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Abstract: NLRP3 inflammasome is one of the multimeric protein complexes of the nucleotide-binding
domain, leucine-rich repeat (NLR)-containing pyrin and HIN domain family (PYHIN). When ac-
tivated, NLRP3 inflammasome triggers the release of pro-inflammatory interleukins (IL)-1β and
IL-18, an essential step in innate immune response; however, defective checkpoints in inflamma-
some activation may lead to autoimmune, autoinflammatory, and metabolic disorders. Among
the consequences of NLRP3 inflammasome activation is systemic chronic low-grade inflammation,
a cardinal feature of obesity and insulin resistance. Understanding the mechanisms involved in
the regulation of NLRP3 inflammasome in adipose tissue may help in the development of specific
inhibitors for the treatment and prevention of obesity-mediated metabolic diseases. In this narrative
review, the current understanding of NLRP3 inflammasome activation and regulation is highlighted,
including its putative roles in adipose tissue dysfunction and insulin resistance. Specific inhibitors
of NLRP3 inflammasome activation which can potentially be used to treat metabolic disorders are
also discussed.

Keywords: NLRP3 inflammasome; metabolic stress; insulin resistance; diabetes; obesity

1. Introduction

The innate immune system, especially macrophages, plays a central role in the host’s
defense against infections and damaged tissues. The activation of downstream signaling
cascades and immune responses initiated in immune cells such as macrophage and den-
dritic cells, triggers infection by the recognition of germline-encoded pattern recognition
receptors (PRR), which recognize pathogen- and danger-associated molecular patterns
(PAMPs and DAMPs) [1]. PAMPs are derived from microorganisms, such as bacterial
endotoxin, and DAMPs are derived from host cells, including tumor cells, dead cells, and
products released in response to signals [2]. DAMPs related to metabolic disorders could
initiate a pro-inflammatory response by using a wide range of PRRs. They are divided
into two main groups: membrane-bound PRRs, such as toll-like receptors (TLRs) and
C-type lectin receptors (CLRs), and cytoplasmic PRRs, such as RIG-I-like receptors (RLRs).
Inflammasomes are cytoplasmic pattern recognition receptors which are present in several
cell types and have been implicated in recognizing endogenous danger signals, leading to
the development of inflammation [3]. Inflammasomes, first discovered in 2002 [4], are large
multiprotein complexes stimulated by several factors that lead to resolution of infection
but can also participate in the pathology of cancer, inflammatory disorders, autoimmune
disorders, and infectious diseases [5,6]. Of particular importance is NLRP3 (pyrin domain
containing 3) inflammasome from nucleotide-binding oligomerization domain-like recep-
tor (NLR) family which consists of NLRP3, apoptosis-related speck-like protein (ASC), and
caspase-1. The other lesser known members of NLR family are NLRP1, NLRP2, NLRP4
to NLRP14 which comprises of 22 NLR’s known till date including NLRP3 [7]. NLRs
are classified and named according to their domain structure. NLR proteins have three
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conserved domains: a central nucleotide-binding and oligomerization domain (NACHT),
a C-terminal leucine-rich repeat domain (LRR), and an N-terminal effector domain as
N-terminal pyrin (PYD) forming NLRP subgroup. In ASC, PYD associates with a large N-
terminal protein-protein interaction motif known as caspase activation recruitment domain
(CARD), crucial for the formation of inflammasomes [8]. The assembling of NLRP3 inflam-
masome leads to the activation of caspase-1-mediated inflammatory responses, including
cleavage secretion of the proinflammatory cytokines-IL-1β and IL-18 and the initiation of
an inflammatory form of cell death referred to as pyroptosis [9].

Metabolic syndrome (MetS) is a state of steady, systemic low-grade inflammation, and
adipose tissue plays an important role in its development [10]. Classically, inflammation
occurs as a result of immune cells acting on the invading pathogens. However, due to
the development of age-related chronic diseases such as obesity in adulthood, immune
cells may alter many pathways, forming an interface termed ”immunometabolism” and
resulting in local or systemic inflammation which disrupts homeostasis [11,12]. White
adipose tissue (WAT), normally an active endocrine organ, regulates systemic metabolism
by secreting various cell-signaling proteins called adipokines [13]. This secretome of WAT,
in response to excessive caloric intake in obesity, is altered greatly [14], activates adipose
tissue macrophages (ATM) and shifts from anti-inflammatory M2 to pro-inflammatory M1
type [15]. Interaction between these invading ATM’s and metabolic cells (i.e., adipocytes)
promotes metabolic stress. Metabolic stress and resulting DAMP’s engage PRRs of the in-
nate immune system, thus triggering pro-inflammatory and stress pathways in the adipose
tissue through the activation of cytosolic oligomer complexes called NLRP3 inflamma-
somes [16].

Obesity-induced inflammation may lead to disorders in lipid and glucose metabolic
pathways, such as insulin resistance, diabetes, and atherosclerosis [17,18]. The produc-
tion of pro-inflammatory cytokines, including interleukin 1β (IL-1β) and interleukin 18
(IL-18), is mediated by the activation of cytosolic multiprotein oligomers of the innate
immune system called inflammasomes [19–21], classified according to the specific scaffold
domains with similar or different biological effects. Among these inflammasomes, the
most intensively studied is NLRP3 inflammasome. Its activation is induced by multiple
stimuli leading to a cascade of pro-inflammatory processes which if unchecked may lead
to systemic inflammation. This obesity-mediated inflammation through NLRP3 inflamma-
some results in a further deterioration of metabolic control leading to metabolic disorders
such as non-alcoholic fatty liver disease (NAFLD) [22]. Conversely, its inactivation by
inhibitors significantly alleviates metabolic disorders [23]. This narrative review focuses on
NLRP3 inflammasome activation as the mediator of systemic inflammation in obesity and
metabolic disorder and factors that regulate this activation in adipose tissue. Understand-
ing the promoters and inhibitors involved in this inflammation activation pathway may
help to devise preventive strategies for obesity-mediated inflammation-driven metabolic
diseases.

2. NLRP3 Inflammasome Activation in Adipose Tissue

In ATM, NLRP3 inflammasome activation is regulated at both the transcriptional and
post-translational levels. Over the past 10 years, a two-step activation model of priming
and activation of NLRP3 inflammasome has been established [24]. The first signal in
inflammasome activation involves the priming signal, which is induced by endogenous
cytokines or microbial components, such as lipopolysaccharide (LPS), leading to NF-κB-
mediated upregulation of NLRP3 protein, pro-IL-1β and pro-IL-18 [25]. Caspase-8 and
FAS-mediated death domain (FADD) protein, and NOD1/2, are involved in the priming
step [26]. The second signal is the inflammasome formation triggered by specific stimuli:
PAMPs and DAMPs. When cells are stimulated, NLRP3 assembles by the NACHT domain
to provide a scaffold for ASC oligomerization by the interaction between PYDs, and
the oligomerized ASC interacts with caspase-1 via CARD homophilic interaction. The
activation of NLRP3 inflammasome leads to procaspase-1 self-cleavage, generating the
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active caspase-1, which in-turn mediates the secretion of pro-inflammatory signals, IL-1β
and IL-18. Active caspase-1 also induces Gasdermin-D-mediated plasma-membrane pore
formation, osmotic swelling and pyroptosis, leading to a cascade of inflammation [27].
This classical NLRP3 inflammasome activation occurs in invading ATM’s resulting from
an obesity-mediated alteration in adipose tissue microenvironment. Figure 1 summarizes
the NLRP3 inflammasome activation in adipose tissue and its role in the maturation of
pro-inflammatory signals IL-1β and IL-18.
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The CARD domain of ASC allows interaction with pro-caspase-1, which matures into caspase-1 upon NLRP3 inflammasome activation and oligomerization. (b): NLRP3 
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Figure 1. Classical NLRP3-inflammasome activation mediated maturation of pro-inflammatory signals in adipose tissue.
(a): Individual components of NLRP3 inflammasome. It consists of NLRP3 protein with leucine-rich repeats (LRR),
globular NACHT domain, and homologous PYD domain, which interact with PYD of adapter ASC. The CARD domain
of ASC allows interaction with pro-caspase-1, which matures into caspase-1 upon NLRP3 inflammasome activation and
oligomerization. (b): NLRP3 inflammasome activation in adipocyte invading ATM’s requires two signals. The first signal
involves the priming signal, which is induced by endogenous cytokines or microbial components, such as lipopolysaccharide
(LPS), leading to NF-κB-mediated upregulation of NLRP3 and pro-IL-1β. The second signal triggered by specific stimuli,
PAMPs, and DAMPs, results in stresses, such as K+ efflux, mitochondrial dysfunction, and lysosomal disruption, which
stimulates NLRP3 inflammasome formation. The activation of the NLRP3 inflammasome leads to procaspase-1 self-cleavage,
generating active caspase-1, which in turn mediates IL-1β and IL-18 secretion and pyroptosis.

2.1. Signal 1: Priming the NLRP3 Inflammasome

Before NLRP3 assembly and inflammasome activation, a priming stimulus by TLRs,
NLRs, and cytokine receptors is required for NF-κB-mediated expression of NLRP3 protein,
pro-IL-1β and pro-IL-18. Upon TLR binding by its agonists, several pathways involved
in NLRP3 priming are successively activated over time, including the downstream tran-
scription and activation of these receptors, which depend on several other molecules. The
first pathway, referred to as transcriptional priming or late priming, relies on de novo
protein synthesis, as several hours (>3 h) are required before actual NLRP3 assembly and
activation happens [25]. The TIR domain-containing adapter-inducing interferon-β (TRIF),
myeloid differentiation primary response 88 (MyD88), Fas-associated protein with death
domain (FADD), caspase-8, and reactive oxygen species (ROS) participates in the NLRP3
priming. FADD is involved in the NF-κB signaling pathway and inhibits NF-κB activation
by promoting apoptosis. Caspase-8 has a role in NF-κB activation through interaction with
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the inhibitor of nuclear factor kappa B (IKK) complex, which stimulates the NF-κB tran-
scription and translocation [28]. In the resting state, the expression of NLRP3 and pro-IL-1β
is low; both are highly transcriptionally upregulated downstream of TLR activation.

A second pathway was discovered recently, referred to as an early and intermediate
priming pathway where NLRP3 basal expression levels are sufficient for inflammasome
activation. This transcriptional-independent priming mechanism is effective 10 min to 1 h
after TLR binding relies on mitochondrial ROS (mtROS) and can even bypass the require-
ment for TLR agonists [29,30]. This priming signal is mediated by signaling molecules
downstream of TLRs and MyD88/IL-1 receptor-associated kinase 1 (IRAK-1). Phospho-
rylation of IPKA-1 leads to inflammasome activation, which is independent of the IKK
complex [29].

2.2. Signal 2: Activating the NLRP3 Inflammasome

Various stimuli can activate NLRP3, including extracellular ATP, pore-forming toxins,
heme particulate matter, and pathogen-associated RNA. NLRP3 cannot physically inter-
act with its activators due to chemical and structural diversity. NLRP3 inflammasome
activation signals can be diverse and depend on the cellular stresses that they cause.

2.2.1. Conditions Causing Permeability to Ions

Activators, including pore-forming bacterial toxins like nigericin, ATP, particulate
molecules, and crystals such as asbestos, silica, and uric acid, are known to induce cell
permeability to ions, resulting in K+ efflux and Ca2+ signaling, which have been identified
as critical events in NLRP3 inflammasome activation [31].

K+ Efflux

The role of K+ efflux in IL-1β maturation was first reported in 1994 [32]. A low intra-
cellular K+ concentration triggers NLRP3 inflammasome activation [33]. Upon exposure
to extracellular ATP, particulates, crystals, nigericin, etc., a decrease in cytosolic K+ is
observed, and experimental modulation of extracellular K+ concentration correlates with
inflammasome activation, suggesting its key role [34]. The mechanistic link, however,
remains poorly understood with regard to conformational changes in NLRP3 oligomers
induced by low cytosolic K+ concentration [35].

Ca2+ Signaling

The requirement of Ca2+ signaling in NLRP3 activation has been suggested by studies
that show that the inhibition of Ca2+ signaling blocks NLRP3 inflammasome activation [36].
The main organelle for Ca2+ storage is ER, and it plays an important role in the maintenance
of Ca2+ concentration [37]. Pharmacological inhibition of Ca2+ release channels on ER
called inositol 1, 4, 5-triphosphate receptor (IP3R) or phospholipase C (PLC) attenuates Ca2+

mobilization and NLRP3 activation. The activation of IP3R is triggered by IP3, which in
turn is a product of PLC-mediated phosphatidylinositol 4,5-bisphosphate (PIP2) cleavage,
and this Ca2+ flux-associated NLRP3 activation also depends on various inflammatory
stimuli. Apart from ER-mediated Ca2+ influx, lysosomal disruption following particulate
phagocytosis may also contribute to a rise in cytosolic Ca2+ levels [38]. The mechanistic link
between Ca2+ mobilization and NLRP3 activation is still unclear; however, production of
mtROS due to mitochondrial damage by Ca2+ overload has been postulated as a trigger [39].

Na+ Influx and Cl– Efflux

Some studies have postulated the role of Na+ influx [40] and intracellular Ca-efflux [41]
in NLRP3 inflammasome activation. Na+ overload promotes water influx and cellular
swelling leading to decreased K+ concentration and NLRP3 activation. Furthermore,
inhibition of Cl− efflux through volume-regulated anion channel (VRAC) prevents inflam-
masome activation, whereas the enrichment of anion channels called chloride intracellular
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channel (CLIC) in plasma membrane promotes Cl− efflux and subsequent inflammasome
activation [42].

2.2.2. Reactive Oxygen Species (ROS) and Mitochondrial Dysfunction

One of the first identified stimuli of NLRP3 activation is reactive oxygen species (ROS),
especially from mitochondria (mtROS) [43,44]. Agonists that cause mitochondrial dys-
function and ROS production increase NLRP3 inflammasome activation, and conversely,
inhibitors preventing ROS production mitigate inflammasome activation [45]. Other stud-
ies have shown that NADPH oxidase 4 (NOX4) regulating carnitine palmitoyltransferase
1A (CPT1A) participates in increased fatty acid oxidation, which leads to NLRP3 inflamma-
some activation [46]. The precise role of ROS and the mechanism through which it activates
the oligomerization of NLRP3 is not completely understood. However, some studies sug-
gest a newly identified component of NLRP3 inflammasome called NIMA-related kinase
7 (NEK7), which can directly bind to LRR domain of NLRP3 and acts as a sensor of ROS
needed for NLRP3 inflammasome assembly [47]. Other studies suggest a role of ROS in
NLRP3 protein expression at the priming stage [25]. Mitochondrial has also been associated
with the activation of NLRP3 inflammasome [45]. Studies also show that cardiolipin, a
mitochondrion-specific phospholipid, binds to the LRR domain of NLRP3 and stimulates
its assembly and activation [48]. Furthermore, some other mitochondrial molecules, in-
cluding mitochondrial antiviral-signaling protein (MAVS) and mitofusin 2, have been
implicated with NLRP3; however, the exact role remains to be determined [49,50].

2.2.3. Lysosomal Damage

Several particulate alum, silica, asbestos, amyloid-β, cholesterol crystals, calcium
crystals, etc. stimulate the NLRP3 inflammasome activation in macrophages through
damage in lysosomes after phagocytosis, resulting in the release of lysosomal contents
into the cytosol. Lysosomal contents, such as cathepsin B, have a role in inflammasome
activation at priming (pro-IL-1β synthesis) and inflammasome assembly stage [51]. The
mechanism of particulate-induced lysosomal rupture and inflammasome activation is still
unclear; but some studies suggest that cytosolic release of cathepsins triggers K+ efflux
which is required for NLRP3 inflammasome activation [34].

2.3. Post-Translational Modifications of NLRP3 and Associated Proteins as Regulators of
NLRP3-Inflammasome Activation

Inflammasomes directly recognize the signal for activation through their sensors
and/or indirectly by sensing the cellular environment, as discussed earlier. In addition,
several post-translational modifications (PTM), such as phosphorylation, ubiquitination,
alkylation, and s-nitrosylation, in NLRP3 and associated proteins play a critical role in the
NLRP3 inflammasome activation. The regulation of NLRP3 inflammasome is important to
prevent the detrimental effects of the uncontrolled activation, as in inflammatory diseases
like metabolic syndrome. Table 1 summarizes different PTMs associated with NLRP3
inflammasome activation.
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Table 1. Regulation of NLRP3-inflammasome activation through post-translational modification of NLRP3 and associated proteins.

Sl# PTM Protein Modification Site Regulatory Enzyme Role in Regulation of NLRP3 Inflammasome Ref.

1

Phosphorylation NLRP3

Y861 (LRR domain)
Protein tyrosine

phosphatase non-receptor
22 (PTPN22)

Dephosphorylation at Typ861 residue leads to efficient NLRP3
inflammasome activation and Il-1β secretion. • [52]

2 Ser291 or Ser295
(NACHT domain) Protein Kinase A (PKA)

Cholesterol catabolism leads to an increase in intracellular cAMP
levels, activating PKA, which phosphorylates NACHT domain at

Ser291 or Ser295 site, leading to NLRP3 degradation and inhibiting
inflammasome activation. •

[53,54]

3 Ser5 (PYD domain) Protein Phosphatase
2A (PP2A)

Dephosphorylation of Ser5 site at the PYD domain of NLRP3
protein by PP2A promotes NLRP3-ASC interaction, which is

required for inflammasome assembly. •
[55]

4 Ser194 (NACHT
domain)

Jun N-Terminal
Kinase (JNK)

TLR ligands phosphorylate the Ser194 residue in the NACHT
domain of NLRP3 protein in a JNK1-dependent manner to facilitate

inflammasome assembly. •
[56]

5 Ser295 (NACHT
domain) Protein Kinase D (PKD)

Activated PKD phosphorylates the Ser293 residue in the NACHT
domain, promoting its release from mitochondria-associated

membranes (MAMs) to the cytoplasm, thereby facilitating
inflammasome assembly and maturation. •

[57]

6

Ubiquitination NLRP3

LRR domain at an
unknown site

BRCA1/BRCA2-containing
complex 3 (BRCC3)

LPS stimulation induces NLRP3 deubiquitination at an unknown
site of the LRR domain in a BRCC3-mediated manner to

promote activation. •
[58]

7 Lys689 (LRR domain) F-Box L2 (FBXL2) FBXL2, a ubiquitin E3 ligase, interacts with NLRP3 protein at
lysine689 residue of the LRR domain, leading to its degradation. • [59]

8 PYD domain at an
unknown site

Tripartite motif-containing
protein31 (TRIM31)

TRIM31, a ubiquitin E3 ligase, promotes its K48-linked
ubiquitination at the PYD domain leading to proteosomal
degradation, and is a part of the feedback suppressor of

the inflammasome. •

[60]

9
NACHT and LRR

domains at unknown
sites

Membrane-associated
RING-CH-type finger
protein 7 (MARCH 7)

MARCH 7, another ubiquitin E3 ligase, promotes ubiquitination
and degradation of NLRP3 at both NACHT and LRR domains in
response to stimulation of dopamine D1 receptor (DRD1), leading

to NLRP3 inflammasome inhibition. •

[61]

10 NACHT domain at an
unknown site

Ariadne Homolog 2
(ARIH2)

ARIH2, another ubiquitin E3 ligase, induces K48 ubiquitination at
the NACHT domain of NLRP3 and acts as an endogenous negative

regulator of NLRP3 inflammasome activation. •
[62]

11 Unknown domain Pellino2 (PEL2)
Pellino2, an E3 ubiquitin ligase, facilitates the activation of

NLRP3-inflammasome by promoting the ubiquitination of NLRP3
at an unknown domain during the priming stage. •

[63]
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Table 1. Cont.

Sl# PTM Protein Modification Site Regulatory Enzyme Role in Regulation of NLRP3 Inflammasome Ref.

12

ASC

CARD domain
Tumor necrosis factor

receptor-associated factor
3 (TRAF3)

Ubiquitination of CARD domain of ASC at K174 residue with K63
chains stabilizes it and promotes NLRP3-inflammasome assembly. • [64]

13 Unknown domain Ubiquitin Specific Peptidase
50 (USP50)

USP50 deubiquitinates Lys-63 at an unknown domain of ASC and
promotes speck formation and oligomerization, helping in

NLRP3-inflammasome activation. •
[65]

14 Unknown domain Linear Ubiquitin Assembly
Complex (LUBAC)

LUBAC has been implicated as a key driver of the nuclear
translocation of NF-kB and hence plays an important role in

NLRP3-inflammasome activation. •
[66]

15 Caspase-1 CARD domain
Cellular inhibitor of
Apoptosis proteins

2 (clAP-2)

clAP-2 mediates the polyubiquitination of the CARD domain of
caspase-1 leading to its activation. • [67]

16 Pro-IL-1β Unknown domain A20
A20, a ubiquitin modifying enzyme, is an NFkB inhibitor that

reduces pro-IL-1β K63 ubiquitination and maturation and hence
inhibits NLRP3-inflammasome activation. •

[68]

17 Alkylation Unknown domain
3,4-methylenedioxy-β-

nitrostyrene
(MNS)

NLRP3-alkylating agents like MNS reduce the ATP binding affinity
of NLRP3, which is required for NLRP3-ASC association and hence

negatively regulates NLRP3 inflammasome activation. •
[69]

18 S-Nitrosylation LRR domain Inducible nitric oxide
synthase (iNOS)

Expression of iNOS by prolonged exposure to LPS leads to the
production of NO. This leads to the S-nitrosylation of the LRR

region of NLRP3, preventing its oligomerization. •
[70]

• and • depict, respectively, the promotion and inhibition of inflammasome activation.
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2.4. NLRP3-Interacting Proteins and Their Effect on Inflammasome Activation

Multiple NLRP3-interacting proteins have been proposed to regulate the activity
of NLRP3 inflammasome. One such critical regulator is NEK7, which through several
pathways, such as ROS signaling, K+ efflux, and lysosomal destabilization, plays an
important role in NLRP3 inflammasome activation [71,72]. NEK7 is a multifunctional
kinase whose role in recent years has been demonstrated in mitotic spindle assembly,
mitochondrial regulation, intracellular protein transport, and DNA repair [73,74], which
indicates its involvement in the development of cancer [75]. Recent studies demonstrate
that the N-terminal region of NEK7 interacts with the C-terminal LLR and NOD region of
NLRP3 and helps in maintaining the integrity of the cellular microtubule network, which
is important in NLRP3 inflammasome activation [76]. A similar protein called microtubule-
affinity regulating kinase 4 (MARK4) binds directly to NLRP3, promotes its recruitment
to mitochondria, and drives it to the microtubule-organizing center. The importance
of MARK4 for inflammasome activation is established as disruption in NLRP3-MARK4
interaction or loss of MARK4, which alters NLRP3 inflammasome activation [77].

Heat shock protein 90 (HSP90), along with its co-chaperone protein called suppressor
of G-Two allele of skp1 (SGT1), binds with the LRR domain of NLRP3 and protects it
from degradation by both the proteasome and autophagy [78]. Several other HSP proteins,
such as HSP60, HSP70, and HSP27, have a strong impact (both positive and negative) on
inflammasome activation, which can be used to modulate the inflammation in metabolic
disorders [79]. The interaction of an oxidative sensor called Thioredoxin-Interacting Protein
(TXNIP), with NLRP3 in a ROS-induced mechanism, results in the subsequent activation
of NLRP3 inflammasome [80]. Similarly, Guanylate binding protein 5 (GBP5) appears to
promote NLRP3-mediated ASC oligomerization, specifically in live bacteria and soluble
priming agents, by binding to the pyrin domain of NLRP3 [81]. Another important protein,
which is activated by double-stranded RNA (dsRNA) upon viral infections, called RNA-
activated protein kinase (PKR), is involved in regulating the NF-kB pathway. However, its
role in NLRP3 inflammasome activation has been contradictory [82,83]. Additional studies
to understand the role of these NLRP3-interacting proteins in inflammasome assembly and
activation are needed.

3. NLRP3 Inflammasome in Obesity-Associated Metabolic Syndrome

Metabolic syndrome is a multifactorial pathophysiological disorder characterized
by inflammation in tissues such as adipose, liver, and pancreatic islets. Infiltration of
macrophages, dendritic cells, T cells, B cells, and NK cells in these tissues accompanied by
various cytokines and chemokines leads to low-grade tissue inflammation. Vandanmagsar
et al. reported a crucial role of NLRP3 in this obesity-induced inflammatory disorder
where metabolic DAMPs, such as excess ATP, glucose, ceramides, reactive oxygen species,
oxidized LDL, uric acid, as well as crystals of cholesterol and monosodium urate, leads
to NLRP3 and IL-1β mediated pro-inflammatory response. This results in insulin resis-
tance and metabolic syndrome [3]. Increased expression of NLRP3 and IL-1β have been
observed in visceral and subcutaneous deposits in obese individuals, which has also been
confirmed by genetic studies [84,85]. Besides, lower gene expressions of these two pro-
teins were observed in response to calorie restriction, exercise, and weight loss through
bariatric surgery [86,87], which indicates that obesity-induced metabolic syndrome and
NLRP3 inflammasome activity are closely associated. However, some studies suggest that
obesity-mediated inflammation and expression of adipose tissue inflammatory markers is
independent of NLRP3 inflammasome activation [88].

3.1. Metabolic Regulators of NLRP3 Inflammasome Activation

Cellular metabolites, carbohydrates, and lipids in their many forms can act as regu-
lators of the NLRP3 inflammasome. Research relating to the modulation of the NLRP3
inflammasome by diet and fatty acid-induced obesity will open new avenues for nutrient-
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sensitive metabolic inflammation. Figure 2 provides an overview of the metabolic regula-
tion of NLRP3 inflammasome activation.
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Figure 2. Metabolic regulation of NLRP3 inflammasome activation. (a): Regulation by glycolytic flux and amino acid
metabolism. As a part of homeostatic regulation, the priming signal activates nuclear factor erythroid 2-related factor
2 (Nrf2), which promotes heme-oxygenase-1 (HO-1), mitigating the effect of mtROS. Increased production of succinate
enhances the transcription of pro-IL1β through hypoxia-inducible factor (HIF-1α). Glycolytic flux promotes inflammasome
activation which is inhibited by 2-deoxy-D-glucose (2-DG). Glycine enhances Nrf2-mediated mitigation of inflammasome
activity. Glutamine and uric acid enhance it through mtROS. (b): Regulation by adipokines and lipid metabolism. The
activity of fatty acid synthase (FASN) promotes priming, while omega-3 fatty acid inhibits inflammasome assembly.
Saturated fatty acids promote lysosomal disruption and ER stress, while monounsaturated fatty acids promote AMP-
activated protein kinase, which in turn inhibits mtROS production. Cholesterol crystals promote inflammasome activation
through lysosomal disruption. Similarly, carnitine palmitoyl-transferase 1A (CPT1A) promotes inflammasome activation,
and β-hydroxybutyrate inhibits it by suppressing K+ efflux. Adiponectin acts as an initiator of AMPK-autophagy inhibition
of mtROS and K+ efflux, while leptin enhances NLRP3 inflammasome activation. Green lines depict the promotion of
inflammasome activation, while red lines depict inhibition.

3.1.1. Lipids

Intake of saturated fatty acids (SFA’s) such as palmitic acid, is strongly associated with
obesity and has been associated with insulin resistance and inflammatory disorder in hu-
mans [89]. Palmitic acid, like other SFA’s, inactivates AMPK, which impairs autophagy, and
induces mtROS production, and in turn leads to activation of the NLRP3 inflammasome
and IL-1β mediated insulin resistance [46]. Additionally, crystalline palmitic acid induces
lysosomal membrane rupture in macrophages and elicits ER stress, which contributes to
inflammasome activation [90]. In contrast, oleic acid, an unsaturated fatty acid, inhibits
the effects of palmitic acid and helps in reducing NLRP3 inflammasome activation by
reducing ER stress and promoting AMPK activation [91]. Similarly, long-chain polyunsat-
urated fatty acids (PUFAs), such as omega-3 FAs, inhibits caspase-1 activation through
G-protein receptor 120 (GPR120)-mediated β-arrestin 2 bindings of NLRP3 blocking NLRP3
inflammasome assembly and activation [92]. Moreover, adipocytes under stress release
lysophosphatidylcholine, which interacts with GPR132 and triggers diverse intracellular
events needed for the full NLRP3 inflammasome activation [93]. Cholesterol, another type
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of lipid, has also been implicated in the disruption of the lysosomal membrane and NLRP3
inflammasome activation [94]. Oxidized low-density lipoprotein (oxLDL), a cholesterol
carrier that promotes atherosclerosis, was shown to activate NF-κB and thus promote
upregulation of NLRP3 [95]. Its activity is suppressed by fibronectin domain-containing
protein 5 (FNDC5) by blocking NF-κB activation in an AMPK-dependent manner [96].

3.1.2. Carbohydrates

Glycolysis, an important metabolic process, plays a central role in macrophage activa-
tion, as proinflammatory macrophages rapidly increase their rate of glycolysis; hence, it
is considered to be a major regulator of the NLRP3 inflammasome. Hyperglycaemia can
stimulate NLRP3 inflammasome activation in human adipose tissue by upregulating the
expression of TXNIP [97]. Glycolysis inhibitors 2-deoxy-D-glucose (2-DG) and aminooxy
acetic acid also attenuate NLRP3 inflammasome activation [98]. Other enzymes of the
glycolytic pathway such as hexokinase, pyruvate kinase M2 (PKM2), and tyrosine-protein
kinase (Syk), have also been implicated as regulators of inflammasome activation [99–101].

3.1.3. Amino Acid and Nucleotide Metabolism

An increase in glutamate during ischemic conditions of glucose deprivation and
hypoxia induces ER stress, Ca2+ influx, and TXNIP expression, resulting in NLRP3 in-
flammasome activation [102]. The amino acid glycine was found to attenuate IL-1β pro-
duction by decreasing the expression of NLRP3 inflammasome components [103]. The
best-characterized stimuli of the NLRP3 inflammasome is ATP (nucleotide-containing
DAMP), which regulates it in a manner beyond the initial upregulation of IL-1β by NF-
κB [104]. Another nucleotide pathway metabolite, namely enzyme xanthine oxidoreductase
(XOR), has been shown to partially attenuate IL-1β secretion by decreasing mtROS [105].
Additionally, crystallized uric acid, in a MyD88- and/or mtROS-dependent manner, pro-
motes the activation of the NLRP3 inflammasome [106].

3.1.4. Lipopolysaccharides (LPS)

One of the most potent PAMPs for priming the NLRP3 inflammasome is the endo-
toxin located on the outer membrane of Gram-negative bacteria called LPS. LPS increase
expression of pro-IL-1β and NLRP3 through TLR4- and NF-kB-dependent pathways at
the transcriptional and post-translational levels and stimulates NLRP3 deubiquitination
required for NLRP3 inflammasome activation. In obese and diabetic states, the circulating
level of LPS increases due to changes in gut microbiota composition and increased gut
permeability, which in turn is absorbed by the macrophages and adipocytes, eliciting an
inflammatory response [107].

3.1.5. Adipokines

Adipokines, the cell-signaling proteins secreted by the adipose tissue, plays an im-
portant role as regulators of NLRP3 inflammasome activation. Adiponectin, an adipose
tissue-derived hormone, attenuates NLRP3 inflammasome by AMPK, autophagy, and/or
NF-kB pathways [108]. Meanwhile, via feedback loop, adiponectin expression and secre-
tion are downregulated by IL-1β [109]. Leptin, another adipose tissue hormone highly
expressed in WAT, has also been implicated in NLRP3 inflammasome activation, as it
promotes IL-18 secretion through the activation of caspase-1 [110]. Resistin, an adipose-
secreted hormone known to impair glucose tolerance, stimulates synthesis, and secretion
of inflammatory cytokines, and induces NLRP3 inflammasome activation [97]. TNF-α,
a multifunctional adipokine that is increased in obesity, is a potent endogenous NLRP3
inflammasome priming signal driving age-related inflammation [111]. TNF-α binds to its
receptor and activated signaling pathways, such as NF-κB and JNK, and has been impli-
cated in MetS by stimulating inflammation through the generation of ROS and inducing
transcriptional-mediated pathways. Table 2 provides an overview of the regulation of
NLRP3 inflammasome activation by key adipokines.
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Table 2. Role of adipokines in the regulation of NLRP3 inflammasome activation.

Sl# Adipokine Regulation of Inflammasome Activation in Metabolic Disorder Ref.

1. Adipocyte fatty acid-binding protein 4 (FABP-4) Control NLRP3 inflammasome activation through downregulating mitochondrial uncoupling protein-2
(UCP2) expression [112]

2. Adipsin Critical as a complement system component in vascular complications of metabolic disorder [113]

3. Angiotensinogen and Angiotensin II Linked to ER stress-induced NLRP3 inflammasome activation [114]

4. Apelin Inhibits NF-kB pathway and inflammasome activation helping in vasodilation [115]

5. C-reactive protein (CRP) Up-regulates NF-κB activity, thereby promoting IL-1β mediated atherosclerosis [116]

6. Fibroblast growth factor 2 (FGF-2) Enhances endothelial adhesion molecule (EAM) expression involved in NLRP3-mediated
endothelial dysfunction [117]

7. Hepatocyte growth factor (HGF) Promotes inhibition through up-regulation of adiponectin in adipocytes [118]

8. Intercellular adhesion molecule 1 (ICAM-1) Involved in NF-κB mediated TNF-α signaling pathway and endothelial inflammation [119]

9. Lipoprotein lipase (LPL) Plays a central role in triglyceride and phospholipid hydrolysis, the products of which could elicit pro- or
anti-inflammatory responses in endothelial cells [120]

10. Matrix metalloproteinases (MMPs) Involved in cartilage degeneration and NLRP3-mediated synovial inflammation in osteoarthritis [121]

11. Monocyte chemoattractant protein 1 (MCP-1) Key chemokine that regulates the migration and infiltration of adipose tissue via by
monocyte/macrophages [122]

12. Omentin 1 Involved in inhibition of the TXNIP/NLRP3 signaling pathways in adipose tissue [123]

13. Perilipin 1 Involved in lipid metabolism homeostasis and inhibits the NF-κB inflammatory pathway [124]

14. Plasminogen activator inhibitor 1 (PAI-1) Plays an important role in regulating ROS-mediated fibrinolysis [125]

15. Serum amyloid A Promotes NLRP3 inflammasome activation via the cathepsin-sensitive pathway [126]

16. Vaspin A visceral adipose tissue-derived serpin that can regulate the PI3K/AKT signaling pathway and improve
myocardial function by inhibiting NLRP3 expression [127]

17. Visfatin Visfatin, a pre-B-cell colony-enhancing factor, is involved in TL4-mediated endothelial dysfunction and
vascular inflammation [128]
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4. NLRP3 Inflammasome and Disorder in Metabolic Homeostasis

Excess nutrients, lipolysis, gluconeogenesis, etc., in obesity induce mitochondrial
dysfunction, oxidative stress, and ER stress, which in turn stimulates stress-responsive
molecules, such as JNK and IKKβ, leading to exacerbation of hyperlipidemia and hy-
perglycemia. Inflammation in adipose tissues, mediated by these stress-induced signals,
induces insulin resistance. Furthermore, adipocytes and infiltrated immune cells mediate
inflammation via proinflammatory adipokines. This section summarizes the consequences
of NLRP3 inflammasome activation in obesity-induced inflammation and insulin resistance
(Figure 3).
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Figure 3. Overview of obesity-associated metabolic inflammation and insulin resistance. NLRP3 inflammasome activation
as a consequence of obesity-mediated immunological and metabolic dysregulation, including changes in adipose tissue-
resident immune cells, impaired adipogenesis, decreased anti-inflammatory adipokines, hypoxia, fibrosis, etc., and helped
by oxidative and ER stress, leads to a glucotoxicity, lipotoxicity, and systemic insulin resistance.

In obesity, adipose tissue responds rapidly to changes in nutrient excess via an in-
crease in adipocyte size (hypertrophy) and number (hyperplasia) to play its major role
in energy homeostasis. Adipose tissue remodeling accelerates in the obese state and is
mediated by the process of adipogenesis, in which progenitor cells differentiate into ma-
ture adipocytes. Defects in this process contribute to the impairment in recruitment of
fresh adipocytes and in turn lead to adipocyte enlargement. NLRP3 inflammasome is
associated with the downregulation of adipogenesis, leading to a state of adipocyte hy-
pertrophy [129]. This expansion may lead to, for example, adipocyte hypoxia and death,
and/or enhanced chemokine secretion [130]. This results in macrophages aggregating and
forming a crown-like structure around necrotic adipocytes, which plays a pivotal role in
adipose tissue remodeling [131], in which a transformation occurs in the polarization states
of macrophages from an anti-inflammatory M2 state to a proinflammatory M1 state [132].
This also results in an increase in circulating levels of monocytes that infiltrate WAT and ag-
gravate the inflammation. It has been shown that expression of monocyte chemoattractant
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protein-1 (MCP-1), a key regulator of ATM influx to WAT, reduces as a result of HFD-fed
mice with caspase-1 deletion [97].

Chronic adipocyte hypoxia stimulates transcription factors called hypoxia-inducible
factor 1 (HIF-1) and NF-kB and has been linked to adipose tissue dysfunction, namely ER
stress [133], oxidative stress and production of ROS [134], and regulation of adiponectin and
leptin expression respectively [135,136], which ultimately results in insulin resistance [137].
Insulin resistance is considered as the primary causative factor in the development and
manifestation of MetS. Normally, the activation of insulin by binding to its receptor in many
tissues of the body, including the liver, muscle, adipose tissue, and vascular endothelium,
will initiate a cascade of event. This process begins with the binding of insulin to its receptor
and stimulates autophosphorylation on tyrosine residues of a set of insulin receptor sub-
strate proteins. These proteins activate a lipid kinase, namely phosphatidylinositol 3-kinase
(PI3K). PI3K converts the phosphoinositide PIP2 to PIP3, a lipid species that is specifically
recognized by proteins with pleckstrin-homology (PH) domains, notably the protein kinase
AKT/PKB which phosphorylates a number of targets, including Forkhead box protein O1
(FOXO1), a factor that regulates the expression of insulin-sensitive genes [138]. Insulin
signaling affects the energy levels of the body via several mechanisms, including activating
glycogen synthase and decreasing the transcription of enzymes phosphoenolpyruvate
carboxykinase (PEPCK) and the glucose-6 phosphatase (G6Pase) and via suppression of
FOXO1 and activating sterol regulatory element-binding protein 1 (SREBP1), leading to the
suppression of glucose production and hepatic gluconeogenesis [139]. NLRP3 activation
impairs insulin sensitivity in dietary-induced obesity. Disruption of phosphatidylinositol 3-
kinase-protein kinase B (PI3K-Akt) signaling plays a major role in NLRP3-mediated insulin
resistance [140]. Moreover, IL-1β alters phosphorylation of the insulin receptor substrate
(IRS) [141]. Taken together, insulin resistance affects many tissues, causing dysregulation
of metabolism and leading to hyperglycemia, hyperinsulinemia, and hypertriglyceridemia,
all of which contribute to a vicious cycle of MetS manifestations.

Oxidative stress is the state of imbalance between oxidative and antioxidative systems
at the biological level, generating excessive oxidative free radicals and ROS. High levels
of ROS lead to cellular dysfunction by altering the metabolism of proteins, lipids, and
nucleic acid, which results in activation of the immune system and inflammation [142].
Oxidative stress stimulates the expression of enzymes responsible for catalyzing the hydro-
peroxidation of polyunsaturated fatty acids (12/15-lipoxygenase (12/15-LOX)). A high
level of 12/15-LOX causes endoplasmic reticulum stress and unfolded protein response
(UPR) [143]. In addition, releasing proinflammatory mediators as a result of stress reduces
the expression of eNOS and NO production and suppresses cGMP and PGC-1α (peroxi-
some proliferator-activated receptor coactivator 1 alpha), in which reduces mitochondria
biogenesis [144].

Oxidative stress was found to be significantly associated with MetS and its compo-
nents via several mechanisms, either as a cause or a consequence [145]. One of these
mechanisms lies in the electron transport chain (ETC). An increase in the metabolic load
of the mitochondria leads to overactive ETC, which can result in overproduction of ROS
as by-products, contributing to damage to the proteins, DNA, and lipids in mitochon-
dria [146]. NLRP3 inflammasome activation also has deleterious effects on lipid synthesis
and utilization by adipocytes as fat oxidation rate, mitochondrial energy dissipation, and
lipolysis diminish. NLRP3 activation down-regulates expression of growth differentia-
tion factor-3 (GDF3) and monoamine oxidase A (MAOA), implicated in catecholamine
catabolism, leading to a reduction of glycerol and free fatty acids (FFAs). NLRP3 ablation
restores the proper expression of lipolytic enzymes and reverses age-related catecholamine
degradation [147].

5. Inhibition of NLRP3 Inflammasome Activation

The role of NLRP3 inflammasome activation in the exacerbation of obesity-mediated
metabolic disorders and many other diseases opens new avenues for treating or relieving
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complications associated with these disorders. The first to be targeted were the final
products of the activation, namely IL-1β and IL-18, with, for example, IL-1β antibodies and
recombinant IL-1β receptor antagonists, such as canakinumab and anakinra, respectively.
IL-1β and IL-18 are both potent immune modulators that cascade immune response, and
have been implicated in many inflammatory processes, and at higher levels could have
disastrous consequences if left uncontrolled. IL-1β signaling results in the production
of proinflammatory cytokines, such as TNF-α, CRP, IL-8, and IL-6, and chemokines that
attract macrophage invasion, such as MCP1 (monocyte chemoattractant protein 1) and
MIP2 (macrophage inflammatory protein 2). IL-1β and IL-18-targeted therapies have been
used to treat many autoinflammatory diseases; however, this may lead to unintended
immunosuppressive effects and the risk of opportunistic infections. Instead, therapies
targeting upstream of IL-1β production and specific NLRP3 inflammasome inhibitors
might prove efficient and improve safety. Table 3 provides an overview of the potential
inhibitors of NLRP3 inflammasome activation.

Table 3. Potential pharmacological inhibitors of NLRP3 inflammasome activation.

Sl# Compound NLRP3 Inflammasome Inhibition Inflammasome Target Target Disease Ref.

1. MCC950

Sulfonylurea compound that block
nigericin-induced NLRP3

inflammasome activation by inhibiting
chloride efflux

NACHT domain of
NLRP3

Atherosclerosis, myocardial
infarction, colitis, and skin
and airway inflammation

[148]

2. Tranilast
Tryptophan derivative that inhibits

NLRP3-NLRP3 interaction and
subsequent ASC oligomerization

Gouty arthritis and
cryopyrin-associated periodic

syndrome (CAPS)
[149]

3. OLT1177 β-sulfonyl nitrile compound that
inhibits NLRP3-NLRP3 interaction

Gouty arthritis and
cryopyrin-associated periodic

syndrome (CAPS)
[150]

4. Oridonin
Prevents NLRP3-NEK7 interaction by

binding to Cys 279 residues at the
NACHT domain

Alzheimer’s disease
and cancer [151]

5. CY-09

Analog of a cystic fibrosis
transmembrane conductance regulator
(CFTR) channel inhibitor that impairs

NLRP3 ATPase.

Gout, atherosclerosis, and
neurodegenerative diseases [148]

6. MNS
Impairs ATPase activity of NLRP3 by
covalently modifying Cys residues at

the NACHT domain

Gout, atherosclerosis, and
neurodegenerative diseases [69]

7. BOT-4-one
NLRP3 alkylation by BOT-4-one leading

to impaired ATPase activity in
NACHT domain

Inflammatory skin diseases [152]

8. IFN39 Impairs ATPase activity of NLRP3 by
binding at the NACHT domain Inflammatory bowel disease [153]

9. Bay 11-7082 and
Parthenolide

Inhibit ATPase activity of NLRP3, which
is required for activation of Caspase-1

Caspase-1

Systemic lupus
erythematosus [154]

10. Pralnacasan and
Belnacasan

Selectively inhibit Caspase-1
protease activity Rheumatoid arthritis [155]

11. GKT137831 and
VAS-2870

NOX4-mediated inhibition of
caspase-1 activation

Systemic sclerosis and
pulmonary fibrosis [156]

12. Etomoxir CPT1A-mediated inhibition of
caspase-1 activation

Congestive heart failure
and psoriasis [157]

13. Z-VAD-FMK Binds to the catalytic site of caspase
proteases and inhibits their activity Granulosa cell apoptosis [158]

14. Necrosulfonamide
Alkylating compound binds to

Gasdermin D, thereby preventing
pyroptotic pore formation and cell lysis

Gasderimin D Hemorrhagic necrosis [159]

15. Glyburide
Sulfonylurea-containing compound

inhibits ATP-sensitive potassium
channels in pancreatic β-cells

NLRP3 (indirectly) Type 2 diabetes [160]

16. 16673-34-0
Sulfonyl compound in glyburide
synthesis pathway that inhibits

inflammasome activity in the heart
Heart diseases [161]
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6. Conclusions

Several studies have shown that obesity is associated with low-grade systemic inflam-
mation that contributes to insulin resistance and metabolic disorders, associated by changes
in adipose tissue-resident immune cells. This inflammation in adipose tissue is likely initi-
ated by a classical two-step activation of the NLRP3 inflammasome with metabolic insults
stimulating these two signals. Metabolic insults, such as increased SFAs, proinflammatory
adipokines, hyperglycemia, etc., promote K+ efflux, mitochondrial dysfunction and ROS
production, lysosomal disruption, etc., leading to NLRP3 inflammasome activation and
caspase-1-mediated IL-1β and IL-18 secretion and pyroptosis, which in turn mediate a
systemic cascading inflammatory response. Meanwhile, several PTMs in NLRP3 and
related proteins, such as phosphorylation, ubiquitination, alkylation, and s-nitrosylation,
also play a critical role. In this process, many cellular metabolites as well as adipokines act
as regulators.

Adipose tissue remodeling as a response to changes in nutrient excess in obesity, fol-
lowed by adipocyte hypoxia and enhanced chemokine secretion, leads to NLRP3-mediated
adipose tissue inflammation, which ultimately results in the impairment of the insulin
signaling pathway and insulin resistance, the primary causative factors in the development
and manifestation of metabolic syndrome. Research on the modulation of the NLRP3
inflammasome via diet and fatty acid-induced obesity will open new avenues for treating
or relieving complications in metabolic inflammatory disorders. At the same time, the
beneficial aspects of NLRP3 inflammasome inhibition on adipose tissue inflammation and
metabolic health need to be further investigated in light of these insights and the possible
side effects of immunosuppression.
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