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We study further the quantile mean inactivity time order. Relations between the proposed stochastic order and the other transform
stochastic orders are obtained. Besides, sufficient conditions for the stochastic order are provided. Then, preservation of the order
under monotone transformations, series, and parallel systems and mixtures of a general family of semiparametric distributions is
studied. Examples are also given to illustrate the results.

1. Introduction

Comparisons of random variables according to stochastic
orders have played a central role in reliability theory, risk
theory, and other fields. There are many stochastic orders
proposed in the past years giving rise to a large body of
literature (cf. Shaked and Shanthikumar [1], Müller and
Stoyan [2], and Belzunce et al. [3]). In order to compare the
aging properties of two arbitrary life distributions, several
stochastic orders, known as transform orders, providing new
relationships among several popular aging notions, have been
introduced (see, e.g., Nair et al. [4] andNanda et al. (2016) and
the references therein). Consider two continuous random
variables 𝑋 and 𝑌 with distribution functions 𝐹 and 𝐺 and
quantile functions 𝐹−1(𝑝) = inf{𝑥 | 𝐹(𝑥) ≥ 𝑝} and 𝐺−1(𝑝) =
inf{𝑥 | 𝐺(𝑥) ≥ 𝑝}, respectively, for any value 𝑝 ∈ (0, 1).
Denote by supp(𝑋) and supp(𝑌) the support of the random
variables 𝑋 and 𝑌, respectively, which are assumed to be
intervals. One of the strongest transform stochastic orders is
the convex transform order. Van Zwet [5] proposed a skew-
ness order, called the convex transform order, which captures
the property of one distribution being more skewed than the
other. It is said, according to their work, that𝑋 is smaller than𝑌 of the convex transform order (denoted by𝑋≤𝑐 𝑌) when

𝐺−1 (𝐹 (𝑥)) is convex in 𝑥 ∈ supp (𝑋) . (1)

For more properties of the convex transform order in
reliability and actuarial studies we refer the readers to Barlow
and Proschan (1981), Marshall and Olkin [6], Shaked and
Shanthikumar [1], Kochar and Xu [7], and Barmalzan and
Payandeh Najafabadi [8] among others. In terms of aging
notions of lifetime distributions (that have 0 as the common
left endpoint of their supports) Kochar and Wiens [9] called
the order “≤𝑐” the more increasing failure rate (IFR) order
which is equivalent to

𝑟𝑋 (𝐹−1 (𝑝))
𝑟𝑌 (𝐺−1 (𝑝)) is increasing in 𝑝 ∈ (0, 1) , (2)

where

𝑟𝑋 (𝑡) = 𝑓 (𝑡)
𝐹 (𝑡) , for 𝑡 : 𝐹 (𝑡) > 0,

𝑟𝑌 (𝑡) = 𝑔 (𝑡)
𝐺 (𝑡) , for 𝑡 : 𝐺 (𝑡) > 0

(3)

are the failure rates of 𝑋 and 𝑌, respectively, provided that𝐹 and 𝐺 are absolutely continuous with associated density
functions 𝑓 and 𝑔 and survival functions 𝐹 = 1 − 𝐹 and 𝐺 =1 − 𝐺. In the literature, several weaker transform orders have
also been proposed to compare the relative aging properties.
Kochar andWiens [9] proposed another stochastic order, for
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describing the aging phenomenon, called decreasing mean
residual life order. We say𝑋 is smaller than 𝑌 of the decreas-
ingmean residual life order (denoted by𝑋≤dmrl 𝑌) whenever

𝜇𝑌 (𝐺−1 (𝑝))
𝜇𝑋 (𝐹−1 (𝑝)) is increasing in 𝑝 ∈ (0, 1) , (4)

in which

𝜇𝑋 (𝑡) = 𝐸 (𝑋 − 𝑡 | 𝑋 > 𝑡) = ∫∞
𝑡
𝐹 (𝑥) 𝑑𝑥
𝐹 (𝑡)

for 𝑡 : 𝐹 (𝑡) > 0,
𝜇𝑌 (𝑡) = 𝐸 (𝑌 − 𝑡 | 𝑌 > 𝑡) = ∫∞

𝑡
𝐺 (𝑥) 𝑑𝑥
𝐺 (𝑡)

for 𝑡 : 𝐺 (𝑡) > 0

(5)

are respective mean residual life (MRL) functions of 𝑋
and 𝑌 (cf. Lai and Xie [10] for reliability properties of the
MRL functions). Kochar and Wiens [9] showed that if
supp(𝑋) = supp(𝑌) = [0, 𝑎), where 𝑎 ∈ (0,∞], then

𝑋≤𝑐 𝑌 󳨐⇒
𝑋≤dmrl 𝑌. (6)

For further properties of the order “≤dmrl” we refer the
readers to Kochar and Wiens [9], Kochar [11], Shaked and
Shanthikumar [1], and Kang and Yan [12]. Another weaker
stochastic order is the star order. We say 𝑋 is smaller than 𝑌
of the star order (denoted by𝑋≤∗ 𝑌) whenever

𝐺−1 (𝑝)
𝐹−1 (𝑝) is increasing in 𝑝 ∈ (0, 1) . (7)

From (4.B.3) in Shaked and Shanthikumar [1],

𝑋≤𝑐 𝑌 󳨐⇒
𝑋≤∗ 𝑌. (8)

One can see Bartoszewicz [13], Li and Xu (2004), Boland
et al. [14], Bartoszewicz and Skolimowska [15], Bartoszewicz
and Skolimowska [16], and Kochar and Xu [17] to find
further properties of the star order in the context of reliability
theory. In the context of transform orders, Belzunce et al. [18]
introduced a new criterion to compare risks based on the
notion of expected proportional shortfall which is useful for
comparing risks of different nature free of the base currency.
The aim of the current investigation is to develop the study
of another transform order closely related to the convex
transform and the star orders, proposed by Arriaza et al.
[19]. This stochastic order is similar to the order “≤dmrl” but
considers mean inactivity times at quantiles instead of the
quantile mean residual lives of the units.

2. Main Results

In this section, we have brought our main achievements.
We first recall the stochastic order and its relationships with

some other well-known stochastic orders. Then preservation
of the order under monotone transformations, series sys-
tems, parallel systems, and mixtures of a typical family of
semiparametric distributions is investigated in detail. Some
examples are also included to enhance the study of the results
of this section. For a nonnegative random variable 𝑋 with
distribution function 𝐹, the mean inactivity time (MIT) of𝑋
is defined as (cf. Kayid and Ahmad [20])

𝜙𝑋 (𝑡) = 𝐸 [𝑡 − 𝑋 | 𝑋 ≤ 𝑡] = ∫𝑡
0
𝐹 (𝑥) 𝑑𝑥
𝐹 (𝑡) ,

𝑡 : 𝐹 (𝑡) > 0,
(9)

and similarly the MIT of 𝑌 having distribution 𝐺 is given by

𝜙𝑌 (𝑡) = 𝐸 [𝑡 − 𝑌 | 𝑌 ≤ 𝑡] = ∫𝑡
0
𝐺 (𝑥) 𝑑𝑥
𝐺 (𝑡) ,

𝑡 : 𝐺 (𝑡) > 0.
(10)

To relate the MIT of two lifetime units with their ages,
theMITs could be evaluated at the quantiles of the underlying
distributions. Given that the failure of the unit A has occurred
before or at a time point 𝑡, at which 𝐹(𝑡) = 𝑝 and the failure
of unit B has taken place before or at a time point 𝑡, at which𝐺(𝑡) = 𝑝, the MIT functions of random lifetime𝑋 of the unit
A and random lifetime 𝑌 of the unit B are reduced to

𝜙𝑋 (𝐹−1 (𝑝)) = 1
𝑝 ∫𝐹

−1(𝑝)

0
𝐹 (𝑥) 𝑑𝑥,

𝜙𝑌 (𝐺−1 (𝑝)) = 1
𝑝 ∫𝐺

−1(𝑝)

0
𝐺 (𝑥) 𝑑𝑥,

(11)

respectively. According to Nair et al. [4], for each 𝑝 ∈ (0, 1),𝑀𝑋(𝑝) = 𝜙𝑋(𝐹−1(𝑝)) and 𝑀𝑌(𝑝) = 𝜙𝑌(𝐺−1(𝑝)) are called
quantile MITs of 𝑋 and 𝑌. There is a stochastic order in the
literature called location-independent riskier order that has
been introduced by Jewitt [21] to compare random assets in
risk analysis, which is equivalent to comparison of quantile
MIT functions. Conventionally,𝑋 is said to be less than 𝑌 in
the location-independent riskier order (denoted by 𝑋≤lir 𝑌)
if

∫𝐹
−1(𝑝)

0
𝐹 (𝑥) 𝑑𝑥 ≤ ∫𝐺

−1(𝑝)

0
𝐺 (𝑥) 𝑑𝑥, ∀𝑝 ∈ (0, 1) . (12)

It is trivial to see that this is equivalent to having 𝑀𝑋(𝑝) ≤𝑀𝑌(𝑝), for all 𝑝 ∈ (0, 1). We are now ready to establish
the comparison of lifetime random variables according to
the ratio of their mean inactivity times at quantiles and
then present our main results about the stochastic order.
To be in agreement with the name of the dual order, that
is, the decreasing mean residual life order, we call the
quantile mean inactivity time order introduced by Arriaza
et al. [19] the increasing mean inactivity time order. We
bring some useful lemmas that will be used throughout this
section.
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Definition 1. Suppose 𝑋 and 𝑌 are two nonnegative random
variables having mean inactivity time functions 𝜙𝑋 and 𝜙𝑌,
respectively. It is said that quantile mean inactivity time of 𝑌
is more increasing than quantile mean inactivity time of 𝑋
(written as𝑋≤imit 𝑌) whenever

𝜙𝑌 (𝐺−1 (𝑝))
𝜙𝑋 (𝐹−1 (𝑝)) is increasing in 𝑝 ∈ (0, 1) , (13)

or equivalently if

∫𝐺−1(𝑝)
0

𝐺 (𝑥) 𝑑𝑥
∫𝐹−1(𝑝)
0

𝐹 (𝑥) 𝑑𝑥 is increasing in 𝑝 ∈ (0, 1) . (14)

The following lemmas will be useful to derive some of our
results.

Lemma 2 (Barlow and Proschan (1975, p. 120)). Let 𝑊 be a
measure on the interval (𝛼, 𝛽), not necessarily nonnegative. Letℎ be a nonnegative function defined on (𝛼, 𝛽).

(i) If∫𝛽
𝑡
𝑑𝑊(𝑥) ≥ 0, for all 𝑡 ∈ (𝛼, 𝛽), and if ℎ is increasing,

then ∫𝛽
𝛼
ℎ(𝑥)𝑑𝑊(𝑥) ≥ 0.

(ii) If∫𝑡
𝛼
𝑑𝑊(𝑥) ≥ 0, for all 𝑡 ∈ (𝛼, 𝛽), and if ℎ is decreasing,

then ∫𝛽
𝛼
ℎ(𝑥)𝑑𝑊(𝑥) ≥ 0.

Lemma 3 (basic composition formula, Karlin [22, p. 17]). Let𝑔 be a𝑇𝑃2 function in (𝑥, 𝑧) ∈ 𝜒×𝜁 and let ℎ be a𝑇𝑃2 function
in (𝑧, 𝑦) ∈ 𝜁 × 𝛾. Then the function 𝑓 given by

𝑓 (𝑥, 𝑦) = ∫
𝜁
𝑔 (𝑥, 𝑧) ℎ (𝑧, 𝑦) 𝑑𝜎 (𝑧) (15)

is 𝑇𝑃2 in (𝑥, 𝑦) ∈ 𝜒 × 𝛾, where 𝜒, 𝜁, and 𝛾 are real subsets of 𝑅
and 𝜎 is a 𝜎-finite measure.

2.1. Relation with Other Stochastic Orders. Let 𝑋 and 𝑌 be
two random variables with respective absolutely continuous
distribution functions 𝐹1 and 𝐹2 which are assumed to be
strictly increasing. Then

𝑋≤imit 𝑌 ⇐⇒
∫𝑝
0
𝑞𝑑𝐹−1𝑖 (𝑞) is TP2 in (𝑖, 𝑝) , (16)

when 𝑖 = 1, 2 and 𝑝 ∈ (0, 1). Let 𝑋𝑖 have density function 𝑓𝑖,𝑖 = 1, 2.Then it is possible to verify that

∫𝑝
0
𝑞𝑑𝐹−1𝑖 (𝑞) = ∫𝑝

0

𝑞
𝑓𝑖 (𝐹−1𝑖 (𝑞))𝑑𝑞

= ∫1
0

𝑞
𝑓𝑖 (𝐹−1𝑖 (𝑞))𝐼 [𝑞 < 𝑝] 𝑑𝑞.

(17)

Now, one can see that𝑋≤𝑐 𝑌 yields 𝑞/𝑓𝑖(𝐹−1𝑖 (𝑞))which is TP2
in (𝑖, 𝑞) ∈ {1, 2} × (0, 1) and also it is evident that 𝐼[𝑞 < 𝑝] is

TP2 in (𝑞, 𝑝) ∈ (0, 1)×(0, 1).Thus, an application of Lemma 3
leads to 𝑋≤imit 𝑌. For the case where 𝑋 and 𝑌 do not have
absolutely continuous distributions we demonstrate the same
result as follows.

Theorem 4 (Arriaza et al. [19]). Let 𝑋 and 𝑌 be two continu-
ous nonnegative random variables. Then

𝑋≤𝑐 𝑌 󳨐⇒
𝑋≤𝑖𝑚𝑖𝑡 𝑌. (18)

From (4.B.5) in Shaked and Shanthikumar [1], 𝑋≤𝑐 𝑌 if,
and only if, 𝑓(𝐹−1(𝑝))/𝑔(𝐺−1(𝑝)) increases in 𝑝 ∈ (0, 1).
Thus, as stated in Theorem 4 this is a sufficient condition for
the increasing mean inactivity time order. In the following
result we provide some other sufficient conditions for the
order “≤imit” such that the order “≤𝑐” does not hold.
Theorem 5. Let 𝑋 and 𝑌 be two absolutely continuous non-
negative random variables having interval supports and finite
means which have strictly increasing distribution functions. If

(i) there exists 𝑝0 ∈ (0, 1) such that 𝑓(𝐹−1(𝑝))/𝑔(𝐺−1(𝑝))
increases in 𝑝 < 𝑝0,

(ii) 𝑓(𝐹−1(𝑝))/𝑔(𝐺−1(𝑝)) strictly decreases in 𝑝 ≥ 𝑝0,
(iii) (𝐸(𝑌) − 𝐺−1(𝑝))/(𝐸(𝑋) − 𝐹−1(𝑝)) increases in 𝑝 ∈[𝑝0, 1), then

𝑋≤𝑖𝑚𝑖𝑡 𝑌
𝑏𝑢𝑡 𝑋≰𝑐 𝑌. (19)

Proof. First, we consider two arbitrary values 𝑞 and 𝑝 such
that 0 ≤ 𝑞 < 𝑝 < 𝑝0.The assumption given in (i) implies that

𝑞𝑑𝐺−1 (𝑞)
𝑓 (𝐹−1 (𝑝)) ≤

𝑞𝑑𝐹−1 (𝑞)
𝑔 (𝐺−1 (𝑝)) , (20)

and, therefore,

∫𝑝
0

𝑞𝑑𝐹−1 (𝑞)
𝑔 (𝐺−1 (𝑝)) ≥ ∫𝑝

0

𝑞𝑑𝐺−1 (𝑞)
𝑓 (𝐹−1 (𝑝)) , ∀𝑝 ∈ (0, 𝑝0) . (21)

Now, consider 𝑝 < 𝑞 ∈ [𝑝0, 1). Assumption (ii) provides that

𝑓 (𝐹−1 (𝑝))
𝑔 (𝐺−1 (𝑝)) ≥

(1 − 𝑞) 𝑓 (𝐹−1 (𝑞))
(1 − 𝑞) 𝑔 (𝐺−1 (𝑞)) , (22)

and further that

𝑓 (𝐹−1 (𝑝))
𝑔 (𝐺−1 (𝑝)) ≥

∫1
𝑝
(1 − 𝑞) 𝑑𝐺−1 (𝑞)

∫1
𝑝
(1 − 𝑞) 𝑑𝐹−1 (𝑞)

= ∫1
0
(1 − 𝑞) 𝑑𝐺−1 (𝑞) − ∫𝑝

0
𝑞 (1 − 𝑞) 𝑑𝐺−1 (𝑞)

∫1
0
(1 − 𝑞) 𝑑𝐹−1 (𝑞) − ∫𝑝

0
𝑞 (1 − 𝑞) 𝑑𝐹−1 (𝑞)

= 𝐸 (𝑌) − 𝐺−1 (𝑝) + ∫𝑝
0
𝑞𝑑𝐺−1 (𝑞)

𝐸 (𝑋) − 𝐹−1 (𝑝) + ∫𝑝
0
𝑞𝑑𝐹−1 (𝑞) , ∀𝑝 ≥ 𝑝0,

(23)
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which holds if, and only if,

∫𝑝
0

𝑞𝑑𝐹−1 (𝑞)
𝑔 (𝐺−1 (𝑝)) − ∫

𝑝

0

𝑞𝑑𝐺−1 (𝑞)
𝑓 (𝐹−1 (𝑝))

≥ 𝐸 (𝑌) − 𝐺−1 (𝑝)
𝑓 (𝐹−1 (𝑝)) − 𝐸 (𝑋) − 𝐹−1 (𝑝)

𝑔 (𝐺−1 (𝑝))
= (𝐸 (𝑋) − 𝐹−1 (𝑝))2 𝜕𝜕𝑝

𝐸 (𝑌) − 𝐺−1 (𝑝)
𝐸 (𝑋) − 𝐹−1 (𝑝) ,

𝑝 ∈ [𝑝0, 1) ,

(24)

which is nonnegative from (iii). That is, we proved that

∫𝑝
0

𝑞𝑑𝐹−1 (𝑞)
𝑔 (𝐺−1 (𝑝)) ≥ ∫𝑝

0

𝑞𝑑𝐺−1 (𝑞)
𝑓 (𝐹−1 (𝑝)) , ∀𝑝 ∈ (0, 1) , (25)

whichmeans that𝑋≤imit 𝑌.Assertions (i) and (ii) ensure that𝑓(𝐹−1(𝑝))/𝑔(𝐺−1(𝑝)) is not increasing in 𝑝, for all values 𝑝 in(0, 1).Hence,𝑋≰𝑐 𝑌 and the proof is obtained.

The sufficient conditions of Theorem 5 are in the spirit
of some previous results established by Belzunce et al. [23]
and Belzunce andMart́ınez-Riquelme [24].The next example
applies Theorem 5.

Example 6. Consider two nonnegative random variables 𝑋
and 𝑌 with respective quantile functions 𝐹−1(𝑝) = 𝑝0.5
and 𝐺−1(𝑝) = 1 − (1 − 𝑝)1.01 for 𝑝 ∈ [0, 1]. Since
𝑓(𝐹−1(𝑝))/𝑔(𝐺−1(𝑝)) = 2.02𝑝0.5(1 − 𝑝)0.01, thus there exists
the point 𝑝0 = 50/51 such that 𝑓(𝐹−1(𝑝))/𝑔(𝐺−1(𝑝)) is
increasing in 𝑝 ∈ (0, 𝑝0) and it is strictly decreasing in 𝑝 ∈[𝑝0, 1).That is, conditions (i) and (ii) inTheorem 5 hold true.
It is also possible to see that 𝐸(𝑋) = 2/3 and 𝐸(𝑌) = 100/201
and that ((1 − 𝑝)1.01 − 100/201)/(2/3 − 𝑝0.5) is increasing on𝑝 ∈ (50/51, 1). Assumption (iii) in Theorem 5 is therefore
satisfied. Hence,𝑋≤imit 𝑌 and𝑋≰𝑐 𝑌.
Theorem7. Let𝑋 and𝑌 be two nonnegative randomvariables
with continuous distribution functions 𝐹 and 𝐺, respectively.

(i) If 𝐹 and 𝐺 are absolutely continuously associated
with density functions 𝑓 and 𝑔, respectively, and if
lim𝑝→0+(𝑓(𝐹−1(𝑝))/𝑔(𝐺−1(𝑝))) ≥ 1, then

𝑋≤𝑖𝑚𝑖𝑡 𝑌 󳨐⇒
𝑋≤𝑙𝑖𝑟 𝑌. (26)

(ii) If 𝑋 and 𝑌 have finite means such that
lim𝑝→1−((𝐺−1(𝑝) − 𝐸(𝑌))/(𝐹−1(𝑝) − 𝐸(𝑋))) ≥ 1, then

𝑋≤𝑖𝑚𝑖𝑡 𝑌 󳨐⇒
𝑋≥𝑙𝑖𝑟 𝑌. (27)

Proof. (i) From (14),𝑋≤imit 𝑌 implies that

∫𝐺−1(𝑝)
0

𝐺 (𝑥) 𝑑𝑥
∫𝐹−1(𝑝)
0

𝐹 (𝑥) 𝑑𝑥 ≥ lim
𝑝→0+

∫𝐺−1(𝑝)
0

𝐺 (𝑥) 𝑑𝑥
∫𝐹−1(𝑝)
0

𝐹 (𝑥) 𝑑𝑥

= lim
𝑝→0+

𝑝/𝑔 (𝐺−1 (𝑝))
𝑝/𝑓 (𝐹−1 (𝑝))

= lim
𝑝→0+

𝑓 (𝐹−1 (𝑝))
𝑔 (𝐺−1 (𝑝)) , ∀𝑝 ∈ (0, 1) ,

(28)

which by assumption yields ∫𝐺−1(𝑝)
0

𝐺(𝑥)𝑑𝑥 ≥ ∫𝐹−1(𝑝)
0

𝐹(𝑥)𝑑𝑥,
for all 𝑝 ∈ (0, 1). That is, 𝑋≤lir 𝑌. (ii) Again, by using (14) we
can conclude

∫𝐺−1(𝑝)
0

𝐺 (𝑥) 𝑑𝑥
∫𝐹−1(𝑝)
0

𝐹 (𝑥) 𝑑𝑥 ≤ lim
𝑝→1−

∫𝑝
0
(𝐺−1 (𝑝) − 𝐺−1 (𝑞)) 𝑑𝑞

∫𝑝
0
(𝐹−1 (𝑝) − 𝐹−1 (𝑞)) 𝑑𝑞

= lim
𝑝→1−

𝐺−1 (𝑝) − 𝐸 (𝑌)
𝐹−1 (𝑝) − 𝐸 (𝑋) ,

for 𝑝 ∈ (0, 1) ,

(29)

together with assumption giving ∫𝐺−1(𝑝)
0

𝐺(𝑥)𝑑𝑥 ≤
∫𝐹−1(𝑝)
0

𝐹(𝑥)𝑑𝑥, for all 𝑝 ∈ (0, 1); that is,𝑋≥lir 𝑌.
Corollary 8. Let 𝑋 and 𝑌 be two nonnegative continuous
random variables with finite support. If 𝑢𝑌−𝐸(𝑌) ≤ 𝑢𝑋−𝐸(𝑋)
then𝑋≤𝑖𝑚𝑖𝑡 𝑌 implies𝑋≥𝑙𝑖𝑟 𝑌.
Theorem 9 (Arriaza et al. [19]). Let𝑋 and 𝑌 be two nonnega-
tive random variables with absolutely continuous distributions.
Then

𝑋≤𝑖𝑚𝑖𝑡 𝑌 󳨐⇒
𝑋≤∗ 𝑌. (30)

Remark 10. For any 𝑝, 𝑞 ∈ (0, 1), denote 𝑑𝑊(𝑞, 𝑝) = 𝐼[𝑞 <𝑝]𝑤(𝑞, 𝑝), where
𝑤 (𝑞, 𝑝) = 𝑞( 𝑑𝐹−1 (𝑞)

𝑔 (𝐺−1 (𝑝)) −
𝑑𝐺−1 (𝑞)
𝑓 (𝐹−1 (𝑝))) . (31)

Now,𝑋≤imit 𝑌 implies that

∫𝑞
∗

0
𝑑𝑊(𝑞, 𝑝) ≥ 0, ∀𝑝, 𝑞∗ ∈ (0, 1) . (32)

2.2. Monotone Transformations. Preservation of the increas-
ing mean inactivity time order under increasing concave
transformations is obtained as follows.

Theorem 11. Let 𝑋 and 𝑌 be two nonnegative random
variables with absolutely continuous distributions. If
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(i) 𝜙 is a nonnegative differentiable, strictly increasing, and
concave function,

(ii) 𝜙󸀠(𝐺−1(𝑝))/𝜙󸀠(𝐹−1(𝑝)) is increasing in 𝑝 ∈ (0, 1), then
𝑋≤𝑖𝑚𝑖𝑡 𝑌 󳨐⇒

𝜙 (𝑋) ≤𝑖𝑚𝑖𝑡 𝜙 (𝑌) . (33)

Proof. First, denote by 𝐹𝜙,𝐺𝜙,𝑓𝜙, and 𝑔𝜙 the distribution and
density functions of 𝜙(𝑋) and 𝜙(𝑌), respectively, which are
given by

𝐹𝜙 (𝑡) = 𝐹 (𝜙−1 (𝑡)) ,
𝐺𝜙 (𝑡) = 𝐺 (𝜙−1 (𝑡)) ,

𝑡 ≥ 0,
𝑓𝜙 (𝑡) = 𝑓 (𝜙−1 (𝑡))

𝜙󸀠 (𝜙−1 (𝑡)) ,

𝑔𝜙 (𝑡) = 𝑔 (𝜙−1 (𝑡))
𝜙󸀠 (𝜙−1 (𝑡)) ,

𝑡 ≥ 0.

(34)

Therefore, for any 𝑢 ∈ (0, 1), we have
𝑓𝜙 (𝐹−1𝜙 (𝑢)) = 𝑓 (𝐹−1 (𝑢))

𝜙󸀠 (𝐹−1 (𝑢)) ,

𝑔𝜙 (𝐺−1𝜙 (𝑢)) = 𝑔 (𝐺−1 (𝑢))
𝜙󸀠 (𝐺−1 (𝑢)) .

(35)

𝜙(𝑋) ≤imit 𝜙(𝑌) holds if, and only if,

∫𝑝
0

𝑞𝑑𝐹−1𝜙 (𝑞)
𝑔𝜙 (𝐺−1𝜙 (𝑝)) ≥ ∫𝑝

0

𝑞𝑑𝐺−1𝜙 (𝑞)
𝑓𝜙 (𝐹−1𝜙 (𝑝)) , ∀𝑝 ∈ (0, 1) , (36)

which holds if, and only if,

∫𝑝
0

𝑞𝜙󸀠 (𝐺−1 (𝑝)) 𝜙󸀠 (𝐹−1 (𝑞))
𝑔 (𝐺−1 (𝑝)) 𝑑𝐹−1 (𝑞)

≥ ∫𝑝
0

𝑞𝜙󸀠 (𝐺−1 (𝑞)) 𝜙󸀠 (𝐹−1 (𝑝))
𝑓 (𝐹−1 (𝑝)) 𝑑𝐺−1 (𝑞) ,

∀𝑝 ∈ (0, 1) .

(37)

From (ii), for all 𝑝 > 𝑞, the following holds:
𝜙󸀠 (𝐺−1 (𝑝)) 𝜙󸀠 (𝐹−1 (𝑞))

≥ 𝜙󸀠 (𝐺−1 (𝑞)) 𝜙󸀠 (𝐹−1 (𝑝)) . (38)

Therefore, it suffices to prove that

∫𝑝
0

𝑞𝜙󸀠 (𝐺−1 (𝑞))
𝑔 (𝐺−1 (𝑝)) 𝑑𝐹−1 (𝑞)

≥ ∫𝑝
0

𝑞𝜙󸀠 (𝐺−1 (𝑞))
𝑓 (𝐹−1 (𝑝)) 𝑑𝐺−1 (𝑞) , ∀𝑝 ∈ (0, 1) .

(39)

For two arbitrary values 𝑝 and 𝑞 in (0, 1), consider
the measure 𝑊(𝑞, 𝑝) is defined as in the proof of Theo-
rem 9. From (32), the assumption that 𝑋≤imit 𝑌 implies
∫𝑞∗
0
𝑑𝑊(𝑞, 𝑝) ≥ 0, for all 𝑝, 𝑞∗ ∈ (0, 1). As is implied by

assumption (ii), 𝜙󸀠(𝐺−1(𝑞)) is nonnegative and decreasing in𝑞 ∈ (0, 1).Hence Lemma 2 (ii) immediately gives

∫1
0
𝜙󸀠 (𝐺−1 (𝑞)) 𝑑𝑊 (𝑞, 𝑝) ≥ 0, ∀𝑝, 𝑞 ∈ (0, 1) , (40)

which makes (39) a valid statement. This ends the proof.

2.3. Series and Parallel Systems. We consider another relia-
bility application of the imit order. Suppose that 𝑃1 and 𝑃2
denote two parallel systems and that 𝑆1 and 𝑆2 denote two
series systems each consisting of 𝑛 i.i.d. components. Further,
assume that𝑋1, 𝑋2, . . . , 𝑋𝑛 are i.i.d. lifetime randomvariables
with distribution 𝐹 and that 𝑌1, 𝑌2, . . . , 𝑌𝑛 are i.i.d. lifetime
random variables with distribution 𝐺. Denote by

𝑋𝑛:𝑛 = max {𝑋1, 𝑋2, . . . , 𝑋𝑛} ,
𝑌𝑛:𝑛 = max {𝑌1, 𝑌2, . . . , 𝑌𝑛} (41)

the lifetimes of 𝑃1 and 𝑃2, respectively. Further,
𝑋1:𝑛 = min {𝑋1, 𝑋2, . . . , 𝑋𝑛} ,
𝑌1:𝑛 = min {𝑌1, 𝑌2, . . . , 𝑌𝑛} (42)

denote the lifetimes of 𝑆1 and 𝑆2, respectively. Next we
focus on relations between the imit ordering of two systems
lifetimes and the imit ordering of their components lifetimes.

Theorem 12. Let 𝑋 and 𝑌 be two nonnegative random
variables with absolutely continuous distribution functions. Let𝑋1, 𝑋2, . . . , 𝑋𝑛 and 𝑌1, 𝑌2, . . . , 𝑌𝑛 be i.i.d. copies of 𝑋 and 𝑌,
respectively. Then

𝑋≤𝑖𝑚𝑖𝑡 𝑌 󳨐⇒
𝑋1:𝑛 ≤𝑖𝑚𝑖𝑡 𝑌1:𝑛. (43)

Proof. First, denote by𝐹1:𝑛 and𝐺1:𝑛 the distribution functions
of𝑋1:𝑛 and 𝑌1:𝑛, respectively, given by

𝐹1:𝑛 (𝑡) = 1 − (1 − 𝐹 (𝑥))𝑛 ,
𝐺1:𝑛 (𝑡) = 1 − (1 − 𝐺 (𝑡))𝑛 ,

𝑡 ≥ 0,
(44)

from which we get

𝐹−11:𝑛 (𝑢) = 𝐹−1 (1 − (1 − 𝑢)1/𝑛) , 𝑢 ∈ (0, 1) , (45)

and, similarly,

𝐺−11:𝑛 (𝑢) = 𝐺−1 (1 − (1 − 𝑢)1/𝑛) , 𝑢 ∈ (0, 1) . (46)
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Therefore, if we denote by 𝑓1:𝑛 and 𝑔1:𝑛 the density functions
of𝑋1:𝑛 and 𝑌1:𝑛, respectively, then for any 𝑢 ∈ (0, 1) we have

1
𝑓1:𝑛 (𝐹−11:𝑛 (𝑢)) =

(1 − 𝑢)1/𝑛−1
𝑛𝑓 (𝐹−1 (1 − (1 − 𝑢)1/𝑛)) ,

1
𝑔1:𝑛 (𝐺−11:𝑛 (𝑢)) =

(1 − 𝑢)1/𝑛−1
𝑛𝑔 (𝐺−1 (1 − (1 − 𝑢)1/𝑛)) .

(47)

Now, we can write𝑋1:𝑛 ≤imit 𝑌1:𝑛 if, and only if,

∫𝑝
󸀠

0

𝑞󸀠𝑑𝐹−11:𝑛 (𝑞󸀠)
𝑔1:𝑛 (𝐺−11:𝑛 (𝑝󸀠)) ≥ ∫𝑝

󸀠

0

𝑞󸀠𝑑𝐺−11:𝑛 (𝑞󸀠)
𝑓1:𝑛 (𝐹−11:𝑛 (𝑝󸀠)) ,

∀𝑝󸀠 ∈ (0, 1) ,
(48)

or, equivalently, if

∫𝑝
󸀠

0

𝑞󸀠𝑑𝐹−1 (1 − (1 − 𝑞󸀠)1/𝑛)
𝑛𝑔 (𝐺−1 (1 − (1 − 𝑝󸀠)1/𝑛))

≥ ∫𝑝
󸀠

0

𝑞󸀠𝑑𝐺−1 (1 − (1 − 𝑞󸀠)1/𝑛)
𝑛𝑓 (𝐹−1 (1 − (1 − 𝑝󸀠)1/𝑛)) , ∀𝑝󸀠 ∈ (0, 1) .

(49)

By making the change of variable 𝑞 = 1 − (1 − 𝑞󸀠)1/𝑛 and
also taking 𝑞 = 1 − (1 − 𝑞󸀠)1/𝑛 in (49), we conclude that𝑋1:𝑛 ≤imit 𝑌1:𝑛 holds if, and only if, 𝑋1:𝑛 ≤imit 𝑌1:𝑛, if, and only
if,

∫𝑝
0

𝜓 (𝑞) 𝑑𝐹−1 (𝑞)
𝑔 (𝐺−1 (𝑝)) ≥ ∫𝑝

0

𝜓 (𝑞) 𝑑𝐺−1 (𝑞)
𝑓 (𝐹−1 (𝑝)) ,

∀𝑝 ∈ (0, 1) ,
(50)

where

𝜓 (𝑞) = (1 − 𝑞)𝑛−1 (1 − (1 − 𝑞)𝑛) , 𝑞 ∈ (0, 1) . (51)

From (50), we know that𝑋1:𝑛 ≤imit 𝑌1:𝑛 if, and only if,

∫1
0

𝜓 (𝑞)
𝑞 𝑑𝑊(𝑞, 𝑝) ≥ 0, ∀𝑝 ∈ (0, 1) , (52)

in which 𝑊(𝑞, 𝑝) is defined as before in Theorem 9. On
the other side, we obtain by assumption, as in the proof of
Theorem 9, that ∫𝑞∗

0
𝑑𝑊(𝑞, 𝑝) ≥ 0, for all 𝑝, 𝑞∗ ∈ (0, 1).

Since
𝜓 (𝑞)
𝑞 = (1 − 𝑞)𝑛−1 (1 + (1 − 𝑞) + ⋅ ⋅ ⋅ + (1 − 𝑞)𝑛−1) , (53)

is nonnegative and decreasing for any 𝑞 ∈ (0, 1), thus an
application of Lemma 2 (ii) leads to (52). Hence, the proof
is completed.

Theorem 13. In the setting of Theorem 12,

𝑋𝑛:𝑛 ≤𝑖𝑚𝑖𝑡 𝑌𝑛:𝑛 󳨐⇒
𝑋≤𝑖𝑚𝑖𝑡 𝑌. (54)

Proof. Suppose that 𝐹𝑛:𝑛 and 𝐺𝑛:𝑛 denote the distribution
functions of𝑋𝑛:𝑛 and 𝑌𝑛:𝑛, respectively, which are given by

𝐹𝑛:𝑛 (𝑡) = 𝐹𝑛 (𝑥) ,
𝐺𝑛:𝑛 (𝑡) = 𝐺𝑛 (𝑡) ,

𝑡 ≥ 0,
(55)

leading to

𝐹−1𝑛:𝑛 (𝑢) = 𝐹−1 (𝑢1/𝑛) ,
𝐺−1𝑛:𝑛 (𝑢) = 𝐺−1 (𝑢1/𝑛)

for any 𝑢 ∈ (0, 1) .
(56)

By considering 𝑓𝑛:𝑛 and 𝑔𝑛:𝑛 as the density functions of 𝑋𝑛:𝑛
and 𝑌𝑛:𝑛, respectively, for any 𝑢 ∈ (0, 1), the following holds:

1
𝑓𝑛:𝑛 (𝐹−1𝑛:𝑛 (𝑢)) =

𝑢1/𝑛−1
𝑛𝑓 (𝐹−1 (𝑢1/𝑛)) ,

1
𝑔𝑛:𝑛 (𝐺−1𝑛:𝑛 (𝑢)) =

𝑢1/𝑛−1
𝑛𝑔 (𝐺−1 (𝑢1/𝑛)) .

(57)

Now, let us denote 𝑑𝑊∗(𝑞, 𝑝) = 𝐼[𝑞 < 𝑝]𝑤∗(𝑞, 𝑝), for any𝑝, 𝑞 ∈ (0, 1), such that

𝑤∗ (𝑞, 𝑝) = 𝑞𝑛 ( 𝑑𝐹−1 (𝑞)
𝑔 (𝐺−1 (𝑝)) −

𝑑𝐺−1 (𝑞)
𝑓 (𝐹−1 (𝑝))) . (58)

Using the identities (56) and (57), it follows, by similar
arguments to those provided for the proof ofTheorem 12, that

∫𝑝
0

𝑞𝑛𝑑𝐹−1 (𝑞)
𝑔 (𝐺−1 (𝑝)) ≥ ∫𝑝

0

𝑞𝑛𝑑𝐺−1 (𝑞)
𝑓 (𝐹−1 (𝑝)) , ∀𝑝 ∈ (0, 1) , (59)

which is equivalent to

∫𝑝
0
𝑑𝑊∗ (𝑞, 𝑝) ≥ 0, ∀𝑝 ∈ (0, 1) . (60)

Thus,

∫𝑞
∗

0
𝑑𝑊∗ (𝑞, 𝑝) ≥ 0, for any 𝑞∗ ≥ 𝑝 ∈ (0, 1) . (61)

In addition, if𝑋𝑛:𝑛 ≤imit 𝑌𝑛:𝑛 then∫𝑝0 𝑞𝑛𝑑𝐺−1(𝑞)/ ∫𝑝0 𝑞𝑛𝑑𝐹−1(𝑞)
is increasing in 𝑝 ∈ (0, 1). In view of (59), for all 𝑞∗ ≤ 𝑝 ∈(0, 1),

∫𝑞∗
0
𝑞𝑛𝑑𝐺−1 (𝑞)

∫𝑞∗
0
𝑞𝑛𝑑𝐹−1 (𝑞) ≤

∫𝑝
0
𝑞𝑛𝑑𝐺−1 (𝑞)

∫𝑝
0
𝑞𝑛𝑑𝐹−1 (𝑞) ≤

𝑓 (𝐹−1 (𝑝))
𝑔 (𝐺−1 (𝑝)) , (62)

which means that

∫𝑞
∗

0
𝑑𝑊∗ (𝑞, 𝑝) ≥ 0, for any 𝑞∗ ≤ 𝑝 ∈ (0, 1) . (63)
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Combining (61) and (63), we have

∫𝑞
∗

0
𝑑𝑊∗ (𝑞, 𝑝) ≥ 0, ∀𝑝, 𝑞∗ ∈ (0, 1) . (64)

By Lemma 2 (ii), it is implied that

∫1
0
(1𝑞)
𝑛−1 𝑑𝑊∗ (𝑞, 𝑝) ≥ 0, ∀𝑝 ∈ (0, 1) , (65)

which is equivalent to saying that𝑋≤imit 𝑌.
2.4. Comparisons of Mixtures of a Family of Semiparametric
Distributions. In this subsection, preservation of the order
“≤imit” under mixtures of a typical family of semiparametric
distributions which includes some well-known models in
reliability and survival analysis is established and vice versa.
Some examples of interest are given to authenticate the
results. Semiparametric distributions that are distinguished
by having a parameter that is itself a distribution function and
thereby extending the family from which this distribution
came play an important role in statistical literature (cf. Powell
[25] and Marshall and Olkin [6]). In this work, we consider
a typical family of semiparametric distributions that includes
some well-known models such as proportional hazards and
proportional reversed hazards families. Suppose that 𝑋 is a
random variable with distribution function 𝐹, and let 𝜃 be
a parameter with parameter space 𝜒, where 𝜒 is an arbitrary
subset of𝑅 (countable or uncountable).We focus on a general
semiparametric family with the underlying distribution 𝐹
that provides a way to add a new parameter 𝜃 through the
relation

𝐹 (𝑥 | 𝜃) = 𝛾 (𝐹 (𝑥) , 𝜃) , 𝑥 ∈ R, 𝜃 ∈ 𝜒, (66)

where
𝛾 : [0, 1] 󳨀→ [0, 1] ,

𝑑 󳨀→ 𝛾 (𝑑, 𝜃) , (67)

being a nonnegative one to one function satisfying the
following conditions:

(i) 0 ≤ 𝛾(𝑑, 𝜃) ≤ 1, for all 𝑑 ∈ [0, 1] and 𝜃 ∈ 𝜒.
(ii) 𝛾(0, 𝜃) = 0, for all 𝜃 ∈ 𝜒.
(iii) 𝛾(1, 𝜃) = 1, for all 𝜃 ∈ 𝜒.
(iv) 𝛾 is strictly increasing and right continuous for all 𝜃 ∈𝜒.
Under conditions (i)–(iv), 𝐹(⋅ | 𝜃) in (66) is a distribution

function for every 𝜃 ∈ 𝜒. By choosing a function
𝜙 : [0, 1] 󳨀→ [0,∞) ,

𝑡 󳨀→ 𝜙 (𝑡, 𝜃) , (68)

one obtains a general form for the function 𝛾 in (66) as

𝛾 (𝑑, 𝜃) = ∫𝑑
0
𝜙 (𝑡, 𝜃) 𝑑𝑡

∫1
0
𝜙 (𝑡, 𝜃) 𝑑𝑡 . (69)

Below we provide some choices for the function 𝜙 in (69)
leading to several important models.

(i) Order statistics: 𝜙(𝑡, 𝜃) = 𝑡𝑖−1(1 − 𝑡)𝜃−𝑖, 𝑖 = 1, 2, . . . , 𝜃
with 𝜃 ∈ 𝑁.

(ii) Lower records: 𝜙(𝑡, 𝜃) = (− ln(𝑡))𝜃−1, with 𝜃 ∈ 𝑁.
(iii) Upper records: 𝜙(𝑡, 𝜃) = (− ln(1 − 𝑡))𝜃−1, with 𝜃 ∈ 𝑁.
(iv) Proportional hazards: 𝜙(𝑡, 𝜃) = 1 − (1 − 𝑡)𝜃, where𝜃 ∈ 𝑅+.
(v) Proportional reversed hazards: 𝜙(𝑡, 𝜃) = 𝑡𝜃, where 𝜃 ∈𝑅+.
(vi) Upper tail distribution: 𝜙(𝑡, 𝜃) = 𝐼(𝑡 ≥ 𝜃) with 𝜃 ∈(0, 1).
(vii) Lower tail distribution: 𝜙(𝑡, 𝑝) = 𝐼(𝑡 < 𝜃) with 𝜃 ∈(0, 1).
In many practical situations the parameter 𝜃 may not

be constant due to various reasons, and the contingency of
heterogeneity is sometimes unpredictable and unexplained.
The heterogeneity may often not be possible to be neglected.
Further, it mostly happens that data from several popula-
tions is mixed and information about which subpopulation
gave rise to individual data points is unavailable. There are
numerous cases in practical situations in which data are
coming from various sources and the statistician, therefore,
needs to be aware of the initial source from which data have
been derived. The mixture of the families of distributions
according to a propermixing rule is useful tomodel such data
sets in frail populations. In the continuing part of the paper,
the mixture of the family of semiparametric distributions
in (66) is considered. Formally, let Θ be a random variable
(discrete or continuous)with support in𝜒having distribution
functionΛ.Let𝑋 and𝑌be twononnegative randomvariables
with distributions𝐹 and𝐺, respectively.Then,we shall denote
by𝑋∗ and 𝑌∗ two random variable with distributions

𝐹∗ (𝑥) = ∫
𝜒
𝛾 (𝐹 (𝑥) , 𝜃) 𝑑Λ (𝜃) , 𝑥 ∈ R, (70)

𝐺∗ (𝑥) = ∫
𝜒
𝛾 (𝐺 (𝑥) , 𝜃) 𝑑Λ (𝜃) , 𝑥 ∈ R, (71)

respectively. Before stating the main result of this subsection,
we introduce some notations. For a given function 𝛾 satisfy-
ing the conditions (i)–(iv) as before, set

𝐿 (𝑑) = ∫
𝜒
𝛾 (𝑑, 𝜃) 𝑑Λ (𝜃) , 𝑑 ∈ [0, 1] , (72)

which is nonnegative, strictly increasing, and right continu-
ous. Note that we could write 𝐿(𝑑) = 𝐸[𝛾(𝑑, Θ)] for 𝑑 ∈ [0, 1].
In view of (70) and (71), we have

𝐹∗ (𝑥) = 𝐿 (𝐹 (𝑥)) ,
𝐺∗ (𝑥) = 𝐿 (𝐺 (𝑥)) . (73)

The following result, under some appropriate assump-
tions, translates the imit order in 𝑋 and 𝑌 to the imit order
between𝑋∗ and 𝑌∗ and vice versa.
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Theorem 14. Let 𝑋 and 𝑌 be two nonnegative random
variables with absolutely continuous distribution functions 𝐹
and 𝐺, and let 𝑋∗ and 𝑌∗ have distributions 𝐹∗ and 𝐺∗ as in
(70) and (71), respectively.

(i) If 𝐿(𝑑)/𝑑 is decreasing in 𝑑 ∈ (0, 1] then
𝑋≤𝑖𝑚𝑖𝑡 𝑌 󳨐⇒
𝑋∗ ≤𝑖𝑚𝑖𝑡 𝑌∗. (74)

(ii) If 𝐿(𝑑)/𝑑 is increasing in 𝑑 ∈ (0, 1] then
𝑋∗ ≤𝑖𝑚𝑖𝑡 𝑌∗ 󳨐⇒
𝑋≤𝑖𝑚𝑖𝑡 𝑌. (75)

Proof. First denote by 𝑓∗ and 𝑔∗ the density functions of𝑋∗
and 𝑌∗, respectively, and denote by 𝐿−1 the right continuous
inverse function of 𝐿 in (72) which is given by 𝐿−1(𝑞) =
inf{𝑥 ∈ (0, 1) | 𝐿(𝑥) ≥ 𝑞}. Appealing to the identities in (73),
for any 𝑢 ∈ (0, 1), we have

𝐹∗−1 (𝑢) = 𝐹−1 (𝐿−1 (𝑢)) ,
𝐺∗−1 (𝑢) = 𝐺−1 (𝐿−1 (𝑢)) ,
1

𝑓∗ (𝐹∗−1 (𝑢)) =
1

𝐿󸀠 (𝐿−1 (𝑢)) 𝑓 (𝐹−1 (𝐿−1 (𝑢))) ,
(76)

and, similarly,

1
𝑔∗ (𝐺∗−1 (𝑢)) =

1
𝐿󸀠 (𝐿−1 (𝑢)) 𝑔 (𝐺−1 (𝐿−1 (𝑢))) . (77)

Therefore,𝑋∗ ≤imit 𝑌∗ if, and only if,

∫𝑝
0

𝑞𝑑𝐹−1 (𝐿−1 (𝑞))
𝐿󸀠 (𝐿−1 (𝑝)) 𝑔 (𝐺−1 (𝐿−1 (𝑝)))
≥ ∫𝑝
0

𝑞𝑑𝐺−1 (𝐿−1 (𝑞))
𝐿󸀠 (𝐿−1 (𝑝)) 𝑓 (𝐹−1 (𝐿−1 (𝑝))) ,

∀𝑝 ∈ (0, 1) ,

(78)

or, equivalently, if

∫𝑝
0

𝑞𝑑𝐹−1 (𝐿−1 (𝑞))
𝑔 (𝐺−1 (𝐿−1 (𝑝))) ≥ ∫𝑝

0

𝑞𝑑𝐺−1 (𝐿−1 (𝑞))
𝑓 (𝐹−1 (𝐿−1 (𝑝))) ,

∀𝑝 ∈ (0, 1) .
(79)

Since 𝐿−1(0) = 0 thus by making a proper change of
variable, one observes from (79) that𝑋∗ ≤imit 𝑌∗ is equivalent
to

∫𝑝
0

𝐿 (𝑞) 𝑑𝐹−1 (𝑞)
𝑔 (𝐺−1 (𝑝)) ≥ ∫𝑝

0

𝐿 (𝑞) 𝑑𝐺−1 (𝑞)
𝑓 (𝐹−1 (𝑝)) ,

∀𝑝 ∈ (0, 1) ,
(80)

which holds if, and only if,

∫1
0

𝐿 (𝑞)
𝑞 𝑑𝑊(𝑞, 𝑝) ≥ 0, ∀𝑝 ∈ (0, 1) , (81)

in which𝑊(𝑞, 𝑝) is defined as in the proof of Theorem 9, for
which (32) holds provided that 𝑋≤imit 𝑌. By the assumption
that 𝐿(𝑞)/𝑞 is decreasing we can use Lemma 2 (ii) to conclude
(81). This ends the proof of (i). Now, assume that 𝑋∗ ≤imit 𝑌∗
and denote 𝑑𝑊∗∗(𝑞, 𝑝) = 𝐼[𝑞 < 𝑝]𝑤∗∗(𝑞, 𝑝) with

𝑤∗∗ (𝑞, 𝑝) = 𝐿 (𝑞) ( 𝑑𝐹−1 (𝑞)
𝑔 (𝐺−1 (𝑝)) −

𝑑𝐺−1 (𝑞)
𝑓 (𝐹−1 (𝑝))) . (82)

From (80), we see that

∫𝑞
∗

0
𝑑𝑊∗∗ (𝑞, 𝑝) ≥ 0, ∀𝑞∗ > 𝑝 ∈ (0, 1) . (83)

Besides, if𝑋∗ ≤imit 𝑌∗ then
∫𝑝
0
𝐿 (𝑞) 𝑑𝐺−1 (𝑞)

∫𝑝
0
𝐿 (𝑞) 𝑑𝐹−1 (𝑞) is increasing in 𝑝 ∈ (0, 1) . (84)

It thus follows using (80) that

∫𝑞∗
0
𝐿 (𝑞) 𝑑𝐺−1 (𝑞)

∫𝑞∗
0
𝐿 (𝑞) 𝑑𝐹−1 (𝑞) ≤

∫𝑝
0
𝐿 (𝑞) 𝑑𝐺−1 (𝑞)

∫𝑝
0
𝐿 (𝑞) 𝑑𝐹−1 (𝑞)

≤ 𝑓 (𝐹−1 (𝑝))
𝑔 (𝐺−1 (𝑝)) ,

∀𝑞∗ ≤ 𝑝 ∈ (0, 1) ,

(85)

from which we get

∫𝑞
∗

0
𝑑𝑊∗∗ (𝑞, 𝑝) ≥ 0, ∀𝑞∗ ≤ 𝑝 ∈ (0, 1) . (86)

Therefore, we conclude from (83) and (86) that

∫𝑞
∗

0
𝑑𝑊∗∗ (𝑞, 𝑝) ≥ 0, ∀𝑝, 𝑞∗ ∈ (0, 1) . (87)

From assumption 𝑞/𝐿(𝑞) is decreasing in 𝑞 ∈ (0, 1). Now,
using Lemma 2 (ii), it is deduced that

∫1
0

𝑞
𝐿 (𝑞)𝑑𝑊∗∗ (𝑞, 𝑝) ≥ 0, ∀𝑝 ∈ (0, 1) . (88)

That is,𝑋≤imit 𝑌.The proof of (ii) is complete.

Example 15. Let𝑋1, 𝑋2, . . . and 𝑌1, 𝑌2, . . . each be a sequence
of independent and identically distributed random variables
with distribution functions 𝐹 and 𝐺, respectively. Let𝑁 be a
positive integer-valued random variable, independent of𝑋𝑖’s
and of 𝑌𝑖’s with probability mass function 𝜆(𝑛) = 𝑃(𝑁 = 𝑛),𝑛 ∈ 𝑁 in which𝑁 is the set of natural numbers. Denote by

𝑋1:𝑁 = min {𝑋1, 𝑋2, . . . , 𝑋𝑁} ,
𝑌1:𝑁 = min {𝑌1, 𝑌2, . . . , 𝑌𝑁} (89)
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the extreme minimum order statistics of the two sequences
and denote their distribution functions by 𝐹1:𝑁 and 𝐺1:𝑁,
respectively. It can be easily shown that

𝐹1:𝑁 (𝑥) = 𝐸 [𝛾 (𝐹 (𝑥) ,𝑁)] ,
𝐺1:𝑁 (𝑥) = 𝐸 [𝛾 (𝐺 (𝑥) ,𝑁)] , (90)

where

𝛾 (𝑑, 𝑛) = 1 − (1 − 𝑑)𝑛 , 𝑑 ∈ (0, 1) . (91)

Now, since for any 𝑑 ∈ (0, 1) and 𝑛 ∈ 𝑁, we have

𝛾 (𝑑, 𝑛)
𝑑 = 1 + (1 − 𝑑) + ⋅ ⋅ ⋅ + (1 − 𝑑)𝑛−1 , (92)

which is decreasing in 𝑑 ∈ (0, 1), for all 𝑛 ∈ 𝑁, thus 𝐿(𝑑)/𝑑
will also be decreasing in 𝑑 ∈ (0, 1) where 𝐿(𝑑) = 𝐸[𝛾(𝑑,𝑁)]
as in (72). Now, Theorem 14 (i) is applicable and provides

𝑋1 ≤imit 𝑌1 󳨐⇒
𝑋1:𝑁 ≤imit 𝑌1:𝑁. (93)

In a similar manner, if we denote by

𝑋𝑁:𝑁 = max {𝑋1, 𝑋2, . . . , 𝑋𝑁} ,
𝑌𝑁:𝑁 = max {𝑌1, 𝑌2, . . . , 𝑌𝑁} (94)

the extreme maximum order statistics of the two sequences
then they have respective distribution functions

𝐹𝑁:𝑁 (𝑥) = 𝐸 [𝛾 (𝐹 (𝑥) ,𝑁)] ,
𝐺𝑁:𝑁 (𝑥) = 𝐸 [𝛾 (𝐺 (𝑥) ,𝑁)] , (95)

where

𝛾 (𝑑, 𝑛) = 𝑑𝑛, 𝑑 ∈ (0, 1) . (96)

Because 𝛾(𝑑, 𝑛)/𝑑 = 𝑑𝑛−1 is increasing in 𝑑 ∈ (0, 1), for all𝑛 ∈ 𝑁, 𝐿(𝑑)/𝑑 will be increasing in 𝑑 ∈ (0, 1). Hence, by
Theorem 14 (ii),

𝑋𝑁:𝑁 ≤imit 𝑌𝑁:𝑁 󳨐⇒
𝑋1 ≤imit 𝑌1. (97)

Example 16. Marshall and Olkin [26], as a general method of
introducing a parameter (tilt parameter) to give more flexi-
bility inmodelling, discussed new semiparametric families of
distributions. Given a distribution function 𝐹, they supposed
that

𝐹 (𝑥 | 𝜃) = 𝐹 (𝑥)
1 − (1 − 𝜃) (1 − 𝐹 (𝑥)) , − ∞ < 𝑥 < +∞, (98)

where 𝜃 is a positive parameter. By making a comparison
between (66) and (98) we see that 𝛾must be chosen as

𝛾 (𝑑, 𝜃) = 𝑑
1 − (1 − 𝜃) (1 − 𝑑) . (99)

Recently, Nanda and Das [27] considered a mixture form of
the distribution (98) where 𝜃 is taken as a random variable
in order to investigate closure properties of the model with
respect to some stochastic orders. For two given random
variables 𝑋 and 𝑌 with respective distribution functions 𝐹
and 𝐺, we assume that𝑋∗ and 𝑌∗ are random variables with
distributions

𝐹∗ (𝑥) = 𝐸 [𝛾 (𝐹 (𝑥) , Θ)] ,
𝐺∗ (𝑥) = 𝐸 [𝛾 (𝐺 (𝑥) , Θ)] , (100)

respectively, where Θ is a nonnegative random variable. It is
possible to observe 𝐿(𝑑)/𝑑, when 𝜒 ⊆ [0, 1], is decreasing
in 𝑑 ∈ (0, 1), and in parallel, when 𝜒 ⊆ [1,∞), 𝐿(𝑑)/𝑑 is
increasing in 𝑑 ∈ (0, 1).Therefore, byTheorem 14 (i), if𝑃(Θ ≤1) = 1, then 𝑋≤imit 𝑌 implies 𝑋∗ ≤imit 𝑌∗ and on the other
hand when 𝑃(Θ ≥ 1) = 1, using Theorem 14 (ii), 𝑋∗ ≤imit 𝑌∗
gives𝑋≤imit 𝑌.
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