t :=

∫ t

0

HsdWs, 0 ≤ t ≤ T

}
Proposition 1.2.9 I(H) is an (Ft)-martingale.

Proof. The result is obvious if H i simple: then
∫ t

0
HsdWs is Ft-measurable

and with finite expectation, then it is sufficient to see that ∀t > s

E

(∫ t

0

HudWu

∣∣∣∣Fs

)
=
∫ s

0

HudWu.

We can asume that s and t are some of the points in the partition 0 = t0 <

t1 < ... < tn = T . So it is enough to see that (Mn) :=
(∫ tn

0
HudWu

)
is a

(Gn)-martingale with Gn = Ftn . But (Mn) is the martingale transform of the
(G

n
)-martingale (Wtn

) by the process (G
n
)-predictable (φn) and consequently

it is a martingale.
If H is not a simple process the integral is an L2 limit of martingales but

this preserves the martingale property.

Remark 1.2.7 If can be shown, by using the Doob inequality for continuous
martingales:

E( sup
0≤t≤T

M2
t ) ≤ 4E(M2

T )

that we have a continuous version of I(H).

Remark 1.2.8 We shall denote ∀t > s,
∫ t

s
HudWu :=

∫ t

0
HudWu−

∫ s

0
HudWu.

To do a further extension of the integral the following results are convenient

Proposition 1.2.10 Let A Ft-measurable, then for all H ∈ H∫ T

0

1AHs1{s>t}dWs = 1A

∫ T

t

HsdWs

Proof. If Hn is an approximate sequence of H then 1AHn1{·>t} approx-
imates 1AH1{·>t} and since the result is true for simple processes then the
proposition follows.

Definition 1.2.11 A stopping time with respect to a filtration (Ft) is a random
variable

τ : Ω → [0,∞]

such that for all t ≥ 0, {τ ≤ t} ∈ Ft.

Proposition 1.2.11 Let τ be an (Ft)-topping time then∫ τ∧T

0

HsdWs =
∫ T

0

1{s≤τ}HsdWs
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Proof. If τ is of the form τ =
∑n

i=1 ti1Ai where 0 < t1 < t2 < ... < tn = T
y Ai Fti-measurable and disjoints, then it is straightforward:∫ T

0

1{s>τ}HsdWs =
∫ T

0

n∑
i=1

1{s>ti}1Ai
HsdWs =

n∑
i=1

1Ai

∫ T

ti∧T

HsdWs

=
∫ T

τ∧T

HsdWs,

Moreover
∫ τ∧T

0
HsdWs =

∫ T

0
HsdWs −

∫ T

τ∧T
HsdWs. In general, it is enough to

approximate τ by τn =
∑2n−1

k=0
(k+1)T

2n 1{ kT
2n ≤τ<

(k+1)T
2n } and to see that

∫ T

0
1{s≤τn}HsdWs

L2

→∫ T

0
1{s≤τ}HsdWs :

E

∣∣∣∣∣
∫ T

0

1{s≤τn}HsdWs −
∫ T

0

1{s≤τ}HsdWs

∣∣∣∣∣
2
 = E

(∫ T

0

1{τ<s≤τn}H
2
s ds

)
,

and the we apply the dominated convergence theorem. Finally we take a sub-
sequence of

∫ T

0
1{s≤τn}HsdWs converging almost surely.

Extension of the integral

We are going to do a further extension of the integrands, consider the class

H̃ = {(Ht)0≤t≤T , (Ft)-adapted,
∫ T

0

H2
s ds < ∞ P -c.s.}.

Given H ∈ H̃ sea τn = inf{t ≤ T,
∫ t

0
(Hs)

2
ds ≥ n} (+∞ if the previous set

is empty). That
∫ t

0
(Hs)

2
ds is Ft-measurable can be deduced from the fact that

it is an a.s. limit of Ft-measurable random variables, from here τn is a stopping
time. Set An = {

∫ T

0
(Hs)

2
ds < n} we can define

J̃(H)n
t :=

(∫ t

0

1{s≤τn}HsdWs

)
1An

, para todo n ≥ 1

Note that this is consistently defined: if m ≥ n and ω ∈ An then

J̃(H)m
t (ω) = J̃(H)n

t (ω),

in fact:

J̃(H)m
t (ω) =

∫ t∧τn(ω)

0

1{s≤τm}HsdWs,

but ∫ t∧τn

0

1{s≤τm}HsdWs =
∫ t

0

1{s≤τn}1{s≤τm}HsdWs

=
∫ t

0

1{s≤τn}HsdWs,
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in such a way that ∫ t∧τn(ω)

0

1{s≤τm}HsdWs = J̃(H)n
t (ω)

Now we can define

J̃(H)t = lim
n→∞

((∫ t

0

1{s≤τn}HsdWs

)
1An

)
= lim

n→∞

∫ t

0

1{s≤τn}HsdWs.

Note that if H ∈ H

J̃(H)t = lim
n→∞

∫ t

0

1{s≤τn}HsdWs = lim
n→∞

∫ t∧τn

0

HsdWs

=
∫ t

0

HsdWs = J(H)t,

so it is really an extension of the integral.

Exercise 1.2.4 Prove that the previous extension of the integral does not de-
pend on the sequence of localizing stopping times of (Hs). In other words, that
if we take τ̃n ↑ ∞ and

(
1{·<τ̃n}H·

)
is in H) then the limit is the same.

It can be shown that the previous extension is a limit in probability of
integrals fo simple processes Hn which converge to H in the sense that

P (
∫ t

0

|Hn
s −Hs|2ds > ε) → 0.

Note that by construction the extension of the integral is a a.s. limit of another
limit in quadratic norm.

We lose then the martingale property. In general we have that if (τm) is a
localizing sequence

J̃(H)t∧τm = lim
n→∞

∫
t∧τm

0

1{s≤τ̃n}HsdWs

= lim
n→∞

∫
t

0

1{s≤τ̃n∧τm}HsdWs

= lim
n→∞

∫
t

0

1{s≤τm}HsdWs

=
∫

t

0

1{s≤τm}HsdWs

in such a way that J̃(H)t∧τm
is a martingale. Then it is said that J̃(H) is a

local martingale(when we stop it by τm it is a martingale, in t, and τm ↑ ∞).
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1.2.3 Itô’s Calculus

We are going to develop a differential calculus based in the previous integral.
We have seen that∫ t

0

f ′(Ws)dWs = f(Wt)− f(W0)−
1
2

∫ t

0

f
′′
(Ws)ds

for f ∈ C2, or in differential form

df(Wt) = f ′(Ws)dWs +
1
2
f ′′(Wt)dt (1.7)

Then we want to extend this result.

Definition 1.2.12 A process (Xt)0≤t≤T is said to be an Itô process if it can be
written as

Xt = X0 +
∫ t

0

Ksds +
∫ t

0

HsdWs

where

• X0 is F0-measurable.

• (Kt) and (Ht) are (Ft)-adapted.

•
∫ T

0
(|Ks|+ |Hs|2)ds < ∞ P -a.s..

Proposition 1.2.12 If (Mt)0≤t≤T is a continuous (Ft)-martingale such that

Mt =
∫ t

0
Ksds, where (Ks) is an (Ft)-adapted process with

∫ T

0
|Ks|ds < ∞

P -a.s., then
Mt = 0, a.s for all t ≤ T

Proof. Without loss of generality we can assume that Mt =
∫ t

0
|Ks|ds ≤

n < ∞. Otherwise we can define the stopping time

τn = inf{t,
∫ t

0

|Ks|ds ≥ n} ∧ T,

and the martingale (Mt∧τ ) would be bounded by n. This would make Mt∧τn
≡ 0

and we can let n go to infinity to conclude that Mt ≡ 0.
Let (Mt)0≤t≤T be a continuous (Ft)-martingale bounded by C, then if we

take tni = T i
n , 0 ≤ i ≤ n, then

n∑
i=1

(Mtn
i
−Mtn

i−1
)2 ≤ sup

1≤i≤n

∣∣∣Mtn
i
−Mtn

i−1

∣∣∣ n∑
i=1

∣∣∣Mtn
i
−Mtn

i−1

∣∣∣
≤ sup

1≤i≤n

∣∣∣Mtn
i
−Mtn

i−1

∣∣∣ n∑
i=1

∫ tn
i+1

tn
i

|Ks|ds

≤ C sup
1≤i≤n

∣∣∣Mtn
i
−Mtn

i−1

∣∣∣
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and (Mt)0≤t≤T is continuous, so

lim
n→∞

n∑
i=1

(Mtn
i
−Mtn

i−1
)2 = 0, a.s.,

Moreover
∑n

i=1(Mtn
i
−Mtn

i−1
)2 ≤ C2 , so by the dominated convergence theorem

lim
n→∞

E(
n∑

i=1

(Mtn
i
−Mtn

i−1
)2) = 0.

On the other hand, since (Mt)0≤t≤T is a martingale and simultaneously

E(
n∑

i=1

(Mtn
i
−Mtn

i−1
)2) = E

(
n∑

i=1

(M2
tn
i

+ M2
tn
i−1

− 2Mtn
i
Mtn

i−1
)

)

= E

(
n∑

i=1

(
M2

tn
i

+ M2
tn
i−1

− 2Mtn
i−1

E(Mtn
i
|Ftn

i−1
)
))

= E

(
n∑

i=1

(
M2

tn
i

+ M2
tn
i−1

− 2M2
tn
i−1

))

= E

(
n∑

i=1

(
M2

tn
i
−M2

tn
i−1

))
= E(M2

T −M2
0 )

and that consequently that MT ≡ 0 a.s., and so Mt ≡ E(MT |Ft) = 0 a.s, for
all t ≤ T.

Corollary 1.2.1 The expression of an Itô process is unique.

Theorem 1.2.2 Let (Xt)0≤t≤T be an Itô process and f(t, x) ∈ C1,2 then:

f(t,Xt) = f(0, X0)+
∫ t

0

ft(s,Xs)ds+
∫ t

0

fx(s,Xs)dXs+
1
2

∫ t

0

fxx(s,Xs)d〈X, X〉s,

where ∫ t

0

fx(s,Xs)dXs =
∫ t

0

fx(s,Xs)Ksds +
∫ t

0

fx(s,Xs)HsdWs

〈X, X〉s =
∫ t

0

H2
s ds.

Example 1.2.5 Suppose we want to find a solution (St)0≤t≤T for the equation

St = x0 +
∫ t

0

Ss(µds + σdWs)
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or in differential form

dSt = St(µdt + σdWt), S0 = x0.

By the previous theorem

dSt

St
= µdt + σdWt = d(log St) +

1
2S2

t

σ2S2
t dt,

that is
d(log St) = (µ− 1

2
σ2)dt + σdWt

in such a way that

St = S0 exp{(µ− 1
2
σ2)t + σWt}

Proposition 1.2.13 (Integration by parts formula) Let Xt and Yt two Itô pro-
cesses, Xt = X0 +

∫ t

0
Ksds +

∫ t

0
HsdWs e Yt = Y0 +

∫ t

0
K ′

sds +
∫ t

0
H ′

sdWs. Then

XtYt = X0Y0 +
∫ t

0

XsdYs +
∫ t

0

YsdXs + 〈X, Y 〉t

where

〈X, Y 〉t =
∫ t

0

HsH
′
sds.

Proof. By the Itô formula

(Xt + Yt)2 = (X0 + Y0)2 + 2
∫ t

0

(Xs + Ys)d(Xs + Ys) +
1
2

∫ t

0

2(Hs + H ′
s)

2ds

and

Xt
2 = X2

0 + 2
∫ t

0

XsdXs +
1
2

∫ t

0

2H2
s ds,

Yt
2 = Y 2

0 + 2
∫ t

0

YsdYs +
1
2

∫ t

0

2H ′2
s ds

so, by subtracting the sum of these latter expressions from the first one we
obtain:

2XtYt = 2X0Y0 + 2
∫ t

0

XsdYs + 2
∫ t

0

YsdXs +
∫ t

0

2HsH
′
sds.

Consider the differential equation

dXt = −cXtdt + σdWt, X0 = x

then if we apply the previous formula to

Xte
ct
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we have
d
(
Xte

ct
)

= ectdXt + cXte
ctdt

and therefore
e−ctd

(
Xte

ct
)

= σdWt

in such a way that

Xt = xe−ct + σe−ct

∫ t

0

ecsdWs.

A new integration by parts lead us to

Xt = xe−ct + σe−ct(ectWt −
∫ t

0

cecsWsds).

So, it is a Gaussian process with expectation xe−ct and variance

Var(Xt) = σ2e−2ct

∫ t

0

e2csds

= σ2 1− e−2ct

2c
.

Exercise 1.2.5 Solve the stochastic differential equation

dXt = tXtdt + et2/2dBt, X0 = x0,

where (Bt)t≥0 is a Brownian motion.

1.2.4 The Girsanov theorem

Lemma 1.2.1 Let (Ω,F , P ) be a probability space with a filtration (Ft)0≤t≤T ,FT =
F . Let ZT > 0 such that E(ZT ) = 1 and Zt := E(ZT |Ft), 0 ≤ t ≤ T. Then
if we define P̃ (A) := E(1AZT ),∀A ∈ F , and Y is an Ft-measurable such that
Ẽ(|Y |) < ∞ then, for all s ≤ t,

Ẽ(Y |Fs) =
1
Zs

E(Y Zt|Fs). (1.8)

Proof. Take A ∈ Fs then

Ẽ(1AY ) = E(1AY ZT ) = E(1AE(Y Zt|Fs))

= Ẽ(1A
1
Zs

E(Y Zt|Fs)).
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Theorem 1.2.3 (Girsanov) Consider a probability space as before and (θt)0≤t≤T

an adapted process such thate
∫ T

0
θ2

t dt < ∞ a.s. where

Zt := exp{
∫ t

0

θsdWs −
1
2

∫ t

0

θ2
sds},

is assumed to be a martingale and W is an (Ft)-Brownian motion. Then under
the probability P̃ (·) := E(1·ZT ), Xt = Wt −

∫ t

0
θsds, 0 ≤ t ≤ T, is an (Ft)-

Brownian motion.

Proof. (Xt)0≤t≤T is adapted and continuous. We can see that the incre-
ments are independent and homogeneous.

Ẽ(exp{iu(Xt −Xs)}|Fs)

=
1
Zs

E(exp{iu(Xt −Xs)}Zt|Fs)

= E(exp{
∫ t

s

(iu + θu)dWu −
1
2

∫ t

s

(2iuθu + θ2
u)du}|Fs).

But, if we write
Nt := exp{iuXt}

and we apply the Itô formula to

ZtNt = exp{
∫ t

0

(iu + θs)dWs −
1
2

∫ t

0

(2iuθs + θ2
s)ds}

we obtain

ZtNt

= 1 +
∫ t

0

ZsNs

(
(iu + θs)dWs −

1
2
(2iuθs + θ2

s)ds

)
+

1
2

∫ t

0

ZsNs(iu + θs)2ds

= 1 +
∫ t

0

ZsNs(iu + θs)dWs −
u2

2

∫ t

0

ZsNsds.

Then (by localizing with τn = inf{t ≤ T,
∫ t

0
|(ZsNs(iu + θs))|2ds ≥ n})

E(Zt∧τn
Nt∧τn

|Fs) = Zs∧τn
Ns∧τn

− u2

2
E

(∫ t∧τn

s∧τn

ZvNvdv

∣∣∣∣Fs

)
.

That is

Ẽ(Nt∧τn |Fs) = Ns∧τn −
u2

2
Ẽ

(∫ t∧τn

s∧τn

Nvdv

∣∣∣∣Fs

)
,

taking now the limit when n → ∞ and by the dominated convergence and
Fubini theorems, we obtain

Ẽ(
Nt

Ns
|Fs) = 1− u2

2

∫ t

s

Ẽ(
Nv

Ns
|Fs)dv.
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This gives an equation for gs(t) := Ẽ( Nt

Ns
|Fs)(ω), such that

g′s(t) = −u2

2
gs(t)

gs(s) = 1

De manera que

gs(t) = exp{−u2

2
(t− s)}

that is

Ẽ(exp{iu(Xt −Xs)}|Fs) = exp{−u2

2
(t− s), }

so the increments are independent and homogeneous with law N(0, t− s).

Exercise 1.2.6 Consider the process (St)0≤t≤T

dSt = St (µdt + σdBt) , 0 ≤ t ≤ T,

(Bt)0≤t≤T a standard Brownina motion. Using Girsanov’s theorem compute a
probability Q under which S̃t := Ste

−rt, 0 ≤ t ≤ T is a martingale.

1.2.5 The Black-Scholes model

The Samuelson model, more known as the Black-Scholes model, consist in a
model of financial market with two stocks. One without risk, S0, (or bank
account) that evolves as:

dS0
t = rS0

t dt, t ≥ 0

where r is a non-negative constant, that is

S0
t = ert, t ≥ 0

and a risky stock S that evolves as

dSt = St (µdt + σdBt) t ≥ 0

where(Bt) is a Brownian motion. As we haven seen this implies that

St = S0 exp{µt− σ2

2
t + σBt}.

Then log(St) is a Brownian motion, no necessarily standard, and by the prop-
erties of the Brownian motion we have that St :

• has continuous trajectories
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• the relative increments St−Su

Su
are independent of σ(Ss, 0 ≤ s ≤ u) :

St − Su

Su
=

St

Su
− 1

and
St

Su
= exp{µ(t− u)− σ2

2
(t− u) + σ(Bt −Bu)}

that is independent of σ(Bs, 0 ≤ s ≤ u) = σ(Ss, 0 ≤ s ≤ u).

• the relative increments are homogeneous:

St − Su

Su
∼

St−u − S0

S0
.

In fact we could formulate the model in terms of these three hypothesis.

Self-financing strategies

A strategy is a process φ = (φt)0≤t≤T =
((

H0
t ,Ht

))
0≤t≤T

with values in R2

adapted to the natural filtration generated by the Brownian motion, (Bt) , (that
coincides with that generated by (St)), the value of the portfolio is

Vt(φ) = H0
t S0

t + HtSt.

In the discrete-time setting, we said that the portfolio was self-financing if

Vn+1(φ)− Vn(φ) = φ0
n+1(S

0
n+1 − S0

n) + φn+1(Sn+1 − Sn),

the corresponding version in the continuous case will be:

dVt = H0
t dS0

t + HtdSt.

To give sense to this equality we put the condition:
∫ T

0

(
|H0

s |+ H2
s

)
ds < ∞ P

c.s., then the integrals (differencials) are well defined:∫ T

0

H0
t dS0

t =
∫ T

0

H0
t rertdt∫ T

0

HtdSt =
∫ T

0

HtStµdt +
∫ T

0

σHtStdBt.

We have then then the following definition

Definition 1.2.13 A self-financing strategy φ, is a pair of adapted processes(
H0

t

)
0≤t≤T

, (Ht)0≤t≤T that satisfy

•
∫ T

0

(
|H0

s |+ H2
s

)
ds < ∞ P a.s.

• H0
t S0

t + HtSt = H0
0S0

0 + H0tS0 +
∫ t

0
H0

s rersds +
∫ t

0
HsdSs, 0 ≤ t ≤ T.



1.2. CONTINUOUS-TIME MODELS 51

Denote S̃t = e−rtSt, in such a way that we use the tilde as in the discrete-
time setting: to indicate any discounted value.

Proposition 1.2.14 φ is self-financing strategy if and only if:

Ṽt(φ) = V0(φ) +
∫ t

0

HsdS̃s

Proof. Suppose that φ is self-financing, then since Ṽt = e−rtVt, we will have
that

dṼt = −re−rtVtdt + e−rtdVt

= −re−rt(H0
t S0

t + HtSt)dt

+ e−rt(H0
t dS0

t + HtdSt)

= −re−rt(H0
t S0

t + HtSt)dt

+ e−rt(H0
t rS0

t dt + HtdSt)

= −re−rtHtStdt + e−rtHtdSt

= Ht(−re−rtStdt + e−rtdSt)

= HtdS̃t.

Analogously if
dṼt = HtdS̃t

we have that
dVt = H0

t dS0
t + HtdSt.

Pricing and hedging contingent claims in the Black-Scholes model

We have to find a probability under which discounted prices are martingale. We
know that

dS̃t = d
(
e−rtSt

)
= −re−rtStdt + e−rtdSt

= e−rtSt (−rdt + µdt + σdBt)

= σS̃td
(
−r − µ

σ
t + Bt

)
= σS̃tdWt (1.9)

with
Wt = Bt −

r − µ

σ
t.

Then by the Girsanov theorem with θt = r−µ
σ it turns out that (Wt)0≤t≤T is

a Brownian motion with respect to the probability P ∗

dP ∗ = exp{r − µ

σ
BT −

1
2

(
r − µ

σ

)2

T}dP. (1.10)
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From (1.9) we deduce that

S̃t = S0 exp{−1
2
σ2t + σWt}

and that
(
S̃t

)
0≤t≤T

is a P ∗-martingale. We also have that

St = S0 exp{rt− 1
2
σ2t + σWt}.

Definition 1.2.14 A strategy φ is admissible if it is self-financing and its dis-
counted value Ṽt = H0

t + HtS̃t ≥ 0,∀t.

Definition 1.2.15 We say that an option is replicable if its payoff is equal to
the final value of an admissible strategy.

Proposition 1.2.15 In the Black-Scholes model any option with payoff (non
negative) of the form h = f(ST ), square integrable with respect to P ∗, with
EP∗(h|Ft) a C1,2 function of the time and of St, is replicable, its value is given
by C(t, St) = EP∗(e−r(T−t)h|Ft) and the strategy that replicates h is given by
(H0

t ,Ht) con

Ht =
∂C(t, St)

∂St

H0
t ert = C(t, St)−HtSt

Proof. First of all, by the independence of the relative increments

EP∗(e−r(T−t)f(ST )|Ft) = EP∗(e−r(T−t)f(
ST

St
St)|Ft)

= EP∗(e−r(T−t)f(
ST

St
x))x=St

= C(t, St),

so what we shall call price of the contingent claim at t depends only on St and
t.

If we apply now the Itô formula to C̄(t, S̃t) = e−rtC(t, S̃te
rt), we have

C̄(t, S̃t)

= C(0, S0) +
∫ t

0

∂C̄(s, S̃s)
∂s

ds +
∫ t

0

∂C̄(s, S̃s)
∂S̃s

dS̃s +
1
2

∫ t

0

∂2C̄(s, S̃s)
∂S̃2

s

d〈S̃, S̃〉s

and since
dS̃t = σS̃tdWt

we obtain

C̄(t, S̃t)

= C(0, S0) +
∫ t

0

∂C̄(t, S̃t)
∂S̃s

σS̃sdWs +
∫ t

0

(
∂C̄(t, S̃t)

∂s
+

1
2

∂2C̄(t, S̃t)
∂S̃2

s

σ2S̃2
s

)
ds
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but C̄(t, S̃t) is a square integrable martingale:

C̄(t, S̃t) = C̃(t, St) = EP∗(e−rT f(ST )|Ft)

and therefore, since the decomposition of an Itô process is unique we have:

C̃(t, St) = C(0, S0) +
∫ t

0

∂C̄(t, S̃t)
∂S̃s

dS̃s

∂C̄(t, S̃t)
∂s

+
1
2

∂2C̄(t, S̃t)
∂S̃2

s

σ2S̃2
s = 0.

Now since

∂C̄(t, S̃t)
∂S̃s

= e−rt ∂C(s, Ss)
∂Ss

∂Ss

∂S̃s

=
∂C(s, Ss)

∂Ss

and

∂2C̄(t, S̃t)
∂S̃2

s

=
∂2C(s, Ss)

∂S2
s

∂Ss

∂S̃s

= ert ∂
2C(s, Ss)

∂S2
s

,

we can write

C̃(t, St) = C(0, S0) +
∫ t

0

∂C(s, Ss)
∂Ss

dS̃s (1.11)

∂C(s, Ss)
∂s

+ rSs
∂C(s, Ss)

∂Ss
+

1
2
σ2S2

s

∂2C(t, Ss)
∂S2

s

= rC(s, Ss). (1.12)

From (1.11) we have a self-financing strategy whose final value is f(ST ) and
such that

(
H0

t ,Ht

)
are given by

Ht =
∂C(t, St)

∂St

and

ertH0
t = C(t, St)−

∂C(t, St)
∂St

St.

Pricing and hedging of a call option. The Black-Scholes tormula.

If we take h = (ST −K)+, we have

C(t, St) = StΦ(d+)−Ke−r(T−t)Φ(d−) ( Black-Scholes’ formula)
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where Φ(x) is the standard normal distribution function

d± =
log(St

K ) + (r ± 1
2σ2)(T − t)

σ
√

(T − t)
.

In fact

C(t, St)

= EP∗(e−r(T−t)(ST −K)+|Ft)

= e−r(T−t)EP∗(ST 1{ST >K}|Ft)−Ke−r(T−t)EP∗(1{ST >K}|Ft)

= e−r(T−t)StEP∗(
ST

St
1{ST

St
> K

x }
)x=St

−Ke−r(T−t)EP∗(1{ST
St

> K
x }

)x=St
,

but

ST

St
= exp{(r − 1

2
σ2)(T − t) + σ (WT −Wt)}

Ley
= exp{(r − 1

2
σ2)(T − t) + σWT−t}

then

EP∗(1{ST
St

> K
x }

) = P ∗(
ST

St
>

K

x
)

= P ∗(log
ST

St
> log

K

x
)

= P ∗(
WT−t√
(T − t)

>
log K

x − (r − 1
2σ2)(T − t)

σ
√

(T − t)
)

= Φ
(

log x
K + (r − 1

2σ2)(T − t)
σ
√

(T − t)

)
= Φ(d−) (after substituting forx by St)
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On the other hand, if we write Y to indicate a standard normal random variable

e−r(T−t)EP∗(
ST

St
1{ST

St
> K

x }
)

= e−r(T−t)EP∗(exp{(r − 1
2
σ2)(T − t) + σWT−t}1{σWT−t>log K

x −(r− 1
2 σ2)(T−t)})

= EP∗(exp{−1
2
σ2(T − t) + σWT−t}1{σWT−t>log K

x −(r− 1
2 σ2)(T−t)})

= EP∗(exp{−1
2
σ2(T − t)− σ

√
(T − t)Y }1

{Y <
log x

K
+(r− 1

2 σ2)(T−t)
σ
√

(T−t) }
)

=
1√
(2π)

∫ log x
K

+(r− 1
2 σ2)(T−t)

σ
√

(T−t)

−∞
exp{−1

2
σ2(T − t)− σ

√
(T − t)y − 1

2
y2}dy

=
1√
(2π)

∫ log x
K

+(r− 1
2 σ2)(T−t)

σ
√

(T−t)

−∞
exp{−1

2
(σ
√

(T − t) + y)2}dy

=
1√
(2π)

∫ log x
K

+(r+ 1
2 σ2)(T−t)

σ
√

(T−t)

−∞
exp{−1

2
u2}du

= Φ(d+) (after substituting for x by St)

From here
∂C(t, St)

∂St
= Φ(d+) := ∆.

In fact:

∂C(t, St)
∂St

= Φ(d+) + St
∂Φ(d+)

∂St
−Ke−r(T−t) ∂Φ(d−)

∂St

= Φ(d+) + St
1√
(2π)

e−
d2
+
2

∂d+

∂St

−Ke−r(T−t) 1√
(2π)

e−
d2
−
2

∂d−
∂St

.

But
∂d±
∂St

=
1

Stσ
√

(T − t)
,

therefore

∂C(t, St)
∂St

= Φ(d+) +
1√
(2π)

∂d+

∂St

(
Ste

−
d2
+
2 −Ke−r(T−t)e−

d2
−
2

)
= Φ(d+) +

1√
(2π)

∂d+

∂St
Ste

−
d2
+
2

(
1− K

St
e−r(T−t)e

d2
+
2 −

d2
−
2

)
.

Moreover
d+ = d− + σ

√
(T − t)
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so

d2
+ − d2

− = (d− + σ
√

(T − t))2 − d2
−

= 2d−σ
√

(T − t) + σ2(T − t)

= 2 log
St

K
+ 2r(T − t)

and therefore

1− K

St
e−r(T−t)e

d2
+
2 −

d2
−
2 = 0.

Exercise 1.2.7 In the Black-Scholes model compute the price and the self-
financing hedging portfolios of contingent claims with payoffs:

(1) X = S2
T ,

(2) X = ST /ST0 , 0 ≤ T0 ≤ T.

Analysis of sensitivity. The Greeks.

One of the most important things besides pricing and hedging is the calculation
of sensitivities of the prices. These sensitivities are given Greek letters and this
is why they are called Greeks. Let C(t, St) the value of a portfolio based in a
risky asset (St) (and bonds). By practical reasons is often very important to
have an idea of the sensitivity of C with respect to changes in the value of St

(to measure the risk of our portfolio for instance) and with respect to changes
in the parameters of the model (to measure a bad specification of the model).
The standard notation is:

• ∆ = ∂C
∂St

• Γ = ∂2C
∂S2

t

• ρ = ∂C
∂r

• Θ = ∂C
∂t

• V = ∂C
∂σ

All these indexes of sensitivity are known as the Greeks. These include V
that is pronounced Vega and that is not a Greek letter (κ was previously used).
A portfolio that is not sensitive to small changes with respect to some parameter
is said to be neutral: : delta neutral, gamma neutral,..

Proposition 1.2.16 In the Black-Scholes model the portfolio that replicates a
call with strike K and maturity time T has the following Greeks:

• ∆ = Φ(d+) > 0
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• Γ = φ(d+)
Stσ

√
(T−t) > 0 (where φ is the density of a standard normal random

variable)

• ρ = K(T − t)e−r(T−t)Φ(d+) > 0

• Θ = − Stσ
2
√

(T−t)φ(d+)−Kre−r(T−t)Φ(d−) < 0

• V = Stφ(d+)
√

(T − t) > 0

Exercise 1.2.8 Prove that Θ = − Stσ
2
√

(T−t)φ(d+)−Kre−r(T−t)Φ(d−).

Remark 1.2.9 Note that equation (1.12), can be written

Θ + rSs∆ +
1
2
σ2S2

sΓ = rC(s, Ss).

Exotic Options

Not all the options have a payoff h = f(ST ). For instance we have the Asian
options whose payoff is

h =

(
1
T

∫ T

0

Sudu−K

)
+

the lookback options,

(”lookback call”) h = ST − S∗, whereS∗ = min
0≤t≤T

St

(”lookback put”) h = S∗ − ST , whereS∗ = max
0≤t≤T

St,

or the barrier options

(”down-and-out-call”) h = (ST −K)+1{S∗≥K}

(”down-and-in-call”) h = (ST −K)+1{S∗≤K}.

For all these options we need a more general theorem of replication in the Black-
Scholes model.

Theorem 1.2.4 In the Black-Scholes model any option with payoff h ≥ 0, FT -
measurable and square integrable under P ∗ is replicable and its value is given
by

Ct = EP∗(e−r(T−t)h|Ft)
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Proof. Under P ∗

Mt := EP∗(e−rT h|Ft), 0 ≤ t ≤ T

is a square integrable martingale, then by the representation theorem of Brow-
nian martingales there exists a unique adapted process (Yt) such that

Mt = M0 +
∫ t

0

YsdWs

with

EP∗(
∫ T

0

Y 2
s ds) < ∞,

then we can define Ht by

Ht =
Yt

σS̃t

and we have that

Mt = M0 +
∫ t

0

HsdS̃s

that is

C̃t = C0 +
∫ t

0

HsdS̃s.

Therefore the strategy
(
H0

t ,Ht

)
with H0

t = Ct − HtSt is self-financing and
replicates h. To see that it is admissible it is enough to take into account that
since h ≥ 0, Ct ≥ 0.

Example 1.2.6 (Asian options) Consider an Asian option with payoff

h =

(
1
T

∫ T

0

Sudu−K

)
+

,

by the previous theorem Ct = EP∗(e−r(T−t)h|Ft). Define

ϕ(t, x) = EP∗((
1
T

∫ T

t

Su

St
du− x)+).

Then

Ct

= e−r(T−t)EP∗

((
1
T

∫ T

0

Sudu−K

)
+

∣∣∣∣∣Ft

)

= e−r(T−t)EP∗

((
1
T

∫ T

t

Sudu− (K − 1
T

∫ t

0

Sudu)

)
+

∣∣∣∣∣Ft

)

= e−r(T−t)StEP∗

((
1
T

∫ T

t

Su

St
du−

K − 1
T

∫ t

0
Sudu

St

)
+

∣∣∣∣∣Ft

)
= e−r(T−t)Stϕ(t, Zt)
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where Zt = K− 1
T

R t
0 Sudu

St
. Is easy to see that

dZt =
(

(σ2 − r)Zt −
1
T

)
dt− σZtdWt.

In fact, applying the integration by parts formula and the Itô formula:

dZt = d
(

K

St

)
− 1

TSt
d
(∫ t

0

Sudu

)
− d

(
1
St

)
1
T

∫ t

0

Sudu

= −K

S2
t

dSt +
K

S3
t

d〈St〉 −
St

TSt
dt +

1
T

∫ t

0
Sudu

S2
t

dSt −
1
T

∫ t

0
Sudu

S3
t

d〈St〉,

but since dSt = rStdt + σStdWt, we have that

dZt =

(
−K

St
r +

K

St
σ2 + r

1
T

∫ t

0
Sudu

St
−

1
T

∫ t

0
Sudu

St
σ2 − 1

T

)
dt

+

(
−K

St
σ +

1
T

∫ t

0
Sudu

St
σ

)
dWt

=
(

(σ2 − r)Zt −
1
T

)
dt− σZtdWt.

Then, we know that C̃t = e−r(T−t)S̃tϕ(t, Zt), t ≤ T is a martingale. So if we
assume that ϕ(t, x) ∈ C1,2 we will have that

dϕ =
∂ϕ

∂t
dt +

∂ϕ

∂Zt
dZt +

1
2

∂2ϕ

∂Zt
2
σ2Z2

t dt

=
(

∂ϕ

∂t
+

∂ϕ

∂Zt

(
σ2 − r)Zt −

1
T

)
+

1
2

∂2ϕ

∂Z2
t

σ2Z2
t

)
dt

− ∂ϕ

∂Zt
σZtdWt.

On the other hand

dC̃t = re−r(T−t)S̃tϕdt + e−r(T−t)ϕdS̃t + e−r(T−t)S̃tdϕ

+ e−r(T−t)d〈S̃, ϕ〉t
= re−r(T−t)S̃tϕdt + e−r(T−t)ϕdS̃t + e−r(T−t)S̃tdϕ

− e−r(T−t) ∂ϕ

∂Zt
σ2S̃tZtdt

= e−r(T−t)

(
ϕ− Zt

∂ϕ

∂Zt

)
dS̃t

+ re−r(T−t)S̃tϕdt− e−r(T−t) ∂ϕ

∂Zt
σ2S̃tZtdt

+ e−r(T−t)S̃t

(
∂ϕ

∂t
+

∂ϕ

∂Zt

(
(σ2 − r)Zt −

1
T

)
+

1
2

∂2ϕ

∂Z2
t

σ2Z2
t

)
dt,
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by identifying the martingale parts

dC̃t = e−r(T−t)

(
ϕ− Zt

∂ϕ

∂Zt

)
dS̃t

rϕ +
∂ϕ

∂t
− ∂ϕ

∂Zt

(
rZt +

1
T

)
+

1
2

∂2ϕ

∂Z2
t

σ2Z2
t = 0.

Therefore the hedging strategy is given by
(
H0

t ,Ht

)
with H0

t = Ct −HtSt and

Ht = e−r(T−t)

(
ϕ− Zt

∂ϕ

∂Zt

)
,

where ϕ is the solution of the partial differential equation

rϕ +
∂ϕ

∂t
− ∂ϕ

∂x

(
rx +

1
T

)
+

1
2

∂2ϕ

∂x2
σ2x2 = 0 (1.13)

with the boundary condition ϕ(T, x) = x− (negative part of x). These equation
can be solved numerically.

Exercise 1.2.9 Demostrar que el precio de una optionasiatica con strike flotante
(payoff=

(
1
T

∫ T

0
Sudu− ST

)
+
) viene dado en el instante inicial por

C = e−rT S0ϕ(0, 0)

whereϕ es solución de la ecuación (1.13) con la condición de contorno ϕ(T, x) =
(1 + x)

Lemma 1.2.2 Consider stepwise functions

f(t) =
n∑

i=1

λi1(ti−1,ti](t)

with λi ∈ R and 0 ≤ t0 < t1... < tn ≤ T . Denote by J that set of functions. Set
Ef

T = exp{
∫ T

0
f(s)dBs − 1

2

∫ T

0
f2(s)ds}, f ∈ J . If Y ∈ L2(FT , P ) is orthogonal

to Ef
T , f ∈ J then Y = 0.

Proof. Consider Y ≥ 0 ∈ L2(FT , P ) orthogonal to Ef
T . Let Gn := σ

(Bt1 , Bt2 , ..., Btn
), we have

E(exp{
n∑

i=1

λi(Bti
−Bti−1)}Y ) = 0,

and

E(exp{
n∑

i=1

λi(Bti −Bti−1)}E(Y |Gn)) = 0.
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Let X be the map

X : Ω → Rn

ω 7−→ X(ω) = (Bt1(ω), Bt2(ω)−Bt1(ω), ..., Btn
(ω)−Btn−1(ω))

then ∫
Rn

exp{
n∑

i=1

λixi}E(Y |Gn)(x1, x2, ..., xn)dPX(x1, x2, ..., xn) = 0,

in such a way that the Laplace transform of E(Y |Gn)(x1, x2, ..., xn)dPX is zero
and therefore E(Y |Gn)(x1, x2, ..., xn) is identically null PX a.s.. From here
E(Y |Gn) = 0 P a.s., and finally since this is true for any Gn of the previous type
it turns out that Y is zero P a.s.. Finally for a general Y we can decompose
Y = Y+ − Y− and we would arrive to the conclusion that Y+ = Y− P a.s. by
the uniqueness of the Laplace transform of a measure.

Proposition 1.2.17 For all random variable F ∈ L2(FT , P ) there exists and
adapted process (Yt)0≤t≤T , with E(

∫ T

0
Y 2

t dt) < ∞, such that

F = E(F ) +
∫ T

0

YtdBt

Proof. Suppose that F −E(F ) is orthogonal to
∫ T

0
YtdBt for all (Yt)0≤t≤T ,

with E(
∫ T

0
Y 2

t dt) < ∞, then if we prove that F −E(F ) = 0 P a.s. then we have
finished, since the Hilbert space of centered random variables of L2(FT , P ) will
coincide with the Hilbert space of random variables

∫ T

0
YtdBt with E(

∫ T

0
Y 2

t dt) <
∞. Write Z = F − E(F ), we have

E((F − E(F ))
∫ T

0

YtdBt) = 0.

Take Yt = Ef
t f(t), with the Ef

t define previously, then

E((F − E(F ))
∫ T

0

Ef
t f(t)dBt) = 0

and also that

E((F − E(F ))(1 +
∫ T

0

Ef
t f(t)dBt)) = 0

but, by the Itô formula

Ef
T = 1 +

∫ T

0

Ef
t f(t)dBt.

So
E((F − E(F ))Ef

T ) = 0

and by the previous lemma F − E(F ) = 0 P a.s..
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Theorem 1.2.5 Any square integrable martingale (Mt)0≤t≤T can be written as

Mt = M0 +
∫ t

0

YsdBs, 0 ≤ t ≤ T

whereYs is an adapted process with E(
∫ T

0
Y 2

t dt) < ∞.

Proof. We can write
Mt = E(MT |Ft)

and by the previous proposition

MT = E(MT ) +
∫ T

0

YsdBs

then it is enough to take conditional expectations.

1.2.6 Multidimensional Black-Scholes model with contin-
uous dividends

The model of the financial market consists in (d + 1) stocks S0
t , S1

t , ..., Sd
t in

such a way that
dS0

t = S0
t r(t)dt, S0

0 = 1,

and

dSi
t = Si

t(µ
i(t)dt +

d∑
j=1

σij(t)dW j
t ), i = 1, ..., d

where W = (W 1, ...,W d) is a d-dimensional Brownian motion. By simplicity
we assume that µ, σ and r are deterministic and cadlag. We shall consider the
natural filtration associated with W .

An investment strategy will be an adapted process φ = ((φ0
t , φ

1
t , ..., φ

d
t ))0≤t≤T

in Rd+1. The value of the portfolio at time t is given by the scalar product

Vt(φ) = φt · St =
d∑

i=0

φi
tS

i
t ,

and its discounted value is

Ṽt(φ) = e−
R t
0 rsdsVt(φ) = φt · S̃t.

We assume that the stocks can produce dividends in a continuous and deter-
ministic way: ((δ1

t , ..., δd
t ))0≤t≤T . Then if the strategy is self-financing

dVt(φ) =
d∑

i=0

φi
tdSi

t +
d∑

i=1

φi
tS

i
tδ

i
tdt.
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Now we look for a probability under which the discounted values of the self-
financing portfolios are martingales. We know that

dṼt = d
(
e−

R t
0 rsdsVt(φ)

)
= −rte

−
R t
0 rsdsVtdt + e−

R t
0 rsdsdVt

= −rte
−
R t
0 rsdsVtdt + e−

R t
0 rsds

(
d∑

i=0

φi
tdSi

t +
d∑

i=1

φi
tS

i
tδ

i
tdt

)

= e−
R t
0 rsdsrt(φ0

t S
0
t − Vt)dt + e−

R t
0 rsds

d∑
i=1

(
φi

tdSi
t + φi

tS
i
tδ

i
tdt
)

= e−
R t
0 rsds

d∑
i=1

φi
tS

i
t(δ

i
t − rt)dt + e−

R t
0 rsds

d∑
i=1

φi
tdSi

t

= e−
R t
0 rsds

 d∑
i=1

φi
tS

i
t(δ

i
t + µi

t − rt)dt +
d∑

i=1

φi
tS

i
t

d∑
j=1

σij(t)dW j
t


= e−

R t
0 rsds

d∑
i=1

φi
tS

i
t

d∑
j=1

σij(t)

(
dW j

t +
d∑

k=1

(
σ−1

t

)jk
(t)(δk

t + µk
t − rt)dt

)

= e−
R t
0 rsds

d∑
i=1

φi
tS

i
t

d∑
j=1

σij(t)dW̃ j
t

with

dW̃ j
t = dW j

t +
d∑

k=1

(
σ−1

)jk
(t)(δk

t + µk
t − rt)dt, j = 1, ..., d

Then by the Girsanov theorem with θj(t) =
(
σ−1

)jk (t)(rt − δk
t − µk

t ) it turns

out that
(
W̃t

)
0≤t≤T

is a d-dimensional Brownian motion with respect to the

probability P ∗:

dP ∗ = Πn
j=1 exp{−

∫ T

0

θj(t)dW j
t −

1
2

∫ T

0

θ2
j (t)dt}dP.

Then
EP∗(ṼT |Ft) = Ṽt,

and any replicable payoff X will have a price at t given by

Vt = e
R t
0 rsdsEP∗(X̃|Ft).

On the other hand if X̃ is square integrable the representation theorem of Brow-
nian martingales allows us to write

EP∗(X̃|Ft) = EP∗(X̃) +
d∑

j=1

∫ t

0

hj
sdW̃ j

s ,
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in such a way that we can take

φi
t =

1
S̃i

t

d∑
k=1

(
σ−1

t

)ik
hk

t , i = 1, ..., d.

Remark 1.2.10 We have assume that
(
σij

t

)
is invertible and from here we

conclude that the model is free of arbitrage and complete. For the lack of ar-
bitrage it is sufficient to have θ(t) such that

∑d
k=1 σjk(t)θk(t) = δj

t + µj
t − rt.

But for completeness we need that
(
σij

t

)
is invertible. In this way we can have

viable models where the dimension of W is greater than the number of stocks
but then they are no complete.

Remark 1.2.11 Note that a portfolio with a constant number of assets is NOT
a self-financing portfolio, except for the trivial case where you have only riskless
assets. This is due to the fact that risky assets generate dividends and then your
bank account change if you mantain the number of risky assets in your portfolio.

Price of a call option

First note that under P ∗

dSi
t = Si

t(
(
rt − δi

t

)
dt +

d∑
j=1

σij
t dW̃ j

t ), i = 1, ..., d,

so
(
Si

te
−
R t
0 (rs−δi

s)ds
)

are martingales under P ∗:

d
(
Si

te
−
R t
0 (rs−δi

s)ds
)

= e−
R t
0 (rs−δi

s)ds
(
−Si

t

(
rt − δi

t

)
dt + dSi

t

)
=

d∑
j=1

σij
t Si

tdW̃ j
t .

Then

Ct := EP∗

(
(Si

T −K)+
exp{

∫ T

t
rsds}

∣∣∣∣∣Ft

)
= exp{−

∫ T

t

δi
sds}EP∗

(
(Si

T −K)+
exp{

∫ T

t
(rs − δi

s)ds}
|Ft

)
,

under P ∗, and conditional to Ft,

log Si
T − log Si

t ∼ N(
∫ T

t

(rs − δi
s)ds− 1

2

∫ T

t

d∑
j=1

(
σij

s

)2
ds,

∫ T

t

d∑
j=1

(
σij

s

)2
ds).

Therefore

Ct = exp{−
∫ T

t

δi
sds}

(
Si

tΦ(d+)−K exp{−
∫ T

t

(rs − δi
s)ds}Φ(d−)

)
,
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with

d± =
log Si

t

K +
∫ T

t

(
rs − δi

s ± 1
2

∑d
j=1

(
σij

s

)2) ds√∫ T

t

∑d
j=1

(
σij

s

)2

ds

.

If we take d = 1 a constant interest rate r and constant dividend rate δ, we
have the following formula for a call option, with strike K:

Ct = Ste
−δ(T−t)Φ(d+)−Ke−r(T−t)Φ(d−),

with

d± =
log St

K + (r − δ ± 1
2σ2)(T − t)

σ
√

(T − t)
.

If we take d = 1 a constant interest rate r and constant dividend rate δ, we
have the following formula for a call option, with strike K:

Ct = Ste
−δ(T−t)Φ(d+)−Ke−r(T−t)Φ(d−),

with

d± =
log St

K + (r − δ ± 1
2σ2)(T − t)

σ
√

(T − t)
.

1.2.7 Currency options

A foreign currency can be thought as a kind of risky stock whose value at t, say
Xt, changes in a random way at that generates some interests (or dividends) at
the foreign rate, say rf . In this way, if we assume a Black-Scholes for X and
with domestic interest rates rd, the price of a call option with strike K can be
obtained by using the previous formula with δ = rf y r = rd.

Remark 1.2.12 The previous arguments can be extended to the cases where
µ, r and δ are adapted processes, cadlag and such that

Πn
j=1 exp{−

∫ t

0

θj(s)dW j
s −

1
2

∫ t

0

θ2
j (s)ds}, 0 ≤ t ≤ T,

is a martingale. Also to the cases where σ is adapted and invertible for all ω
and t, but in these cases we will not have formulas of Black-Scholes type since
the discounted values of the stocks will not be log-normal distributed.

1.2.8 Stochastic volatility

Suppose that under P ∗

dSt = St(rtdt + σ(W 2
t , t)dW 1

t )
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where W 1
t and W 2

t are two independent Brownian motions. Then the price of
a call option with strike K is given by

Ct = E(e−
R T

t
rsds(ST −K)+|Ft)

= E(E(e−
R T

t
rsds(ST −K)+|σ(W 2

s , s), t ≤ s ≤ T,Ft)|Ft)

= E(StΦ(d+)−Ke−
R T

t
rsdsΦ(d−)|Ft),

with

d± =
log St

K +
∫ T

t
(rs ± 1

2σ2(W 2
s , s))ds√∫ T

t
σ2(W 2

s , s)ds
,

If we assume a covariance
∫ t

0
ρsds between W 1

t and W 2
t we obtain

E(StξtΦ(d+)−Ke−
R T

t
rsdsΦ(d−)|Ft),

with

d± =
log Stξt

K +
∫ T

t
(rs ± 1

2 (1− ρ2
s)σ

2(W 2
s , s))ds√∫ T

t
(1− ρ2

s)σ2(W 2
s , s))ds

,

and

ξt = exp{
∫ T

t

ρsσ(W 2
s , s)dW 2

s −
1
2

∫ T

t

ρ2
sσ

2(W 2
s , s)ds}.

In fact, first note that a process Z such that

Zt := W 1
t −

∫ t

0

ρsdW 2
s ,

is independent of W 2:

E(ZtW
2
t ) =

∫ t

0

ρsds−
∫ t

0

ρsds = 0.

So, we can write

dW 1
t =

√
1− ρ2

t dŴt + ρtdW 2
t ,

with dŴt = 1√
1−ρ2

t

dZt. Then Ŵ is a Brownian motion independent of W 2.

Therefore we have

dSt = St

(
rdt + σ(W 2

t , t)
(√

1− ρ2
t dŴt + ρtdW 2

t

))
and by the Itô formula:

ST = St exp{
∫ T

t

rsds +
∫ T

t

ρsσ(W 2
s , s)dW 2

s −
1
2

∫ T

t

ρsσ
2(W 2

s , s)ds}

× exp{
∫ T

t

√
1− ρ2

sσ(W 2
s , s)dŴs −

1
2

∫ T

t

(1− ρ2
s)σ

2(W 2
s , s)ds}.
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1.2.9 Fourier methods for pricing

Define the Fourier transform of f by

(Ff) (v) =
∫

R
eixvf(x)dx.

If f is integrable then it exists. Its inverse, if f is integrable, is given by, a.e.,
by

(
F−1f

)
(v) =

1
2π

∫
R

e−ixvf(x)dx.

Suppose that the model is, under P ∗, of the form

St = ert+Xt ,

where (Xt) is a process with independent increments and homogeneous, X0 = 0.
c.s., and with density fXt

(x). The price at time zero of a call with strike ek is
given by

C(k) = e−rT E((erT+XT − ek)+).

Then if we consider the function

zT (k) = e−rT E((erT+XT − ek)+)− (1− ek−rT )+,

it turns out that

ςT (v) := (FzT ) (v) = eivrT ϕXT
(v − i)− 1

iv(iv + 1)
,

where ϕXT
is the characteristic function of XT . C(k) can be obtained now by

inverting ςT (v). In fact En efecto

zT (k) = e−rT

∫
R

fXT
(x)(erT+x − ek)(1{rT+x>k} − 1{rT>k})dx.
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Then if we apply the Fubini theorem

ςT (v) =
∫

R
eikvzT (k)dk

= e−rT

∫
R

eikv

(∫
R

fXT
(x)(erT+x − ek)(1{rT+x>k} − 1{rT>k})dx

)
dk

= e−rT

∫
R

fXT
(x)

(∫ rT+x

rT

eikv(erT+x − ek)dk

)
dx

= e−rT

∫
R

fXT
(x)

(
erT+x

[
eikv

iv

]rT+x

rT

−
[
ek(iv+1)

iv + 1

]rT+x

rT

)

)
dx

= eirTv

∫
R

fXT
(x)

ex(iv+1) − ex

iv
dx− eirTv

∫
R

fXT
(x)

ex(iv+1) − 1
iv + 1

dx

=
eirTv

iv
(ϕXT

(v − i)− 1)− eirTv

iv + 1
(ϕXT

(v − i)− 1)

=
eirTv

iv(iv + 1)
(ϕXT

(v − i)− 1).

The next step is to invert ςT (v), since it is assumed that we know ϕXT
, and

then we recover zT (k).
To do this last step we can use numerical methods. If we want to calculate

the inverse Fourier transform of f(x) we can do the approximation∫
R

e−iuxf(x)dx ≈
∫ A/2

−A/2

e−iuxf(x)dx ≈
A

N

N−1∑
k=0

wkf(xk)e−iuxk ,

where xk = −A/2 + k∆, with ∆ = A/(N − 1). wk depends of the kind of
approximation. For instance the trapezoidal approximation w0 = wN−1 = 1/2
and the rest of weights 1. If now we take u = un = 2πn

N∆ we have that

F−1(f)(un) ≈
A

N
eiunA/2

N−1∑
k=0

wkf(xk)e−2πink/N .

Then, there exists an algorithm fast Fourier transform (FFT) to calculate very
fast

N−1∑
k=0

gke−2πink/N , n = 0, 1, ..., N − 1,

that requires O(N log N) calculations. Note that the step in the net of points
un is given by d = 2π

N∆ . So d∆ = 2π
N . Then if we want d and ∆ small we have

to raise N in a major way. Another limitation is that to use the FFT algorithm
the net of points has to be uniform and a power of two (N = 2k).



Chapter 2

Interest rates models

Interest rates models are used mainly for valuing and hedging bonds and options
on bonds. To remark that there is not a reference model as the Black-Scholes
on stocks.

2.1 Basic facts

2.1.1 The yield curve

In the models we studied we assumed a constant interest rate. In practice the
interest rate depends on the emission data of the loan and the final or maturity
time.

Someone borrows one euro at time t, till maturity T , he will have to pay
an amount F (t, T ) at time T , this is equivalent to a mean rate of continuous
interest R(t, T ) given by the equality:

F (t, T ) = e(T−t)R(t,T ).

If we assume that interest rates are known: (R(t, T ))0≤t≤T , and there is not
arbitrage then

F (t, s) = F (t, u)F (u, s),∀t ≤ u ≤ s,

and from here together with the condition F (t, t) = 1, it follows, if F (t, s) is
differentiable as a function of s, that there exist a function r(t) such that

F (t, T ) = exp

(∫ T

t

r(s)ds

)
.

In fact, let s ≥ t

F (t, s + h)− F (t, s) = F (t, s)F (s, s + h)− F (t, s)
= F (t, s)(F (s, s + h)− 1),

69
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F (t, s + h)− F (t, s)
F (t, s)h

=
F (s, s + h)− F (s, s)

h
,

taking h → 0 we have

∂2F (t, s)/∂s

F (t, s)
= ∂2F (s, s)/∂s := r(s)

and from here

F (t, T ) = exp

(∫ T

t

r(s)ds

)
.

Note that

R(t, T ) =
1

T − t

∫ T

t

r(s)ds.

The function r(s) is interpreted as an instantaneous interest rate, and it is also
called short rate.

But look the other way round. Suppose that I want a contract to guarantee
one euro at time T . We have the so called bonds. Which is the price of a bond at
time t?. To receive F (t, T ) at time T we have to pay (put in the bank account)
one euro, then, for the bond, we have to pay 1/F (t, T ).

In practice we do not know the prices of the bonds in different times, these
prices are changing randomly, but intuitively it seems that there must exist a
relation among all these prices for different initial and maturity times. The
interest rate models try to explain these prices.

The main object of our study is what is called the zero coupon bond

Definition 2.1.1 A zero coupon bond with maturity T is a contract that guar-
antees one euro at time T . Its price at t shall be denote by P (t, T ).

The bonds with coupons are those that are giving certain amounts (coupons)
till the maturity of the bond.

Definition 2.1.2 The yield curve of a zero coupon bond is the graph corre-
sponding to the map

T 7−→ R(t, T )

We saw above that if we can anticipate the future or we would like to build
a bond market with deterministic prices for the different trading and maturity
times, the lack of arbitrage lead us to

P (t, T ) = e−
R T

t
r(s)ds.

y

R(t, T ) =
1

T − t

∫ T

t

r(s)ds
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2.1.2 Yield curve for a random future

For a fixed t, P (t, T ) is a function of T whose graph gives us the prices of the
bonds at t or the term structure at t. It is expected a smooth function. If we
fix T , p(t, T ) will be a stochastic process. In this context, our bond market will
be a market with infinitely many assets: for each T we have an asset and we
ask ourselves questions like:

• which models are sensible to valuate bonds?

• which relation must the prices of the bond have to avoid arbitrage oppor-
tunities?

• can we obtain the prices of the bonds if we have a model for short rates?

• given a model of bond market how can we calculate prices of derivatives,
such as call options of bonds?

2.1.3 Interest rates

Consider the following example. Suppose that we are at time t and we fix
another future times S and T , t < S < T . The purpose is to build at time t a
contract that investing at time S one euro we get a deterministic interest rate
in the period [S, T ], in such a way that we obtain a deterministic amount at T .
This can done in the following way:

1. At time t we sell a bond with maturity S. This gives us P (t, S) euros.

2. At time t we buy P (t, S)/P (t, T ) bonds with maturity T .

Note that this implies the following:

1. The cost of the operation at t is zero.

2. At time S we have to pay one euro.

3. At time T we receive P (t, S)/P (t, T ) euros.

The amount we receive P (t, S)/P (t, T ) can be quoted by simple or continu-
ously compounded rates:

• The simple forward interest rate (LIBOR), L = L(t;S, T ), which is the
solution of the equation:

1 + (T − S)L =
P (t, S)
P (t, T )

that is the simple interest rate guaranteed for the period [S, T ] at time t.
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• The continuously compounded forward interest rate R = R(t;S, T ), solu-
tion of the equation:

eR(T−S) =
P (t, S)
P (t, T )

.

analogously to the previous case, is continuously compounded interest
guaranteed at time t, for the period [S, T ]. The quotation using simple
interest rates is the usual at financial markets whereas continuously com-
pounded rates are used in theoretical frameworks.

So, in the bond market we can define different interest rates. That is the
prices of the bonds can be quoted in different ways.

Definition 2.1.3 1. The simple forward rate for the interval [S, T ] con-
tracted at t, (LIBOR (”London Interbank Offer Rate”) is defined as

L(t;S, T ) = −P (t, T )− P (t, S)
(T − S)P (t, T )

2. The simple spot rate for [t, T ], spot LIBOR, is defined as

L(t, T ) = − P (t, T )− 1
(T − t)P (t, T )

,

it is the previous one with S = t.

3. The continuously compounded forward rate contracted at t for [S, T ] as

R(t;S, T ) = − log P (t, T )− log P (t, S)
T − S

4. The continuously compounded spot rate for [t, T ] as

R(t, T ) = − log P (t, T )
T − t

5. The instantaneous forward rate with maturity T contracted at t as

f(t, T ) = −∂ log P (t, T )
∂T

= lim
T→S

R(t;S, T )

6. The instantaneous (spot) short rate at t

r(t) = f(t, t) = lim
T→t

f(t, T )

Note that the instantaneous forward rate with maturity T contracted at t
can be seen as the deterministic rate contracted a t for the infinitesimal period
[T, T + dT ].

Fixed t, any of the rates defined previously, from 1 to 5, alow us to recover
the prices of the bonds. Then, modelling these rates is equivalent to modelling
the bond prices.
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2.1.4 Bonds with coupons, swaps, caps and floors

Fixed coupons bonds

The simplest of the bonds with coupons is the bond with fixed coupons. It is
a bond that at some times in between gives predetermined profits (coupons) to
the owner of the bond. Its formal description is:

• Let T0, T1, ..., Tn, fixed times. T0 is the emission time of the bond, whereas
T1, ..., Tn are the payment times.

• At time Ti the owner receives the amount ci.

• At time Tn there is an extra payment: K.

It is obvious that this bond can be replicated with a portfolio with ci zero-
coupon bonds with maturities Ti, i = 1, .., n− 1 and K zero-coupon bonds with
maturity Tn. So, the price at time t < T1 will be given by

p(t) = KP (t, Tn) +
n∑

i=1

ciP (t, Ti).

Usually the coupons are expressed in terms of certain rates ri instead of quan-
tities, in such a way that for instance

ci = ri(Ti − Ti−1)K.

For a standard coupon the intervals of time are equal:

Ti = T0 + iδ,

y ri = r, de manera que

p(t) = K

(
P (t, Tn) + rδ

n∑
i=1

P (t, Ti)

)
.

Floating rate coupon

Quite often the coupons are not fixed in advance, but rather they are updated
for every coupon period. On example is to take ri = L(Ti−1, Ti) where L is the
spot LIBOR. Since

L(Ti−1, Ti)(Ti − Ti−1) =
1

P (Ti−1, Ti)
− 1

we have (taking K = 1)

ci = L(Ti−1, Ti)(Ti − Ti−1) =
1

P (Ti−1, Ti)
− 1.

It is easy to see that we can replicate this amount selling a bond (without
coupons) with maturity Ti and buying one with maturity Ti−1 :
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• With the bond sold we will have at Ti a payoff −1.

• With the bond bought, we will have 1 at Ti−1 and we can buy 1
P (Ti−1,Ti)

bonds with maturity Ti giving a payoff 1
P (Ti−1,Ti)

.

• The total cost is P (t, Ti−1)− P (t, Ti).

The for any time t < T0 the price of this bond with random coupons is

p(t) = P (t, Tn) +
n∑

i=1

(P (t, Ti−1)− P (t, Ti)) = P (t, T0)!.

Thsi means that a unit of money at T0, evolves as a coupon bond with
floating rates given by the simple Libor rates.

Interest rate Swaps

There are many types of rate swaps but all of the are basically exchanges of
payments with fixed rates with random payments. We shall consider the so
called forwards swaps settled in arrears. Denote the principal by K and the
swap rate (fixed rate) by R . Suppose equally spaced dates Ti, at time Ti, i ≥ 1
we receive

KδL(Ti−1, Ti)

by paying KδR, so the cash flow at Ti is Kδ[L(Ti−1, Ti) − R],. The value at
t ≤ T0 off tis cash flow is

K(P (t, Ti−1)− P (t, Ti))−KδRP (t, Ti)
= KP (t, Ti−1)−K(1 + Rδ)P (t, Ti),

so in total

p(t) =
n∑

i=1

(KP (t, Ti−1)−K(1 + Rδ)P (t, Ti))

= KP (t, T0)−KP (t, Tn)−KRδ
n∑

i=1

P (t, Ti)

= KP (t, T0)−K
n∑

i=1

diP (t, Ti),

with di = Rδ, i = 1, .., n− 1 and dn = 1 + Rδ.
R is usually taken in such a way that the value of the contract is zero when

it is issued. If t < T0,

R =
P (t, T0)− P (t, Tn)

δ
∑n

i=1 P (t, Ti)
.
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Caps and Floors

A cap is a contract that protects you from paying more than a fixed rate (the
cap rate) R even though the loan has floating rate. We can also define a floor
that is a contract that guarantees that the rate is always above the so called
floor rate R even for an investment with random rate.

Technically a cap is a sum of captlets, they consist on these basic contracts.

• The interval [0, T ] is divided by equidistant points: 0 = T0, T1, ..., Tn = T ,
with distance δ. Typically 1/4 of the year or half year.

• The cap works on a principal, say K, and the cap rate is R.

• The floating rate is for instance the LIBOR L(Ti−1, Ti).

• The caplet i is defined as a contract with payoff en Ti given by

Kδ(L(Ti−1, Ti)−R)+.

Proposition 2.1.1 The value of a cap with principal K and cap rate R is that
of one portfolio with K(1+Rδ) put options with maturities Ti−1, i = 1, ..., n on
bonds with maturities Ti and with strike 1

1+Rδ .

Proof.

Kδ(L(Ti−1, Ti)−R)+ = K(
1

P (Ti−1, Ti)
− 1− δR)+

=
K(1 + Rδ)
P (Ti−1, Ti)

(
1

(1 + Rδ)
− P (Ti−1, Ti))+,

but a payoff 1
P (Ti−1,Ti)

in Ti is equivalent to 1 at Ti−1. In other words, with the

cash amount K(1+Rδ)( 1
(1+Rδ)−P (Ti−1, Ti))+ at Ti−1 I can buy K(1+Rδ)

P (Ti−1,Ti)
( 1
(1+Rδ)−

P (Ti−1, Ti))+ bonds with maturity Ti and I get this amount.
Note that

Cap(t)− Floor(t) = Swap(t).

Swaptions

I a contract s that gives the right to enter in a swap at the maturity time of
the swaption. A payer swaption gives the right to enter in a swap as payer of
the fixed rate. A receiver swaption gives the right to enter as the receiver of the
fixed rates.

A payer swaption has similarities with the cap contract. In the cap the
owner has the right to receive a random rate and to pay a constant rate and
he will exercise in each period where the random rate is greater than the fixed
one. Similarly the owner of payer swaption has the right to receive a floating
rate and to pay a constant rate, however in the cap you chose if paying or not
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at each period, in the case of a swaption te decision is taken once for ever at
the maturity time of the swaption. The value of the ”swap”, with principal 1,
at the maturity time of the swaption, say T , is

P (T, T0)− P (T, Tn)−Rδ
n∑

i=1

P (T, Ti),

so the payoff of a swaption is(
P (T, T0)− P (T, Tn)−Rδ

n∑
i=1

P (T, Ti)

)
+

= (S(T )− Z(T ))+ ,

where
S(T ) = P (T, T0)− P (T, Tn)

that is the value of the payments with floating rate and

Z(T ) = Rδ
n∑

i=1

P (T, Ti)

that is the value of the payments with fixed rate.
It is also interesting the decomposition of the payer swaption payoff as(

P (T, T0)− (P (T, Tn) + Rδ
n∑

i=1

P (T, Ti))

)
+

where P (T, T0) is the value of a coupon bond (at T ) with floating payments and
P (T, Tn) + Rδ

∑n
i=1 P (T, Ti) of a coupond bond with fixed payments. Then

a swaption can be seen as an option to exchange one coupon by another. If
T = T0 a swaption becomes a put with strike 1 on a bond with fixed coupons.

2.2 A general framework for short rates

We are going to define the process bank account or riskless asset. We shall
create a random scenario for the instantaneous rates r(s). More concretely we
consider a filtered probability space (Ω,F , P, (Ft)0≤t≤T ), and we assume that
(Ft)0≤t≤T is the filtration generated by a Brownian motion (Ws)0≤t≤T and that
FT = F . In this context we introduce the riskless asset:

S0
t = exp{

∫ t

0

r(s)ds}

where (r(t))0≤t≤T is an adapted process with
∫ t

0
|r(s)|ds < ∞. In our market

we shall assume the existence of risky assets: the bonds! (without coupons)
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with maturity less or equal than the horizon T . For each time u ≤ T we define
an adapted process (P (t, u))0≤t≤u satisfying P (t, t) = 1.

We make the following hypothesis:
(H) There exist a probability P ∗ equivalent to P such that for all 0 ≤ u ≤ T ,

(P̃ (t, u))0≤t≤u defined by

P̃ (t, u) = e−
R t
0 r(s)dsP (t, u)

is a martingale.
This hypothesis has the following interesting consequences:

Proposition 2.2.1

P (t, u) = EP∗

(
e−

R u
t

r(s)ds |Ft

)
Proof.

P̃ (t, u) = EP∗(P̃ (u, u)|Ft) = EP∗(e−
R u
0 r(s)dsP (u, u)|Ft)

= EP∗(e−
R u
0 r(s)ds|Ft),

so, by eliminating the discount factor

P (t, u) = EP∗(e−
R u

t
r(s)ds|Ft)

If we write, as usually, ZT = dP∗

dP , we know that Zt := E(dP∗

dP |Ft) is a
martingale strictly positive, then since the filtration is that the generated by
the Brwonian motion, we have the following representation:

Proposition 2.2.2 There exists an adapted process (q(t))0≤t≤T such that, for
all 0 ≤ t ≤ T,

Zt = exp{
∫ t

0

q(s)dWs −
1
2

∫ t

0

q2(s)ds}, c.s.

Proof. Since Zt is a Brownian martingale, a localization argument (since we
do not know if it is square integrable) allows us to extend the Theorem (1.2.5)
and to conclude that there is a process (Ht) satisfying

∫ T

0
H2

t dt < ∞, a.s., such
that

Zt = 1 +
∫ t

0

HsdWs,

now since Zt > 0, P a.s., by applyin theItô formula, we have

log Zt =
∫ t

0

Hs

Zs
dWs −

1
2

∫ t

0

H2
s

Z2
s

ds

so q(s) = Hs

Zs
, c.s.
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Corollary 2.2.1 The price at time t of a bond (without coupons) with maturity
u ≤ T is given by

P (t, u) = E(e−
R u

t
r(s)ds+

R u
t

q(s)dWs− 1
2

R u
t

q2(s)ds|Ft)

Proof.

EP∗(e−
R u

t
r(s)ds|Ft) =

E(e−
R u

t
r(s)dsZu|Ft)
Zt

= E(e−
R u

t
r(s)ds Zu

Zt
|Ft)

= E(e−
R u

t
r(s)ds+

R u
t

q(s)dWs− 1
2

R u
t

q2(s)ds|Ft).

The following proposition gives an economic interpretation of the process q.

Proposition 2.2.3 For each maturity u, there exists an adapted process (σu
t )0≤t≤u

such that, for all 0 ≤ t ≤ u,

dP (t, u)
P (t, u)

= (r(t)− σu
t q((t))dt + σu

t dWt

Proof. Since
(
P̃ (t, u)

)
is a martingale under P ∗ it turns out that

(
P̃ (t, u)Zt

)
is a martingale under P , it is strictly positive as well and by reasoning as before
we

P̃ (t, u)Zt = P (0, u)e
R t
0 θu

s dWs− 1
2

R t
0 (θu

s )2ds

for a certain adapted process (θu
s )0≤t≤u , in such a way that

P (t, u) = P (0, u) exp{
∫ t

0

r(s)ds +
∫ t

0

(θu
s − q(s))dWs

− 1
2

∫ t

0

((θu
s )2 − q2(s))ds},

consequently, by applying the Itô formula,

dP (t, u)
P (t, u)

= r(t)dt + (θu
t − q(t))dWt

− 1
2
((θu

t )2 − q2(t))dt

+
1
2
(θu

t − q(t))2dt

= (r(t) + q2(t)− θu
t q(t))dt

+ (θu
t − q(t))dWt,

and the result follows by taking σu
t = θu

t − q(t).
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Remark 2.2.1 If we compare the formula

dP (t, u)
P (t, u)

= (r(t)− σu
t q((t))dt + σu

t dWt

with
dS0

t

S0
t

= r(t)dt

we find that the bonds are assets with greater risk the riskless asset S0. Note
also that, under P ∗

W̃t := Wt −
∫ t

0

q(s)ds

is a standard (Ft)- Brownian (by the Girsanov (1.2.3 theorem)) and we can
write

dP (t, u)
P (t, u)

= r(t)dt + σu
t dW̃t

justifying the name of risk neutral probability that we use for P ∗.

2.3 Options on bonds

Suppose a European contingent claim with maturity T and payoff

(P (T, T ∗)−K)+

where T ∗ > T and P (T, T ∗) is the price of a bond with maturity T ∗. Te purpose
is to valuate and hedge this call option of the bond with maturity T ∗. It seems
sensible to try to hedge this derivative with the riskless stock

S0
t = e

R t
0 r(s)ds

and the risky one

P (t, T ∗) = P (0, T ∗) exp{
∫ t

0

(r(s)− 1
2

(
σT∗

s

)2

)ds +
∫ t

0

σT∗

s dW̃s,

in such a way that a strategy will be a pair of adapted processes
(
φ0

t , φ
1
t

)
0≤t≤T∗

that represent the amount od assets without risk and the bonds with maturity
T ∗ respectively. The value of the self-financing portfolio at time t is given by

Vt = φ0
t S

0
t + φ1

t P (t, T ∗)

and the self-financing condition implies that

dVt = φ0
t dS0

t + φ1
t dP (t, T ∗)

= φ0
t r(t)e

R t
0 r(s)dsdt + φ1

t P (t, T ∗)(r(t)dt + σT∗

t dW̃t)

= (φ0
t r(t)e

R t
0 r(s)ds + φ1

t r(t)P (t, T ∗))dt + φ1
t σ

T∗

t P (t, T ∗)dW̃t

= r(t)Vtdt + φ1
t σ

T∗

t P (t, T ∗)dW̃t,
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we shall impose the conditions
∫ T

0
|r(t)Vt|dt < ∞ y

∫ T

0
|φ1

t σ
T∗

t P (t, T )|2dt < ∞,
to get well defined objects.

Definition 2.3.1 An strategy φ = (φ0
t , φ

1
t )0≤t≤T is admissible if it is self-

financing and its discounted value, Ṽt, is non negative.

Proposition 2.3.1 Let T < T ∗. Suppose that sup0≤t≤T r(t) < ∞ a.s. and that
σT∗

t 6= 0 a.s. for all 0 ≤ t ≤ T . Let h be a random variable FT -measurable
such that h̃ = e−

R T
0 r(s)dsh is square integrable under P ∗. Then there exists an

admissible strategy such that at time T its value is h and at time t ≤ T it is
given by

Vt = EP∗(e−
R T

t
r(s)dsh|Ft).

Proof. h̃ is a variable FT -measurable, with FT = σ(Wt, 0 ≤ t ≤ T ), it is
square integrable, as well, with respect to P ∗, so

Mt := EP∗(h̃|Ft)

is a, square integrable, P ∗-martingala. Then (MtZt) is a P -martingala, no
necessarily square integrable. In fact, we know that

EP∗(h̃|Ft) =
E(h̃ZT |Ft)

Zt

in such a way that
MtZt = E(h̃ZT |Ft)

and
(
E(h̃ZT |Ft)

)
is clearly a P -martingale. In that way we have, by a small

extension of the Theorem (1.2.5),

MtZt = E(MtZt) +
∫ t

0

JsdWs,

with (Js) adapted and such that
∫ T

0
J2

s ds < ∞ a.s., so

ZtdMt + MtdZt + d〈M,Z〉t = JsdWs,

that is

dMt = −Mt
dZt

Zt
− 1

Zt
d〈M,Z〉t +

Jt

Zt
dWt

= −Mtq(t)dWt −
1
Zt

d〈M,Z〉t +
Jt

Zt
dWt

= (
Jt

Zt
−Mtq(t))dWt −

1
Zt

d〈M,Z〉t

= (
Jt

Zt
−Mtq(t))dWt − (

Jt

Zt
−Mtq(t))q(t)dt

= (
Jt

Zt
−Mtq(t))dW̃t = HtdW̃t
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with Ht := Jt

Zt
−Mtq(t), 0 ≤ t ≤ T . Therefore if we take

φ1
t =

Ht

σT∗
t P̃ (t, T ∗)

, φ0
t = EP∗(h̃|Ft)−

Ht

σT∗
t

we will have a self-financing portfolio with final value e
R T
0 r(s)dsMT = h. In fact

dṼt = d(e−
R t
0 r(s)dsVt) = −e−

R t
0 r(s)dsr(t)Vtdt + e−

R t
0 r(s)dsdVt

= e−
R t
0 r(s)ds(−r(t)Vtdt + r(t)Vtdt + φ1

t σ
T∗

t P (t, T ∗)dW̃t)

= φ1
t σ

T∗

t P̃ (t, T ∗)dW̃t = HtdW̃t = dMt

It is obvious that Ṽt ≥ 0. The condition sup0≤t≤T r(t) < ∞ a.s. guarantees
that

∫ T

0
|r(t)Vt|dt < ∞ a.s..

2.4 Short rate models

Consider an evolution of the form

dr(t) = µ(t, r(t))dt + σ(t, r(t))dWt (2.1)

and suppose that
P (t, T ) = F (t, r(t);T ) (2.2)

where F is a smooth function in R+×R× R+. Obviously the boundary condition
F (T, r(T );T ) = 1, should be fulfilled for all value of r(T ). Considere two bonds
with different maturities T1 and T2 > T1. Assume there exists a self-financing
portfolio (φ0

t , φ1
t ), based on the bank account and such that the bond matures

at T2 and that, at time T3 < T1, replicates the bond with maturity T1, that is

P (T3, T1) = φ0
T3

e
R T3
0 r(s)ds + φ1

T3
P (T3, T2)

then, if there is not arbitrage, we will have the equality

dP (t, T1) = r(t)φ0
t e

R t
0 r(s)dsdt + φ1

t dP (t, T2)

for all t ≤ T3, and applying the Itô formula to (2.2) we have

∂F (1)

∂t
dt +

∂F (1)

∂r
dr(t) +

1
2

∂2F (1)

∂r2
σ2dt

= r(t)φ0
t S

0
t dt + φ1

t

∂F (2)

∂t
dt + φ1

t

∂F (2)

∂r
dr(t) + φ1

t

1
2

∂2F (2)

∂r2
σ2dt

So, by equating the dWt and dt terms,

∂F (1)

∂t
+

∂F (1)

∂r
µ +

1
2

∂2F (1)

∂r2
σ2 (2.3)

= rφ0
t S

0
t + φ1

t

∂F (2)

∂t
+ φ1

t

∂F (2)

∂r
µ + φ1

t

1
2

∂2F (2)

∂r2
σ2
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σ
∂F (1)

∂r
= φ1

t

∂F (2)

∂r
σ,

hence

φ1
t =

∂F (1)

∂r
∂F (2)

∂r

and

rφ0
t S

0
t = r(F (1) −

∂F (1)

∂r
∂F (2)

∂r

F (2)).

Then, by substituting in (2.3) we have

1
∂F (1)

∂r

(
∂F (1)

∂t
+

∂F (1)

∂r
µ +

1
2

∂2F (1)

∂r2
σ2 − rF (1)

)
=

1
∂F (2)

∂r

(
∂F (2)

∂t
+

∂F (2)

∂r
µ +

1
2

∂2F (2)

∂r2
σ2 − rF (2)

)
.

Since this is true for all, T1, T2 < T , it turns out that there exists a λ(t, r) such
that

∂F

∂t
+

∂F

∂r
µ +

1
2

∂2F

∂r2
σ2 − rF = λσ

∂F

∂r
(structure equation) (2.4)

As we see there is an indetermination in λ and this has to do with the fact
that the dynamics of r(t) under P does not determine the prices of the bonds.

We have the following proposition

Proposition 2.4.1 Let P ∗ be equivalent to P such that

dP ∗

dP
= exp{−

∫ T

0

λ(s, r(s))dWs −
1
2

∫ T

0

λ2(s, r(s))ds},

assume that
F (t, r(t);T ) = EP∗(e−

R T
t

r(s)ds|Ft)

is C1,2, then it is a solution of (2.4) with the boundary condition F (T, r(T );T ) =
1. Also, under P ∗

dr(t) = (µ− λσ)dt + σdW̃t

with W̃ (Ft) being a P ∗-Brownian motion.

Proof. Let P ∗ be equivalent to P such that

dP ∗

dP
= exp{−

∫ T

0

λ(s, r)dWs −
1
2

∫ T

0

λ2(s, r)ds}

(a sufficient condition is the Novikov condition E(exp{ 1
2

∫ T

0
λ2(s, r(s))ds}}) <

∞) then we know, by the Girsanov theorem, that

W̃· = W· +
∫ ·

0

λ(s, r(s))ds
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is an (Ft)-Brownian motion with respect to P ∗. If we apply the Itô formula to
e−

R t
0 r(s)dsF (t, r(t);T ) we have:

e−
R t
0 r(s)dsF (t, r(t);T )

= F (0, r(0);T ) +
∫ t

0

e−
R s
0 r(u)du(

∂F

∂t
+

∂F

∂r
µ +

1
2

∂2F

∂r2
σ2 − rF )ds

+
∫ t

0

e−
R s
0 r(u)du ∂F

∂r
σdWs

= F (0, r(0);T ) +
∫ t

0

e−
R s
0 r(u)du(

∂F

∂t
+

∂F

∂r
µ +

1
2

∂2F

∂r2
σ2 − rF − λσ

∂F

∂r
)ds

+
∫ t

0

e−
R s
0 r(u)du ∂F

∂r
σdW̃s.

Then, since e−
R t
0 r(s)dsF (t, r(t);T ) = EP∗((e−

R T
0 r(u)du| Ft) it turns out that

∂F
∂t + ∂F

∂r µ+ 1
2

∂2F
∂r2 σ2−rF−λσ ∂F

∂r = 0. The boundary condition F (T, r(T );T ) = 1
is obviously satisfied.

In this situation several models for r(t), under the risk neutral probability,
has been proposed:

1. Vasicek
dr(t) = (b− ar(t))dt + σdWt.

2. Cox-Ingersoll-Ross (CIR)

dr(t) = a(b− r(t))dt + σ
√

r(t)dWt

3. Dothan
dr(t) = ar(t)dt + σr(t)dWt

4. Black-Derman-Toy

dr(t) = Θ(t)r(t)dt + σ(t)r(t)dWt

5. Ho-Lee
dr(t) = Θ(t)dt + σdWt

6. Hull-White (Vasicek generalizado)

dr(t) = (Θ(t)− a(t)r(t))dt + σ(t)dWt

7. Hull-White (CIR generalizado)

dr(t) = (Θ(t)− a(t)r(t))dt + σ(t)
√

r(t)dWt
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2.4.1 Inversion of the yield curve

In the previous models we have several unknown parameters, that we shall
denote by α. These parameters cannot be estimated from the observed values
of r(s), since that evolve not P ∗ but under the real probability P . Where we
can note the effect of P ∗ is in the real prices of the bonds, because if the model
is correct

P (t, T ) = EP∗(e−
R T

t
r(s)ds|Ft) = F (t, r(t);T, α),

this latter equality if the model is Markovian under P ∗. Then, if, for instance,
the evolution of r under P ∗ is given by

dr(t) = µ(t, r(t);α)dt + σ(t, r(t);α)dWt

we can try to solve the partial differential equation

∂F

∂t
+

∂F

∂r
µ +

1
2

∂2F

∂r2
σ2 − rF = 0, (2.5)

F (T, r(T );T, α) = 1 (2.6)

and then try to adjust the value of α for fitting P (t, T ) = F (t, r(t);T, α) to the
observed values of the bonds. Evidently some models will be more tractable
than others.

2.4.2 Affine term structures

Definition 2.4.1 If the term structure {P (t, T ); 0 ≤ t ≤ T} has the form

P (t, T ) = F (t, r(t);T )

where F is given by
F (t, r(t);T ) = eA(t,T )−B(t,T )r

and where A(t, T ) and B(t, T ) are deterministic, then we say that the model has
an affine term structure (Affine Term Structure: ATS).

The structure equation (2.5) lead us to

∂A

∂t
− {1 +

∂B

∂t
}r − µB +

1
2
σ2B2 = 0

and the boundary condition (2.6) to

A(T, T ) = 0
B(T, T ) = 0.

Then, if µ(t, r(t)) and σ2(t, r(t)) are also affine, that is

µ(t, r(t)) = α(t)r + β(t)
σ(t, r(t)) =

√
(γ(t)r + δ(t))
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we have

∂A

∂t
− β(t)B +

1
2
δ(t)B2 − {1 +

∂B

∂t
+ α(t)B − 1

2
γ(t)B2}r = 0

and since this is satisfied for all values of r(t)(ω) we conclude

∂A

∂t
− β(t)B +

1
2
δ(t)B2 = 0

1 +
∂B

∂t
+ α(t)B − 1

2
γ(t)B2 = 0.

Exercise 2.4.1 Consider all the above mentioned models except for the Dothan
and Black-Derman-Toy models, and show that they are ATS.

2.4.3 The Vasicek model

We shall apply the previous technique to the Vasicek model

dr(t) = (b− ar(t))dt + σdWt, a, b, σ > 0

Note that

dr(t) + ar(t)dt = bdt + σdWt

= e−atd
(
eatr(t)

)
.

Hence
d
(
eatr(t)

)
= eatbdt + eatσdWt,

and finally

r(t) =
b

a
+ e−at

(
r(0)− b

a

)
+ σ

∫ t

0

e−a(t−s)dWs.

Then, we have that r is a Gaussian process and when t → ∞, the distribution
of r(t) tends to a limit distribution N(b/a, σ2/ (2a)). This process is named the
Ornstein-Uhlenbeck process and its main feature is its mean reverting property:
if the process r(t) is greater than b

a , then the drift is negative and the process
tends to go down. If the process r(t) is less than b

a then it tends to go up.
So, in the end, it finished oscillating around the mean value b

a with a constant
variance. A drawback of this model is that it can give negative values for
r(t), producing arbitrage opportunities. This model is an ATS model with
α(t) = −a, β(t) = b, γ(t) = 0 y δ(t) = σ2, so

∂A

∂t
− bB +

1
2
σ2B2 = 0, A(T, T ) = 0

1 +
∂B

∂t
− aB = 0, B(T, T ) = 0 (2.7)
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It is easy to see that

B(t, T ) =
1
a
(1− e−a(T−t)),

then , from (2.7), we have

A(t, T ) =
σ2

2

∫ T

t

B2ds− b

∫ T

t

Bds

and substituting for B we obtain

A(t, T ) =
B(t, T )− (T − t)

a2
(ab− 1

2
σ2)− σ2

4a
B2(t, T ).

If we consider the continuous forward interest rate for the period [t, T ]: R(t, T ),
since

P (t, T ) = exp{−(T − t)R(t, T )}

and since
P (t, T ) = exp{A(t, T )−B(t, T )r(t)},

it turns out that

R(t, T ) = −A(t, T )−B(t, T )r(t)
T − t

.

So, in this model

lim
T→∞

R(t, T ) =
b

a
− σ2

2a2

and this is consider as another imperfection of the model by praticcioners since
it does not depend on r(t).

2.4.4 The Ho-Lee model

In the Ho-Lee model
dr(t) = Θ(t)dt + σdWt

So, α(t) = γ(t) = 0, β(t) = Θ(t) and δ(t) = σ2. Then, we have the equations

∂A

∂t
−Θ(t)B +

σ2

2
B2 = 0, A(T, T ) = 0

1 +
∂B

∂t
= 0, B(T, T ) = 0,

therefore

B(t, T ) = T − t

A(t, T ) =
∫ T

t

Θ(s)(s− T )ds +
σ2

2
(T − t)3

3
.

Note that, contrarily to the previous model, we do not have an explicit expres-
sion in terms of the parameters. Now, we have an infinite-dimension parameter
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Θ(s). One way of estimating it is to try to fit the initially observed term struc-
ture {P̂ (0, T ), T ≥ 0} to the theoretical values. That is

P (0, T ) ≈ P̂ (0, T ), T ≥ 0.

This gives

−∂2 log P (0, T )
∂T 2

≈ −∂2 log P̂ (0, T )
∂T 2

=
∂f̂(0, T )

∂T

and therefore

Θ(T ) =
∂f̂(0, T )

∂T
+ σ2T

2.4.5 The CIR model

In this model model

dr(t) = a(b− r(t))dt + σ
√

r(t)dWt

where a, b, σ > 0. As in the Vasicek model there is a reversion to the mean, here
given by b, but the volatility factor

√
r(t) keeps the process above zero: when

the process is close to zero there is only contribution of a positive drift.

Proposition 2.4.2 Let W1,W2 be two independent Brownian motions and let
Xi, i = 1, 2 be two Ornstein-Uhlenbeck process, solutions of

dXi(t) = −a

2
Xi(t)dt +

σ

2
dWi(t), i = 1, 2.

Then the process
r(t) := X2

1 (t) + X2
2 (t),

satisfies

dr(t) = (
σ2

2
− ar(t))dt + σ

√
r(t))dW (t)

where W is a standard Brownian motion.

Proof. By the Itô formula for the bidimensional case

dr(t) = 2
∑

i=1,2

Xi(t)dXi(t) +
σ2

2
dt

= −ar(t)dt + σ
∑

i=1,2

Xi(t)dWi(t) +
σ2

2
dt

= (
σ2

2
− ar(t))dt + σ

√
r(t)

∑
i=1,2

Xi(t)√
r(t)

dWi(t).

Write

dW (t) :=
∑

i=1,2

Xi(t)√
r(t)

dWi(t),
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then W is an Itô process with quadratic variation t:

[W,W ]t =
∑

i=1,2

∫ t

0

X2
i (s)

r(s)
ds

= t.

And by he Itô formula

eiλWt = eiλWu + iλ

∫ t

u

eiλWsdWs −
λ2

2

∫ t

u

eiλWs .ds

Consequently

E(eiλ(Wt−Wu)|Fu) = 1− λ2

2

∫ t

u

E(eiλ(Wt−Wu)|Fu)ds,

and
E(eiλ(Wt−Wu)|Fu) = e−

1
2 λ2(t−u).

Hence W has continuous trajectories, with independent and homogeneous in-
crements (and N(0, t)). In other words, W is a Brownian motion.

Remark 2.4.1 From the previous calculations we deduce that if ab > σ2

2 , the
values of r(t) hold strictly positive.

Bond prices for the CIR model

We have to solve

∂A

∂t
− β(t)B +

1
2
δ(t)B2 = 0,

1 +
∂B

∂t
+ α(t)B − 1

2
γ(t)B2 = 0.

con β = ab, δ = 0, α = −a y γ = σ2. That is

∂A

∂t
− abB = 0,

1 +
∂B

∂t
− aB − 1

2
σ2B2 = 0,

with the boundary condition B(T, T ) = A(T, T ) = 0. It is easy to see that, by
taking derivatives, we have

B(t, T ) =
2(ec(T−t) − 1)

d(t)

with c =
√

a2 + 2σ2 and d(t) = (c + a)(ec(T−t) − 1) + 2c. By integrating

A(t, T ) =
2ab

σ2

(
(a + c)(T − t)

2
+ log

2c

d(t)

)
.
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2.4.6 The Hull-White model

In the calibration step we try to adjust the real bond prices to the the theoretical
ones. If we use the notation {P̂ (0, T ), T ≥ 0} for the observed prices, we shall
find that

P (0, T ;α) = P̂ (0, T ), T ≥ 0.

but this is not possible if our set of parameters, α, is finite dimensional. We have
seen that in the Ho-Lee model this was possible due to the fact that the involved
parameter Θ(t) was infinite dimensional. The Hull-White model combines this
fact with the mean reverting property we have in the Vasicek model. By this
reason it is quite popular. The dynamics we consider is

dr(t) = (Θ(t)− ar(t))dt + σdWt, a, σ > 0.

Then, we have

B(t, T ) =
1
a
(1− e−a(T−t)),

and

A(t, T ) =
σ2

2

∫ T

t

B2ds−
∫ T

t

Θ(s)Bds

then we have a theoretical forward rates given by

f(0, T ) = −∂T log P (0, T ) = ∂T (B(0, T )r(0)−A(0, T ))

= ∂T (B(0, T )) r(0)− σ2

∫ T

0

B(s, T )∂T B(s, T )ds +
∫ T

0

Θ(s)∂T B(s, T )ds

= e−aT r(0)− σ2

∫ T

0

1
a
(1− e−a(T−s))e−a(T−s)ds +

∫ T

0

Θ(s)e−a(T−s)ds

= e−aT r(0)− σ2

2a2
(1− e−aT )2 +

∫ T

0

Θ(s)e−a(T−s)ds.

We have to solve f(0, T ) = f̂(0, T ). By differentiating with respect to T and we
call g(T ) := e−aT r(0)− σ2

2a2 (1− e−aT )2, we have

∂T f(0, T ) = ∂T g(T ) + Θ(T )− a

∫ T

0

Θ(s)e−a(T−s)ds

= ∂T g(T ) + Θ(T )− a(f(0, T )− g(T )),

so
Θ(T ) = ∂T f(0, T )− ∂T g(T ) + a(f(0, T )− g(T )).

We can then to capture f̂(0, T ) doing

Θ(T ) = ∂T f̂(0, T )− ∂T g(T ) + a(f̂(0, T )− g(T )).
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Exercise 2.4.2 Let (W1,W2, ...,Wn) n be independent standard Brownian mo-
tions and let Xi, i = 1, ..., n, be Ornstein-Uhlenbeck processes solving

dXi(t) = −aXi(t)dt + σdWi(t), i = 1, ..., n.

Consider the process

r(t) := X2
1 (t) + ... + X2

n(t).

Show that

dr(t) = (nσ2 − 2ar(t))dt + 2σ
√

r(t))dW (t)

where W is a standard Brownian motion.

2.5 Forward rate models

As we have seen one drawback of the short rate models is their difficulty in
capturing the term structure observed at initial time. An alternative is to
model the forward rates f(t, T ) and to use the relation r(t) = f(t, t), this is the
so-called éste es el enfoque de Heath-Jarrow-Morton (HJM) approach. We have
that

P (t, T ) = exp{−
∫ T

t

f(t, s)ds},

so f(t, s) represent the instantaneous rates (at s) anticipated by the market at
t. Suppose that under a risk neutral probability P ∗

df(t, T ) = α(t, T )dt + σ(t, T )dWt , T ≥ 0 (2.8)

with

f(0, T ) = f̂(0, T ).

We shall try to deduce the evolution of P (t, T ) from that of f(t, T ). If we write
Xt = −

∫ T

t
f(t, s)ds, we have P (t, T ) = eXt and from the equation (2.8) we

obtain

dXt = f(t, t)dt−
∫ T

t

df(t, s)ds =

= f(t, t)dt−
∫ T

t

α(t, s)dtds−
∫ T

t

σ(t, s)dWtds

= (f(t, t)−
∫ T

t

α(t, s)ds)dt− (
∫ T

t

σ(t, s)ds)dWt,
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where we have applied a stochasticFubini theorem. Then

dP (t, T )
P (t, T )

= dXt +
1
2
d〈X〉t

= (f(t, t)−
∫ T

t

α(t, s)ds)dt− (
∫ T

t

σ(t, s)ds)dWt

+
1
2
(
∫ T

t

σ(t, s)ds)2dt

= (f(t, t)−
∫ T

t

α(t, s)ds +
1
2
(
∫ T

t

σ(t, s)ds)2)dt

− (
∫ T

t

σ(t, s)ds)dWt.

And if we compare with that obtained in (2.2.1) and we have into account that
f(t, t) = r(t) it turns out that

−
∫ T

t

α(t, s)ds +
1
2
(
∫ T

t

σ(t, s)ds)2 = 0,

therefore

α(t, T ) = (
∫ T

t

σ(t, s)ds)σ(t, T )

and we can write the evolution equation (2.8) as

df(t, T ) = σ(t, T )(
∫ T

t

σ(t, s)ds)dt + σ(t, T )dWt.

Note that all depends on σ(t, s), that is on certain volatility. We have eliminated
the drift α(t, T ), as in certain way happened for the call prices in the Black-
Scholes model.

Then the algorithm to use the HJM approach is

1. Specify the volatilities σ(t, s)

2. Integrate df(t, T ) = σ(t, T )(
∫ T

t
σ(t, s)ds)dt + σ(t, T )dWt with the initial

condition f(0, T ) = f̂(0, T ).

3. Calculate the prices of the bonds from the formula P (t, T ) = exp{−
∫ T

t
f(t, s)ds}.

4. To use the previous results to calculate contingent claim prices.

Example 2.5.1 Suppose that σ(t, T ) is constant that we denote σ. Then

df(t, T ) = σ2(T − t)dt + σdWt,

so
f(t, T ) = f̂(0, T ) + σ2t(T − t

2
) + σWt.
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In particular

r(t) = f(t, t) = f̂(0, t) +
σ2t2

2
+ σWt

and therefore

dr(t) = (
∂f̂(0, T )

∂T
|T=t + σ2t)dt + σdWt,

but this is the Ho-Lee adjusted to the initial structure of the forward rates.

Example 2.5.2 A usual assumption consist of assuming that the forward rates
with greater maturity time has a lower fluctuation than that with a lower matu-
rity time. To capture this feature we can take, for instance, σ(t, T ) = σe−b(T−t),
b > 0. We have then∫ T

t

σ(t, s)ds =
∫ T

t

e−b(s−t)ds = −σ

b

(
e−b(T−t) − 1

)
,

and

df(t, T ) = −σ2

b
e−b(T−t)(e−b(T−t) − 1)dt + σe−b(T−t)dWt.

Therefore

f(t, T ) = f(0, T ) +
σ2e−2bT

2b2

(
1− e2bt

)
− σ2e−bT

b2
(1− ebt)

+ σe−bT

∫ t

0

ebsdWs.

In particular

r(t) = f(0, t) +
σ2

2b2

(
e−2bt − 1

)
− σ2

b2
(e−bt − 1)

+ σe−bt

∫ t

0

ebsdWs,

that corresponds to the Hull-White model considered above.

Remark 2.5.1 A sufficient condition to guarantee the equality
∫ T

0
σ(t, s)dWtds =∫ T

0
σ(t, s)ds)dWt es

∫ T

0
E(σ2(t, s))dsdt < ∞, see Lamberton and Lapeyre (1996)

page 138.

2.5.1 The Musiela equation

Define
r(t, x) := f(t, t + x)

and assume a model HJM under the neutral probability, in such a way that

df(t, T ) = σ(t, T )(
∫ T

t

σ(t, s)ds)dt + σ(t, T )dW̃t,

We have the following proposition,
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Proposition 2.5.1

dr(t, x) = { ∂

∂x
r(t, x) + σ0(t, x)(

∫ x

0

σ0(t, s)ds}dt + σ0(t, x)dW̃t

where
σ0(t, x) := σ(t, t + x)

Proof.

dr(t, x) = df(t, T )|T=t+x +
∂

∂T
f(t, T )|T=t+xdt

= σ(t, t + x)(
∫ t+x

t

σ(t, s)ds)dt + σ(t, t + x)dW̃t

+
∂

∂x
r(t, x)dt

Note that the Musiela equation is a stochastic partial differential equation.

2.6 Change of numeraire. The forward measure

We are going to study a procedure that is useful when we want to calculate prices
of options in a bond market. It has to do with the use of the so-called forward
measure. Let P ∗ the neutral probability. By definition P ∗ is a probability such
that (

P̃ (t, T )
)

0≤t≤T

are martingales, for all values of T . Fix a maturity time T and consider the
values of bonds with another maturity time T̃ > T in terms of the bond with
maturity T :

UT,T̃ (t) :=
P (t, T̃ )
P (t, T )

.

That is instead of taking as reference (numeraire) the value of a unit of money
in the bank account, we take the value of a bond with maturity T . Let PT

ne a probability with respect to which
(
UT,T̃ (t)

)
0≤t≤T

are martingales for all

T̃ > T . We call PT the forward measure. Define a probability at FT , PT such
that

dPT

dP ∗ =
e−

R T
0 rsds

P (0, T )
.

We can see that it is a forward measure.

Proposition 2.6.1 If (Vt)0≤t≤T is the value of a self-financing portfolio then
its discounted value using as reference (numeraire) the bond value P (t, T ), is a
PT -martingale. That is

Vt

P (t, T )
, 0 ≤ t ≤ T,
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is a PT -martingale.

Proof. Define

Zt := EP∗(
e−

R T
0 rsds

P (0, T )
|Ft),

then

Zt =
P̃ (t, T )
P (0, T )

.

By the Bayes (1.8) rule

EP T (
VT

P (T, T )
|Ft) = EP T (VT |Ft) =

EP∗(VT ZT |Ft)
Zt

=
EP∗(ṼT |Ft)
P (0, T )Zt

=
Ṽt

P̃ (t, T )

=
Vt

P (t, T )
.

Corollary 2.6.1 The price of a replicable T -payoff Y is given by

P (t, T )EP T (Y |Ft).

Proof. Let (Vt)0≤t≤T the self-financing portfolio that replicates Y , then
VT = Y and therefore

EP T (Y |Ft) =
Vt

P (t, T )
.

Proposition 2.6.2 Suppose that

∂

∂T
EP∗(e−

R T
t

rsds|Ft) = EP∗(
∂

∂T

(
e−

R T
t

rsds
)
|Ft),

then
EP T (rT |Ft) = f(t, T ).

Proof.

f(t, T ) = − 1
P (t, T )

∂P (t, T )
∂T

= − 1
P (t, T )

∂

∂T
EP∗(e−

R T
t

rsds|Ft)

= − 1
P (t, T )

EP∗(
∂

∂T

(
e−

R T
t

rsds
)
|Ft) =

1
P (t, T )

EP∗(rT e−
R T

t
rsds|Ft)

= EP T (rT |Ft).
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Let (St)0≤t≤T an asset strictly positive and denote by P (S) the probability
(in FT ) that makes (

Vt

St

)
0≤t≤T

a martingale, where (Vt)0≤t≤T is a self-financing portfolio. We have a general
formula general for an option price.

Proposition 2.6.3 The price of a replicable T -payoff Y is given by

StEP (S)(
Y

ST
|Ft).

Proof. Let (Vt)0≤t≤T be the self-financing portfolio that replicates Y , then
VT = Y and therefore

EP (S)(
VT

ST
|Ft) =

Vt

St
.

Proposition 2.6.4 Let (St)0≤t≤T be an asset strictly positive, then the price
of a call option with maturity T of the asset S and strike K is given by

Π(t;S) = StP
(S)(ST ≥ K|Ft)−KP (t, T )PT (ST ≥ K|Ft).

Proof.

Π(t;S) = EP∗(e−
R T

t
rsds(ST −K)+|Ft)

= EP∗(e−
R T

t
rsds(ST −K)1{ST≥K}|Ft)

= EP∗(e−
R T

t
rsdsST 1{ST≥K}|Ft)−KEP∗(e−

R T
t

rsds1{ST≥K}|Ft)

= StP
(S)(ST ≥ K|Ft)−KP (t, T )PT (ST ≥ K|Ft),

with
dP (S)

dP ∗ =
e−

R T
0 rsdsST

S0
.

Suppose that S is another bond with maturity T̄ > T, then the option (with
maturity T ) on this bond has a price given by

Π(t;S) = P (t, T̄ )P T̄ (P (T, T̄ ) ≥ K|Ft))− P (t, T )PT (P (T, T̄ ) ≥ K|Ft))

= P (t, T̄ )P T̄ (
P (T, T )
P (T, T̄ )

≤ 1
K
|Ft)−KP (t, T )PT (

P (T, T̄ )
P (T, T )

≥ K|Ft).

Define,

U(t, T, T̄ ) :=
P (t, T )
P (t, T̄ )

.
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In the context of affine structures

U(t, T, T̄ ) =
P (t, T )
P (t, T̄ )

= exp{−A(t, T̄ ) + A(t, T ) + (B(t, T̄ )−B(t, T ))rt}

and with respect to P ∗

dU(t) = U(t)(...dt + (B(t, T̄ )−B(t, T ))σtdWt).

Then under P T̄ and PT we have

dU(t) = U(t)(B(t, T̄ )−B(t, T ))σtdW T̄
t ,

dU−1(t) = −U−1(t)(B(t, T̄ )−B(t, T ))σtdWT
t .

in such a way that

U(T ) =
P (t, T )
P (t, T̄ )

exp{−
∫ T

t

σT̄ ,T (s)dW T̄
s − 1

2

∫ T

t

σ2
T̄ ,T (s)ds},

U−1(T ) =
P (t, T̄ )
P (t, T )

exp{
∫ T

t

σT̄ ,T (s)dWT
s − 1

2

∫ T

t

σ2
T̄ ,T (s)ds}.

with
σT̄ ,T (t) = −(B(t, T̄ )−B(t, T ))σt.

Therefore, if σt is deterministic the law of log U(T ) conditional to Ft is Gaus-
siana with respect to PT and P T̄ , with variance

Σ2
t,T,T̄ :=

∫ T

t

σ2
T̄ ,T (s)ds,

Ley

 log U(T )− log P (t,T )
P (t,T̄ )

+ 1
2Σ2

t,T,T̄

Σt,T,T̄

|Ft

 ∼ N(0, 1) bajo P T̄

Ley

 log U−1(T )− log P (t,T̄ )
P (t,T ) + 1

2Σ2
t,T,T̄

Σt,T,T̄

|Ft

 ∼ N(0, 1) bajo PT

Note finally that

Π(t;S) = P (t, T̄ )P T̄ (
P (T, T )
P (T, T̄ )

≤ 1
K
|Ft)−KP (t, T )PT (

P (T, T̄ )
P (T, T )

≥ K|Ft)

(2.9)

= P (t, T̄ )P T̄ (U(T ) ≤ 1
K
|Ft)−KP (t, T )PT (U−1(T ) ≥ K|Ft)

= P (t, T̄ )P T̄ (log U(T ) ≤ − log K|Ft)−KP (t, T )PT (log U−1(T ) ≥ log K|Ft)
= P (t, T̄ )Φ(d+)−KP (t, T )Φ(d−),

with

d± =
log P (t,T̄ )

KP (t,T ) ±
1
2Σ2

t,T,T̄

Σt,T,T̄

.
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Example 2.6.1 In the Ho-Lee model

σT̄ ,T = −σ(T̄ − T ),

Σt,T,T̄ = σ(T̄ − T )
√

T − t.

Example 2.6.2 For the Vasicek model

σT̄ ,T =
σ

a
eat(e−aT̄ − e−aT ),

Σ2
t,T,T̄ =

σ2

2a3
(1− e−2(T−t))(1− e−(T̄−T ))2.

and the same for the Hull-White model!.

2.7 Market models

2.7.1 A market model for Swaptions

Consider a payer swpation with maturity T < T0, tenor structure T1, T2, ..., Tn,
and swap rate R. Its payoff is

(S(T )− Z(T ))+

con
S(T ) = P (T, T0)− P (T, Tn)

that is the value of the floating payments and

Z(T ) = Rδ

n∑
i=1

P (T, Ti)

the value of payments with fixed rate. We can take Z(t) as numeraire and the
price will be

Z(t)EP (Z)(
(S(T )− Z(T ))+

Z(T )
|Ft)) = Z(t)EP (Z)((

S(T )
Z(T )

− 1)+|Ft)).

Then, if we assume that under P , or P ∗ we have an evolution

d
(

S(t)
Z(t)

)
=

S(t)
Z(t)

(µdt + σdWt) ,

with σ constant, it turns out that, under P (Z)

d
(

S(t)
Z(t)

)
=

S(t)
Z(t)

σdWZ
t ,

so
S(T )
Z(T )

=
S(t)
Z(t)

exp

{∫ T

t

σdWZ
s − 1

2

∫ T

t

σ2ds

}
,
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and we obtain the Black-Scholes formula of a call with strike 1 and r = 0,
multiplied by Z(t):

Z(t)
(

S(t)
Z(t)

Φ(d+)− Φ(d−)
)

= S(t)Φ(d+)− Z(t)Φ(d−),

with

Φ(d±) =
log S(t)

Z(t) ±
1
2σ2(T − t)

σ
√

(T − t)
.

This formula is known as the Margrabe formula. Remember that the forward
swap rate was given by

R(t) =
P (t, T0)− P (t, Tn)

δ
∑n

i=1 P (t, Ti)
,

so
S(t)
Z(t)

=
P (t, T0)− P (t, Tn)
Rδ
∑n

i=1 P (t, Ti)
=

R(t)
R

.

Therefore the volatility σ corresponds to the volatility of e R(t). The previous
formula can be written more explicitly as

Swaptiont = (P (t, T0)− P (t, Tn))Φ(d+)−

(
Rδ

n∑
i=1

P (t, Ti)

)
Φ(d−),

where

Φ(d±) =
log (P (t, T0)− P (t, Tn))− log (Rδ

∑n
i=1 P (t, Ti))± σ2(T − t)

σ
√

(T − t)
.

2.7.2 A LIBOR market model

First of all note that

L(t;Ti−1, Ti) = −P (t, Ti)− P (t, Ti−1)
δP (t, Ti)

,

so

U(t, Ti−1, Ti) =
P (t, Ti−1)
P (t, Ti)

= 1 + δL(t;Ti−1, Ti)

and therefore
dU(t, Ti−1, Ti) = δdL(t;Ti−1, Ti),

then, respect to PTi , and if the structure is affine,

dL(t;Ti−1, Ti) =
1
δ
U(t, Ti−1, Ti)(B(t, Ti)−B(t, Ti−1))σtdWTi

t

=
1
δ
(1 + δL(t;Ti−1, Ti))(B(t, Ti)−B(t, Ti−1))σtdWTi

t .
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Consequently the structure of LIBOR is established . Another way is to fix a
model for the LIBORs, but then we have to check the consistency and if the
whole model is free of arbitrage. One way is that the whole mode implies a model
for forward rates free of arbitrage. It can be seen, by a backward induction, that
it is possible to build a LIBOR model such that

dL(t;Ti−1, Ti) = L(t;Ti−1, Ti)λ(t, Ti−1, Ti)dWTi
t , i = 1, ..., n

with initial conditions

L(0;Ti−1, Ti) = −P (0, Ti)− P (0, Ti−1)
δP (0, Ti)

, i = 1, ..., n.

In particular, if we take λ(t, Ti−1, Ti) deterministic we have that L(t;Ti−1, Ti)
is lognormal (LLM). This model is very popular.

Let P (t, Tn) fix as numeraire, then

U(t, Ti, Tn) =
P (t, Ti)
P (t, Tn)

,

are PTn -martingales for i = 0, ..., n− 1 and since

dU(t, Ti, Tn) = δdL(t;Ti, Tn),

in turns out that

dL(t;Ti, Tn) = L(t;Ti, Tn)λn
i (t)dWTn .

We have arbitrariness choosing λn
i (t). Fix λn

n−1(t) = λ(t, Tn−1, Tn) and consider
now the market when t moves between 0 and Tn−1, take P (t, Tn−1) as reference,
we have that

U(t, Ti, Tn−1) =
P (t, Ti)

P (t, Tn−1)
, i = 0, ..., n− 2,

are PTn−1-martingales, but

U(t, Ti, Tn−1) =
P (t, Ti)

P (t, Tn−1)
=

P (t,Ti)
P (t,Tn)

P (t,Tn−1)
P (t,Tn)

=
U(t, Ti, Tn)

U(t, Tn−1, Tn)
,

therefore we can calculate the dynamics in terms of WTn . For simplicity in the
notation write

dU(t, Ti, Tn) = αdWTn
t , dU(t, Tn−1, Tn) = βdWTn

t
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dU(t, Ti, Tn−1) =
1

U(t, Tn−1, Tn)
dU(t, Ti, Tn) + U(t, Ti, Tn)d

1
U(t, Tn−1, Tn)

+ d〈U(·, Ti, Tn),
1

U(·, Tn−1, Tn)
〉t

=
α

U(t, Tn−1, Tn)
dWTn

t − U(t, Ti, Tn)β
U(t, Tn−1, Tn)2

dWTn
t

+
U(t, Ti, Tn)β2

U(t, Tn−1, Tn)3
dt

− αβ

U(t, Tn−1, Tn)2
dt

=
αU(t, Tn−1, Tn)− βU(t, Ti, Tn)

U(t, Tn−1, Tn)

(
dWTn

t − β

U(t, Tn−1, Tn)
dt

)
= γn

i (t)
(

dWTn
t − δL(t;Tn−1, Tn)λ(t;Tn−1, Tn)

1 + δL(t;Tn−1, Tn)
dt

)
,

for certain process, γn
i , then , we can find a forward measure PTn−1 respect to

which U(t, Ti, Tn−1), i = 1, ..., n− 2 are martingales, and we will have

dL(t;Ti, Tn−1) = L(t;Tn−2, Tn−1)λn−1
i (t)dWTn−1 .

Now fix λn−1
n−2(t) := λ(t, Tn−2, Tn−1) and so on. Finally we can fix the evolution

of all LIBOR and bonds in such a way that the market model is free of arbitrage.

2.7.3 A market model for caps

Proposition 2.7.1 In an LLM model the price of a cap (”in arrears”) with
swap rate K and tenor-structure Ti = T0 + iδ, i = 1, ..., n is given by

Π(t) =
n∑

i=1

δP (t, Ti)(L(t;Ti−1, Ti)Φ(di+)−KΦ(di−)),

where

di± =
log L(t;Ti−1,Ti)

K ± 1
2υ2

i (t)
υi(t)

,

with

υ2
i (t) =

∫ Ti−1

t

λ2(s, Ti−1, Ti)ds.

Proof.

Π(t) =
n∑

i=1

KδP (t, Ti)EP Ti ((L(Ti−1, Ti)−K)+|Ft) ,
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and under PTi ,

log L(Ti−1, Ti) = log L(Ti−1, Ti−1, Ti)

= log L(t, Ti−1, Ti) +
∫ Ti−1

t

λ(s, Ti−1, Ti)dWTi
s

− 1
2

∫ Ti−1

t

λ2(s, Ti−1, Ti)ds.

Remark 2.7.1 If λ2(s, Ti−1, Ti) = σ2
i , i = 1, .., n for certain constants, then

we have the so-called Black formula for caps. This market model is incompatible
with a model for swaps with constant volatility for the forward swap rate.

2.8 Miscelanea

2.8.1 Forwards and Futures

Definition 2.8.1 Let X be a payoff at T . A forward contract on X with de-
livering time T is a contract established at t < T that specifies a forward price
f(t;T ) that will be paid at T for receiving X. The price f(t;T ) is fixed in
such a way that the contract price at t is zero.

Proposition 2.8.1

f(t;T ) =
1

P (t, T )
EP∗(X exp{−

∫ T

t

rsds}|Ft)

= EP T (X|Ft).

Definition 2.8.2 Let X a payoff at T . A contract of futures on X and deliv-
ering time T is a financial asset with the following properties

• There exist a future price F (t;T ) on X at each time t.

• At T the owner of the contract pays F (T ;T ) and receives X.

• For any arbitrary interval (s, t] the owner receives F (t;T )− F (s;T ).

• At each time the price of the contract is zero.

Proposition 2.8.2
F (t;T ) = EP∗(X|Ft).

Proof. Let Vt the value of a self-financing portfolio formed by a bank
account and a contract of futures

Vt = φ0
t e

R t
0 rsds + φ1

t · 0

= φ0
t e

R t
0 rsds
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but

dVt = rtφ
0
t e

R t
0 rsdsdt + φ1

t dF (t;T )

= rtVtdt + φ1
t dF (t;T ),

so
dṼt = e

R t
0 rsdsφ1

t dF (t;T ),

with F (T ;T ) = X and since Ṽ is a martingale with respect to P ∗ it turns out
that F (·;T ) is also a martingale and therefore

F (t;T ) = EP∗(F (T ;T )|Ft) = EP∗(X|Ft)

Corollary 2.8.1 Future prices and forward prices coincide if and only if inter-
est rates are deterministic.

2.8.2 Stock options

Suppose that bonds have a volatility σB(t, T ), d-dimensional, deterministic
and cadlag, that is, that under the risk neutral probability P ∗

dP (t, T ) = P (t, T )(...dt + σB(t, T ) · dWt)

and that there is a stock S such that under P ∗

dSt = St(rtdt + σS(t) · dWt),

where ‖σS(t)− σB(t, T )‖ > 0, σS(t) determinista and cadlag. Then the price
of a call option with strike K is given by

Ct = StΦ(d+)−KP (t, T )Φ(d−), (2.10)

with

d± =
log St

KP (t,T ) ±
1
2Σ2

t

Σt
,

where

Σ2
t =

∫ T

t

‖σS(u)− σB(u, T )‖2 du.

In fact, by the general formula we have seen above

Π(t;S) = StP
(S)(ST ≥ K|Ft)−KP (t, T )PT (ST ≥ K|Ft),

under P ∗

FS(t) :=
P (t, T )

St
=

P (0, T )
S0

exp{
∫ t

0

..du +
∫ t

0

(σS(u)− σB(u, T )) · dWu},



2.8. MISCELANEA 103

and under P (S)

dFS(t) = FS ||σS(u)− σB(u, T ))||dW (S)
u ,

where W (S) is a P (S)-Brownian motion. Analogously under PT

FB(t) :=
St

P (t, T )

dFB(t) = −FB ||σS(u)− σB(u, T ))||dWT
u ,

with WT Brownian motion under PT . And doing similar calculations to that
in (2.9) we obtain (2.10).
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