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Review of Calculus and Probability

We review in this chapter some basic topics in calculus and probability, which will be useful
in later chapters.

12.1 Review of Integral Calculus
In our study of random variables, we often require a knowledge of the basics of integral
calculus, which will be briefly reviewed in this section.

Consider two functions: f(x) and F(x). If F�(x) � f(x), we say that F(x) is the indefi-
nite integral of f(x). The fact that F(x) is the indefinite integral of f(x) is written

F(x) � � f (x) dx

The following rules may be used to find the indefinite integrals of many functions (C is
an arbitrary constant):

� (1) dx � x � C

� af(x) dx � a � f(x) dx (a is any constant)

� [ f(x) � g(x)] dx � � f (x) dx � � g(x) dx

� xn dx � �
n
xn

�

�1

1
� � C (n � �1)

� x�1 dx � ln x � C

� ex dx � ex � C

� ax dx � �
ln
ax

a
� � C (a � 0, a � 1)

� [ f (x)]nf �(x) dx � �
[ f

n
(x
�

)]n

1

�1

� � C (n � �1)

� f (x)�1f �(x) dx � ln f (x) � C



For two functions u(x) and v(x),

� u(x)v�(x) dx � u(x)v(x) � � v(x)u�(x) dx (Integration by parts)

� e f (x)f �(x) dx � e f (x) � C

� a f (x)f �(x) dx � �
a
ln

f (

a

x)

� � C (a � 0, a � 1)

The concept of an integral is important for the following reasons. Consider a function f(x)
that is continuous for all points satisfying a 	 x 	 b. Let x0 � a, x1 � x0 � 
, x2 �
x1 � 
, . . . , xi � xi�1 � 
, xn � xn�1 � 
 � b, where 
 � �

b�
n

a
�. From Figure 1, we see

that as 
 approaches zero (or equivalently, as n grows large),

�
i�n

i�1

f (xi) 


will closely approximate the area under the curve y � f (x) between x � a and x � b. If
f (x) is continuous for all x satisfying a 	 x 	 b, it can be shown that the area under the
curve y � f (x) between x � a and x � b is given by

lim

→0

�
i�n

i�1

f (xi)


which is written as

�b

a
f (x) dx

or the definite integral of f (x) from x � a to x � b. The Fundamental Theorem of Cal-
culus states that if f (x) is continuous for all x satisfying a 	 x 	 b, then

�b

a
f (x) dx � F(b) � F(a)

where F(x) is any indefinite integral of f (x). F(b) � F(a) is often written as [F(x)]b
a. Ex-

ample 1 illustrates the use of the definite integral.

E X A M P L E  1

Suppose that at time t (measured in hours, and the present t � 0), the rate a(t) at which
customers enter a bank is a(t) � 100t. During the next 2 hours, how many customers will
enter the bank?

Customer Arrivals at a Bank
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y

x

y = f(x)

x1
x0 = a b  = xnxn –1

x2 x3

F I G U R E  1
Relation of Area and

Definite Integral
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Solution Let t0 � 0, t1 � t0 � 
, t2 � t1 � 
, . . . , tn � tn�1 � 
 � 2 (of course, 
 � �
2
n

�). Be-
tween time ti�1 and time ti, approximately 100ti
 customers will arrive. Therefore, the to-
tal number of customers to arrive during the next 2 hours will equal

lim

→0

�
i�n

i�1

100ti


(see Figure 2). From the Fundamental Theorem of Calculus,

lim

→0

�
i�n

i�1

100ti
 � �2

0
(100t) dt � [50t2]2

0 � 200 � 0 � 200

Thus, 200 customers will arrive during the next 2 hours.

P R O B L E M S
Group A

a(t)

a(t) = 100t

∆ = 0.1

∆
t

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t190 = t0 t20  = 2

200

150

100

50

F I G U R E  2
Relation of Total

Arrivals in Next 2 Hours
to Area under a (t )

Curve

1 The present is t � 0. At a time t years from now, I earn
income at a rate e2t. How much money do I earn during the
next 5 years?

2 If money is continuously discounted at a rate of r% per
year, then $1 earned t years in the future is equivalent to e�rt

dollars earned at the present time. Use this fact to determine
the present value of the income earned in Problem 1.

3 At time 0, a company has I units of inventory in stock.
Customers demand the product at a constant rate of d units
per year (assume that I � d). The cost of holding 1 unit of
stock in inventory for a time 
 is $h
. Determine the total
holding cost incurred during the next year.



710 C H A P T E R 1 2 Review of Calculus and Probability

12.2 Differentiation of Integrals
In our study of inventory theory in Chapter 16, we will have to differentiate a function
whose value depends on an integral. Let f (x, y) be a function of variables x and y, and let
g(y) and h(y) be functions of y. Then

F( y) � �h( y)

g( y)
f (x, y) dx

is a function only of y. Leibniz’s rule for differentiating an integral states that

If F( y) � �h( y)

g( y)
f (x, y) dx, then

F�( y) � h�( y) f (h( y), y) � g�( y) f (g( y), y) � �h( y)

g( y)
�
∂f (

∂
x
y
, y)
� dx

Example 2 illustrates Leibniz’s rule.

E X A M P L E  2

For

F( y) � �y 2

1
�
y

x
dx
�

find F�( y).

Solution We have that f (x, y) � �
y
x

�, h( y) � y2, h�( y) � 2y, �
∂
∂
y
f
� � �

1
x

�, g( y) � 1, g�( y) � 0. Then

F�( y) � 2y ��
y
y
2�� � 0 ��

1
y

�� � �y 2

1
�
d
x
x
�

� 2 � [ln x]1
y2

� 2 � ln y2 � 0 � 2 � 2 ln y

P R O B L E M S
Group A

Leibniz’s Rule

For each of the following functions, use Leibniz’s rule to
find F�( y):

1 F( y) � �y
y2

(2y � x) dx

2 F( y) � �y
0 yx2 dx

3 F( y) � �y
0 6(5 � x) f (x) dx � �y

∞ 4(x � 5) f (x) dx

12.3 Basic Rules of Probability
In this section, we review some basic rules and definitions that you may have encountered
during your previous study of probability.

D E F I N I T I O N ■ Any situation where the outcome is uncertain is called an experiment. ■



For example, drawing a card from a deck of cards would be an experiment.

D E F I N I T I O N ■

For example, if we toss a die and are interested in the number of dots showing, then
S � {1, 2, 3, 4, 5, 6}.

D E F I N I T I O N ■

With each event E, we associate an event E�. E� consists of the points in the sample space
that are not in E. With each event E, we also associate a number P(E), which is the prob-
ability that event E will occur when we perform the experiment. The probabilities of
events must satisfy the following rules of probability:

Rule 1 For any event E, P(E) � 0.

Rule 2 If E � S (that is, if E contains all points in the sample space), then P(E) � 1.

Rule 3 If E1, E2, . . . , En is a mutually exclusive collection of events, then

P(E1 � E2 � � � � � En) � �
k�n

k�1

P(Ek)

Rule 4 P(E�) � 1 � P(E).

D E F I N I T I O N ■

Thus, events E1 and E2 are independent if and only if knowledge that E1 has occurred
does not change the probability that E2 has occurred, and vice versa. From (1), E1 and E2

are independent if and only if

�
P(E

P
1

(E
�

1)
E2)

� � P(E2) or P(E1 � E2) � P(E1) P(E2) (2)

E X A M P L E  3

Suppose we draw a single card from a deck of 52 cards.

1 What is the probability that a heart or spade is drawn?

Drawing a Card

For two events E1 and E2, P(E2|E1) (the conditional probability of E2 given E1)
is the probability that the event E2 will occur given that event E1 has occurred.
Then

P(E2|E1) � �
P(E

P
1

(E
�

1)
E2)

� ■ (1)

Suppose events E1 and E2 both occur with positive probability. Events E1 and E2

are independent if and only if P(E2|E1) � P(E2) (or equivalently, P(E1|E2) �
P(E1)). ■

An event E consists of any collection of points (set of outcomes) in the sample
space. ■

A collection of events E1, E2, . . . , En is said to be a mutually exclusive
collection of events if for i � j (i � 1, 2, . . . , n and j � 1, 2, . . . , n), Ei and Ej

have no points in common. ■

For any experiment, the sample space S of the experiment consists of all possible
outcomes for the experiment. ■

1 2 . 3 Basic Rules of Probability 711



2 What is the probability that the drawn card is not a 2?

3 Given that a red card has been drawn, what is the probability that it is a diamond? Are
the events

E1 � red card is drawn

E2 � diamond is drawn

independent events?

4 Show that the events

E1 � spade is drawn

E2 � 2 is drawn

are independent events.

Solution 1 Define the events

E1 � heart is drawn

E2 � spade is drawn

E1 and E2 are mutually exclusive events with P(E1) � P(E2) � �
1
4

�. We seek P(E1 � E2).
From probability rule 3,

P(E1 � E2) � P(E1) � P(E2) � (�
1
4

�) � (�
1
4

�) � �
1
2

�

2 Define event E � a 2 is drawn. Then P(E) � �
5
4
2
� � �

1
1
3
�. We seek P(E�). From probabil-

ity rule 4, P(E�) � 1 � �
1
1
3
� � �

1
1
2
3
�.

3 From (1),

P(E2|E1) � �
P(E

P
1

(E
�

1)
E2)

�

P(E1 � E2) � P(E2) � �
1
5
3
2
� � �

1
4

�

P(E1) � �
2
5
6
2
� � �

1
2

�

Thus,

P(E2|E1) � � �
1
2

�

Since P(E2) � �
1
4

�, we see that P(E2|E1) � P(E2). Thus, E1 and E2 are not independent
events. (This is because knowing that a red card was drawn increases the probability that
a diamond was drawn.)

4 P(E1) � �
1
5

3
2
� � �

1
4

�, P(E2) � �
5
4
2
� � �

1
1
3
�, and P(E1 � E2) � �

5
1
2
�. Since P(E1) P(E2) �

P(E1 � E2), E1 and E2 are independent events. Intuitively, since �
1
4

� of all cards in the 
deck are spades and �

1
4

� of all 2’s in the deck are spades, knowing that a 2 has been drawn
does not change the probability that the card drawn was a spade.

P R O B L E M S
Group A

�
1
4

�

�

�
1
2

�
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1 Suppose two dice are tossed (for each die, it is equally
likely that 1, 2, 3, 4, 5, or 6 dots will show).

a What is the probability that the total of the two dice
will add up to 7 or 11?



b What is the probability that the total of the two dice
will add up to a number other than 2 or 12?
c Are the events

E1 � first die shows a 3
E2 � total of the two dice is 6

independent events?
d Are the events

1 2 . 4 Bayes’ Rule 713

E1 � first die shows a 3
E2 � total of the two dice is 7

independent events?
e Given that the total of the two dice is 5, what is the
probability that the first die showed 2 dots?
f Given that the first die shows 5, what is the proba-
bility that the total of the two dice is even?

12.4 Bayes’ Rule
An important decision often depends on the “state of the world.” For example, we may
want to know whether a person has tuberculosis. Then we would be concerned with the
probability of the following states of the world:

S1 � person has tuberculosis

S2 � person does not have tuberculosis

More generally, n mutually exclusive states of the world (S1, S2, . . . , Sn) may occur. The
states of the world are collectively exhaustive: S1, S2, . . . , Sn include all possibilities. Sup-
pose a decision maker assigns a probability P(Si) to Si. P(Si) is the prior probability of Si.
To obtain more information about the state of the world, the decision maker may observe
the outcome of an experiment. Suppose that for each possible outcome Oj and each possi-
ble state of the world Si, the decision maker knows P(Oj|Si), the likelihood of the outcome
Oj given state of the world Si. Bayes’ rule combines prior probabilities and likelihoods with
the experimental outcomes to determine a post-experimental probability, or posterior prob-
ability, for each state of the world. To derive Bayes’ rule, observe that (1) implies that

P(Si|Oj) � �
P(S

P

i

(

�

Oj)

Oj)
� (3)

From (1), it also follows that

P(Si � Oj) � P(Oj|Si)P(Si) (4)

The states of the world S1, S2, . . . , Sn are collectively exhaustive, so the experimental out-
come Oj (if it occurs) must occur with one of the Si (see Figure 3). Since S1 � Oj, S2 �
Oj, . . . , Sn � Oj are mutually exclusive events, probability rule 3 implies that

P(Oj) � P(S1 � Oj) � P(S2 � Oj) � � � � � P(Sn � Oj) (5)

The probabilities of the form P(Si � Oj) are often referred to as joint probabilities,
and the probabilities P(Oj) are called marginal probabilities. Substituting (4) into (5),
we obtain

P(Oj) � �
k�n

k�1

P(Oj|Sk)P(Sk) (6)

Oj ∩ S1 Oj ∩ S2 Oj ∩ S3 Oj ∩ S4

S1 S2 S3 S4
P(Oj) = P(Oj ∩ S1) + P(Oj ∩ S2) 

+ P(Oj ∩ S3) + P(Oj ∩ S4)

Shaded area = outcome Oj

F I G U R E  3
Illustration of 
Equation (5)



Substituting (4) and (6) into (3) yields Bayes’ rule:

P(Si|Oj) � (7)

The following example illustrates the use of Bayes’ rule.

E X A M P L E  4

Suppose that 1% of all children have tuberculosis (TB). When a child who has TB is given
the Mantoux test, a positive test result occurs 95% of the time. When a child who does
not have TB is given the Mantoux test, a positive test result occurs 1% of the time. Given
that a child is tested and a positive test result occurs, what is the probability that the child
has TB?

Solution The states of the world are

S1 � child has TB

S2 � child does not have TB

The possible experimental outcomes are

O1 � positive test result

O2 � nonpositive test result

We are given the prior probabilities P(S1) � .01 and P(S2) � .99 and the likelihoods
P(O1|S1) � .95, P(O1|S2) � .01, P(O2|S1) � .05, and P(O2|S2) � .99. We seek P(S1|O1).
From (7),

P(S1|O1) �

� � � .49

The reason a positive test result implies only a 49% chance that the child has TB is
that many of the 99% of all children who do not have TB will test positive. For example,
in a typical group of 10,000 children, 9,900 will not have TB and .01(9,900) � 99 chil-
dren will yield a positive test result. In the same group of 10,000 children, .01(10,000) �
100 children will have TB and .95(100) � 95 children will yield a positive test result.
Thus, the probability that a positive test result indicates TB is �95

9
�
5
99

� � �
1
9
9
5
4

�.

P R O B L E M S
Group A

95
�
194

.95(.01)
���
.95(.01) � .01(.99)

P(O1|S1)P(S1)
����
P(O1|S1)P(S1) � P(O1|S2)P(S2)

Bayes’ Rule

P(Oj|Si)P(Si)
��

�
k�n

k�1

P(Oj|Sk)P(Sk)
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1 A desk contains three drawers. Drawer 1 contains two
gold coins. Drawer 2 contains one gold coin and one silver
coin. Drawer 3 contains two silver coins. I randomly choose
a drawer and then randomly choose a coin. If a silver coin
is chosen, what is the probability that I chose drawer 3?

2 Cliff Colby wants to determine whether his South Japan
oil field will yield oil. He has hired geologist Digger Barnes
to run tests on the field. If there is oil in the field, there is a
95% chance that Digger’s tests will indicate oil. If the field
contains no oil, there is a 5% chance that Digger’s tests will
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indicate oil. If Digger’s tests indicate that there is no oil in
the field, what is the probability that the field contains oil?
Before Digger conducts the test, Cliff believes that there is
a 10% chance that the field will yield oil.

3 A customer has approached a bank for a loan. Without
further information, the bank believes there is a 4% chance
that the customer will default on the loan. The bank can run
a credit check on the customer. The check will yield either
a favorable or an unfavorable report. From past experience,
the bank believes that P(favorable report being received)|
customer will default) � �

4
1
0
�, and P(favorable report|

customer will not default) � �
1
9
0
9
0

�. If a favorable report is
received, what is the probability that the customer will
default on the loan?

4 Of all 40-year-old women, 1% have breast cancer. If a
woman has breast cancer, a mammogram will give a positive
indication for cancer 90% of the time. If a woman does not
have breast cancer, a mammogram will give a positive
indication for cancer 9% of the time. If a 40-year-old
woman’s mammogram gives a positive indication for cancer,
what is the probability that she has cancer?

5 Three out of every 1,000 low-risk 50-year-old males
have colon cancer. If a man has colon cancer, a test for

hidden blood in the stool will indicate hidden blood half the
time. If he does not have colon cancer, a test for hidden
blood in the stool will indicate hidden blood 3% of the time.
If the hidden-blood test turns out positive for a low-risk 50-
year-old male, what is the chance that he has colon cancer?

Group B

6 You have made it to the final round of “Let’s Make a
Deal.” You know there is $1 million behind either door 1,
door 2, or door 3. It is equally likely that the prize is behind
any of the three. The two doors without a prize have nothing
behind them. You randomly choose door 2, but before door
2 is opened Monte reveals that there is no prize behind 
door 3. You now have the opportunity to switch and choose
door 1. Should you switch? Assume that Monte plays as
follows: Monte knows where the prize is and will open an
empty door, but he cannot open door 2. If the prize is really
behind door 2, Monte is equally likely to open door 1 or
door 3. If the prize is really behind door 1, Monte must
open door 3. If the prize is really behind door 3, Monte
must open door 1. What is your decision?

12.5 Random Variables, Mean, Variance, and Covariance
The concepts of random variables, mean, variance, and covariance are employed in sev-
eral later chapters.

D E F I N I T I O N ■

Discrete Random Variables

D E F I N I T I O N ■

P(X � xi) is the probability mass function (pmf) for the random variable X.

D E F I N I T I O N ■

An example of a discrete random variable follows.

The cumulative distribution function F(x) for any random variable X is defined
by F(x) � P(X 	 x). For a discrete random variable X,

F(x) � �
all x

having xk	x

P(X � xk) ■

A random variable is discrete if it can assume only discrete values x1, x2, . . . . A
discrete random variable X is characterized by the fact that we know the
probability that X � xi (written P(X � x1)). ■

A random variable is a function that associates a number with each point in an
experiment’s sample space. We denote random variables by boldface capital letters
(usually X, Y, or Z). ■



E X A M P L E  5

Let X be the number of dots that show when a die is tossed. Then for i � 1, 2, 3, 4, 5, 6,
P(X � i) � �

1
6

�. The cumulative distribution function (cdf) for X is shown in Figure 4.

Tossing a Die
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F(x)

x
1 2 3 4 5 6

1

5
6

2
3

1
2

1
3

1
6F I G U R E  4

Cumulative Distribution
Function for Example 5

Continuous Random Variables

If, for some interval, the random variable X can assume all values on the interval, then X
is a continuous random variable. Probability statements about a continuous random vari-
able X require knowing X’s probability density function (pdf). The probability density
function f (x) for a random variable X may be interpreted as follows: For 
 small,

P(x 	 X 	 x � 
) � 
 f (x)

From Figure 5, we see that for a random variable X having density function f (x),

Area 1 � P(a 	 X 	 a � 
) � 
 f (a)

and

Area 2 � P(b 	 X 	 b � 
) � 
 f (b)

Thus, for a random variable X with density function f (x) as given in Figure 5, values of
X near a are much more likely to occur than values of X near b.

From our previous discussion of the Fundamental Theorem of Calculus, it follows that

P(a 	 X 	 b) � �b

a
f (x) dx

Thus, for a continuous random variable, any area under the random variable’s pdf corre-
sponds to a probability. Using the concept of area as probability, we see that the cdf for
a continuous random variable X with density f (x) is given by

F(a) � P(X 	 a) � �a

�∞
f (x) dx
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E X A M P L E  6

Consider a continuous random variable X having a density function f (x) given by

f (x) � 	
Find the cdf for X. Also find P(�

1
4

� 	 X 	 �
3
4

�).

Solution For a 	 0, F(a) � 0. For 0 	 a 	 1,

F(a) � �a

0
2x dx � a2

For a � 1, F(a) � 1. F(a) is graphed in Figure 6.

P(�
1
4

� 	 X 	 �
3
4

�) � �3/4

1/4
2x dx � [x2]3/4

1/4 � (�
1
9
6
�) � (�

1
1
6
�) � �

1
2

�

if 0 	 x 	 1

otherwise

2x

0

Cumulative Distribution Function

f(x)

x
a

1

b

Area 1 = ∆ f(a)
Area 2 = ∆ f(b)

∆

2

∆

F I G U R E  5
Illustration of

Probability Density
Function

F(x)

x
a 10

1

a2

F I G U R E  6
Cumulative Distribution
Function for Example 6

Mean and Variance of a Random Variable

The mean (or expected value) and variance are two important measures that are often
used to summarize information contained in a random variable’s probability distribution.
The mean of a random variable X (written E(X)) is a measure of central location for the
random variable.
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Mean of a Discrete Random Variable

For a discrete random variable X,

E(X) � �
all k

xkP(X � xk) (8)

Mean of a Continuous Random Variable

For a continuous random variable,

E(X) � �∞

�∞
xf (x) dx (9)

Observe that in computing E(X), each possible value of a random variable is weighted
by its probability of occurring. Thus, the mean of a random variable is essentially the ran-
dom variable’s center of mass.

For a function h(X) of a random variable X (such as X2 and eX), E[h(X)] may be com-
puted as follows. If X is a discrete random variable,

E[h(X)] � �
all k

h(xk) P(X � xk) (8�)

If X is a continuous random variable,

E[h(X)] � �∞

�∞
h(x) f (x) dx (9�)

The variance of a random variable X (written as var X) measures the dispersion or spread
of X about E(X). Then var X is defined to be E[X � E(X)]2.

Variance of a Discrete Random Variable

For a discrete random variable X, (8�) yields

var X � �
all k

[xk � E(X)]2 P(X � xk) (10)

Variance of a Continuous Random Variable

For a continuous random variable X, (9�) yields

var X � �∞

�∞
[x � E(X)]2 f (x) dx (11)

Also, var X may be found from the relation

var X � E(X2) � E(X)2 (12)

For any random variable X, (var X)1/2 is the standard deviation of X (written sx).
Examples 7 and 8 illustrate the computation of mean and variance for a discrete and

a continuous random variable.

E X A M P L E  7

Consider the discrete random variable X having P(X � i) � �
1
6

� for i � 1, 2, 3, 4, 5, 6.
Find E(X) and var X.

Discrete Random Variable



Solution E(X) � (�
1
6

�)(1 � 2 � 3 � 4 � 5 �6) � �
2
6
1
� � �

7
2

�

var X � (�
1
6

�)[(1 � 3.5)2 � (2 � 3.5)2 � (3 � 3.5)2

�(4 � 3.5)2 � (5 � 3.5)2 � (6 � 3.5)2] � �
3
1
5
2
�

E X A M P L E  8

Find the mean and variance for the continuous random variable X having the following
density function:

f (x) � 	
Solution E(X) � �1

0
x(2x) dx � 
�

2
3
x3

��
1

0
� �

2
3

�

var X � �1

0
�x � �

2
3

��
2

2x dx � �1

0
�x2 � �

4
3
x
� � �

4
9

�� 2x dx

� 
�
2
4
x4

� � �
8
9
x3

� � �
8
1
x
8

2

��
1

0
� �

1
1
8
�

Independent Random Variables

D E F I N I T I O N ■

From this definition, it can be shown that X and Y are independent random variables
if and only if knowledge about the value of Y does not change the probability of any event
involving X. For example, suppose X and Y are independent random variables. This im-
plies that where Y � 8, Y � 10, Y � 0, or Y � anything else, P(X � 10) will be the
same. If X and Y are independent, then E(XY) � E(X)E(Y). (The random variable XY
has an expected value equal to the product of the expected value of X and the expected
value of Y.)

The definition of independence generalizes to situations where more than two random
variables are of interest. Loosely speaking, a group of n random variables is independent
if knowledge of the values of any subset of the random variables does not change our
view of the distribution of any of the other random variables. (See Problem 5 at the end
of this section.)

Covariance of Two Random Variables

An important concept in the study of financial models is covariance. For two random vari-
ables X and Y, the covariance of X and Y (written cov(X, Y)) is defined by

cov(X, Y) � E{[X � E(X)][Y � E(Y)]} (13)

If X � E(X) tends to occur when Y � E(Y), and X  E(X) tends to occur when Y 
E(Y), then cov(X, Y) will be positive. On the other hand, if X � E(X) tends to occur when
Y  E(Y), and X  E(X) tends to occur when Y � E(Y), then cov(X, Y) will be nega-

Two random variables X and Y are independent if and only if for any two sets A
and B,

P(X � A and Y � B) � P(X � A)P(Y � B) ■

if 0 	 x 	 1

otherwise

2x

0

Continuous Random Variable
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tive. The value of cov(X, Y) measures the association (actually, linear association) be-
tween random variables X and Y. It can be shown that if X and Y are independent ran-
dom variables, then cov(X, Y) � 0. (However, cov(X, Y) � 0 can hold even if X and Y
are not independent random variables. See Problem 6 at the end of this section for an 
example.)

E X A M P L E  9

Each summer in Gotham City is classified as being either a rainy summer or a sunny sum-
mer. The profits earned by Gotham City’s two leading industries (the Gotham City Hotel
and the Gotham City Umbrella Store) depend on the summer’s weather, as shown in Table
1. Of all summers, 20% are rainy, and 80% are sunny. Let H and U be the following ran-
dom variables:

H � profit earned by Gotham City Hotel during a summer

U � profit earned by Gotham City Umbrella Store during a summer

Find cov(H,U).

Solution We find that

E(H) � .2(�1,000) � .8(2,000) � $1,400

E(U) � .2(4,500) � .8(�500) � $500

With probability .20, Gotham City has a rainy summer. Then

[H � E(H)][U � E(U)] � (�1,000 � 1,400)(4,500 � 500) � �9,600,000(dollars)2

With probability .80, Gotham City has a sunny summer. Then

[H � E(H)][U � E(U)] � (2,000 � 1,400)(�500 � 500) � �600,000(dollars)2

Thus,

cov(H,U) � E{[H � E(H)][U � E(U)]} � .20(�9,600,000) � .80(�600,000)

� �2,400,000(dollars)2

The fact that cov(H,U) is negative indicates that when one industry does well, the other
industry tends to do poorly.

Gotham City Summers
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Mean, Variance, and Covariance 
for Sums of Random Variables

From given random variables X1 and X2, we often create new random variables (c is a
constant): cX1, X1 � c, X1 � X2. The following rules can be used to express the mean,
variance, and covariance of these random variables in terms of E(X1), E(X2), var X1, 
var X2, and cov(X1, X2). Examples 10 and 11 illustrate the use of these rules.

TA B L E  1
Profits for Gotham City Covariance

Type of Summer Hotel Profit Umbrella Profit

Rainy �$1,000 $4,500
Sunny $2,000 �$500
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E(cX1) � cE(X1) (14)

E(X1 � c) � E(X1) � c (15)

E(X1 � X2) � E(X1) � E(X2) (16)

var cX1 � c2var X1 (17)

var(X1 � c) � var X1 (18)

If X1 and X2 are independent random variables,

var(X1 � X2) � var X1 � var X2 (19)

In general,

var(X1 � X2) � var X1 � var X2 � 2cov(X1, X2) (20)

For random variables X1, X2, . . . , Xn,

var(X1 � X2 � � � � � Xn) � var X1 � var X2 � � � � � var Xn � �
i�j

cov(Xi, Xj) (21)

Finally, for constants a and b,

cov(aX1, bX2) � ab cov(X1, X2) (22)

E X A M P L E  1 0

I pay $1 to play the following game: I toss a die and receive $3 for each dot that shows.
Determine the mean and variance of my profit.

Solution Let X be the random variable representing the number of dots that show when the die is
tossed. Then my profit is given by the value of the random variable 3X � 1. From Ex-
ample 7, we know that E(X) � �

7
2

� and var X � �
3
1
5
2
�. In turn, Equations (15) and (14) yield

E(3X � 1) � E(3X) � 1 � 3E(X) � 1 � 3(�
7
2

�) � 1 � �
1
2
9
�

From Equations (18) and (17), respectively,

var(3X � 1) � var(3X) � 9(var X) � 9(�
3
1
5
2
�) � �

3
1
1
2
5

�

E X A M P L E  1 1

In Example 9, suppose I owned both the hotel and the umbrella store. Find the mean and
the variance of the total profit I would earn during a summer.

Solution My total profits are given by the random variable H � U. From Equation (16) and Ex-
ample 9,

E(H � U) � E(H) � E(U) � 1,400 � 500 � $1,900

Now

var H � .2(�1,000 � 1,400)2 � .8(2,000 � 1,400)2 � 1,440,000(dollars)2

var U � .2(4,500 � 500)2 � .8(�500 � 500)2 � 4,000,000(dollars)2

From Example 9, cov(H, U) � �2,400,000 (dollars)2. Then Equation (20) yields

var(H � U) � var H � var U � 2cov(H, U)

� 1,440,000(dollars)2 � 4,000,000(dollars)2 � 2(2,400,000)(dollars)2

� 640,000(dollars)2

Gotham City Profit: Mean and Variance

Tossing a Die: Mean and Variance



Thus, H � U has a smaller variance than either H or U. This is because by owning both
the hotel and umbrella store, we will always have, regardless of the weather, one industry that
does well and one that does poorly. This reduces the spread, or variability, of our profits.

P R O B L E M S
Group A
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1 I have 100 items of a product in stock. The probability
mass function for the product’s demand D is P(D � 90) �
P(D � 100) � P(D � 110) � �

1
3

�.
a Find the mass function, mean, and variance of the
number of items sold.
b Find the mass function, mean, and variance of the
amount of demand that will be unfilled because of lack
of stock.

2 I draw 5 cards from a deck (replacing each card
immediately after it is drawn). I receive $4 for each heart
that is drawn. Find the mean and variance of my total payoff.

3 Consider a continuous random variable X with the
density function (called the exponential density)

f (x)� 	
a Find and sketch the cdf for X.
b Find the mean and variance of X. (Hint: Use inte-
gration by parts.)
c Find P(1 	 X 	 2).

4 I have 100 units of a product in stock. The demand D
for the item is a continuous random variable with the
following density function:

if x � 0

otherwise

e�x

0

f (d) � 	
a Find the probability that supply is insufficient to
meet demand.
b What is the expected number of items sold? What is
the variance of the number of items sold?

5 An urn contains 10 red balls and 30 blue balls.
a Suppose you draw 4 balls from the urn. Let Xi be
the number of red balls drawn on the ith ball (Xi � 0 or
1). After each ball is drawn, it is put back into the urn.
Are the random variables X1, X2, X3, and X4 indepen-
dent random variables?
b Repeat part (a) for the case in which the balls are not
put back in the urn after being drawn.

Group B

6 Let X be the following discrete random variable: P(X �
�1) � P(X � 0) � P(X � 1) � �

1
3

�. Let Y � X2. Show that
cov(X, Y) � 0, but X and Y are not independent random
variables.

if 80 	 d 	 120

otherwise

�
4
1
0
�

0

12.6 The Normal Distribution
The most commonly used probability distribution in this book is the normal distribution.
In this section, we discuss some useful properties of the normal distribution.

D E F I N I T I O N ■

If a random variable X is normally distributed with a mean m and variance s2, we write
that X is N(m, s2). It can be shown that for a normal random variable, E(X) � m and 
var X � s2 (the standard deviation of X is s). The normal density functions for several
values of s and a single value of m are shown in Figure 7.

For any normal distribution, the normal density is symmetric about m (that is, f(m �
a) � f (m � a)). Also, as s increases, the probability that the random variable assumes a
value within c of m (for any c � 0) decreases. Thus, as s increases, the normal distribu-
tion becomes more spread out. The properties are illustrated in Figure 7.

A continuous random variable X has a normal distribution if for some � and � �
0, the random variable has the following density function:

f(x) � �
s(2p

1
)1/2� exp 
��

(x
2
�

s2
m)2

�� ■



Useful Properties of Normal Distributions

Property 1 If X is N(m, s2), then cX is N(cm, c2s2).

Property 2 If X is N(m, s2), then X � c (for any constant c) is N(m � c, s2).

Property 3 If X1 is N(m1, s2
1), X2 is N(m2, s2

2), and X1 and X2 are independent, then X1

� X2 is N(m1 � m2, s2
1 � s2

2).

Finding Normal Probabilities via Standardization

If Z is a random variable that is N(0, 1), then Z is said to be a standardized normal ran-
dom variable. In Table 2, F(z) � P(Z 	 z) is tabulated. For example,

P(Z 	 �1) � F(�1) � .1587

and

P(Z � 2) � 1 � P(Z 	 2) � 1 � F(2) � 1 � .9772 � .0228.

If X is N(m, s2), then (X � m)/s is N(0, 1). This follows, because by property 2 of 
the normal distribution, X � m is N(m � m, s2) � N(0, s2). Then by property 1, �

x�
s

m
� is

N(�
s
0

�, �
s
s

2

2�) � N(0, 1). The last equality enables us to use Table 2 to find probabilities for
any normal random variable, not just an N(0, 1) random variable. Suppose X is N(m, s2)
and we want to find P(a 	 X 	 b). To find this probability from Table 2, we use the fol-
lowing relations (this procedure is called standardization):

P(a 	 X 	 b) � P ��a �

s

m
� 	 �

X �

s

m
� 	 �

b �

s

m
��

� P ��a �

s

m
� 	 Z 	 �

b �

s

m
��

� F ��b �

s

m
�� � F ��a �

s

m
��

The Central Limit Theorem

If X1, X2, . . . , Xn are independent random variables, then for n sufficiently large (usually
n � 30 will do, but the actual size of n depends on the distributions of X1, X2, . . . , Xn),
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f(x)

x
µ

0.798

0.399

0.266

= 1.5

= 0.5

= 1.0

F I G U R E  7
Some Examples of

Normal Distributions
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TA B L E  2
Standard Normal Cumulative Probabilities†

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

�3.8 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
�3.7 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
�3.6 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
�3.5 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

�3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
�3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
�3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
�3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
�3.0 0.0014 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

�2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
�2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
�2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
�2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
�2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

�2.4 0.0082 0.0080 0.0078 0.0076 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
�2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
�2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
�2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
�2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

�1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
�1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
�1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
�1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
�1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

�1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
�1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
�1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1057 0.1038 0.1020 0.1003 0.0985
�1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
�1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

�0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
�0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
�0.7 0.2420 0.2389 0.2358 0.2327 0.2297 0.2266 0.2236 0.2206 0.2177 0.2148
�0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
�0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

�0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
�0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
�0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
�0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
�0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

Source: Reprinted by permission from David E. Kleinbaum, Lawrence L. Kupper, and Keith E. Muller, Applied Regression Analysis and Other Multivariable
Methods, 2nd edition. Copyright © 1988 PWS-KENT Publishing Company.
†Note: Table entry is the area under the standard normal curve to the left of the indicated z-value, thus giving P(Z 	 z).
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TA B L E  2
Standard Normal Cumulative Probabilities (Continued)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

�0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
�0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
�0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
�0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
�0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

�0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
�0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
�0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852
�0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
�0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

�1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
�1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
�1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8943 0.8962 0.8980 0.8997 0.9015
�1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
�1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

�1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
�1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
�1.7 0.9554 0.9564 0.9673 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
�1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9683 0.9699 0.9706
�1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9762 0.9767

�2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
�2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
�2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
�2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
�2.4 0.9918 0.9920 0.9922 0.9924 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

�2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
�2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
�2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
�2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
�2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

�3.0 0.9986 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
�3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
�3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
�3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
�3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

�3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
�3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
�3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
�3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
�3.9 1.0000



the random variable X � X1 � X2 � � � � � Xn may be closely approximated by a nor-
mal random variable X� that has E(X�) � E(X1) � E(X2) � � � � � E(Xn) and var X� �
var X1 � var X2 � � � � � var Xn. This result is known as the Central Limit Theorem. 
When we say that X� closely approximates X, we mean that P(a 	 X 	 b) is close to 
P(a 	 X� 	 b).

Finding Normal Probabilities with Excel

Probabilities involving a standard normal variable can be determined with Excel, using
the �NORMSDIST function. The S in NORMSDIST stands for standardized normal. For
example, P(Z 	 �1) can be found by entering the formula

�NORMSDIST(�1)

Excel returns the value .1587. See Figure 8 and file Normal.xls.
The �NORMDIST function can be used to determine a normal probability for any

normal (not just a standard normal) random variable. If X is N(m, s2), then entering the
formula

�NORMSDIST(a,m,s,1)

will return P(X 	 a). The “1” ensures that Excel returns the cumulative normal proba-
bility. Changing the last argument to “0” causes Excel to return the height of the normal
density function for X � a. As an example, we know that IQs follow N(100, 225). The
fraction of people with IQs of 90 or less is computed with the formula

�NORMDIST(90,100,15,1)

Excel yields .2525. See Figure 8 and file Normal.xls.
The height of the density for N(100, 225) for X � 100 is computed with the formula

�NORMDIST(100,100,15,0)

Excel yields .026596.
By varying the first argument in the �NORMDIST function, we may graph a normal

density. See Figure 9 and sheet density of file Normal.xls.
Consider a given normal random variable X, with mean m and standard deviation s.

In many situations, we want to answer questions such as the following. (1) Eli Lilly be-
lieves that the year’s demand for Prozac will be normally distributed, with m � 60 mil-
lion d.o.t. (days of therapy) and s � 5 million d.o.t. How many units should be produced
this year if Lilly wants to have only a 1% chance of running out of Prozac? (2) Family
income in Bloomington is normally distributed, with m � $30,000 and s � $8,000. The
poorest 10% of all families in Bloomington are eligible for federal aid. What should the
aid cutoff be?

In the first example, we want the 99th percentile of Prozac demand. That is, we seek the
number X such that there is only a 1% chance that demand will exceed X and a 99% chance
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7
8
9
10
11

E F G H

P(Z<=-1) 0.158655 normsdist(-1)
P(IQ<90) 0.252492 normdist(90,100,15,1)
density for IQ=100 0.026596 normdist(100,100,15,0)
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Normal.xls



that it will be less than X. In the second example, we want the 10th percentile of family in-
come in Bloomington. That is, we seek the number X such that there is only a 10% chance
that family income will be less than X and a 90% chance that it will exceed X.

Suppose we want to find the pth percentile (expressed as a decimal) of a normal ran-
dom variable X with mean m and standard deviation s. Simply enter the following for-
mula into Excel:

�NORMINV(p,m,s)

This will return the number x having the property that P(X 	 x) � p, as desired. We now
can solve the two examples described above.

E X A M P L E  1 2

Eli Lilly believes that the year’s demand for Prozac will be normally distributed, with 
m � 60 million d.o.t. (days of therapy) and s � 5 million d.o.t. How many units should
be produced this year if Lilly wants to have only a 1% chance of running out of Prozac?

Prozac Demand
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45 3.2018E-05
50 0.00010282
55 0.00029546
60 0.00075973
65 0.00174813
70 0.0035994
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90 0.02129653
95 0.02515888

100 0.02659615
105 0.02515888
110 0.02129653
115 0.01613138
120 0.010934
125 0.00663181
130 0.0035994
135 0.00174813
140 0.00075973
145 0.00029546
150 0.00010282
155 3.2018E-05
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E X A M P L E  1 4

Daily demand for chocolate bars at the Gillis Grocery has a mean of 100 and a variance
of 3,000 (chocolate bars)2. At present, the store has 3,500 chocolate bars in stock. What
is the probability that the store will run out of chocolate bars during the next 30 days?
Also, how many should Gillis have on hand at the beginning of a 30-day period if the
store wants to have only a 1% chance of running out during the 30-day period? Assume
that the demands on different days are independent random variables.

Solution Let

Xi � demand for chocolate bars on day i (i � 1, 2, . . . , 30)

X � number of chocolate bars demanded in next 30 days

Gillis will run out of stock during the next 30 days if X � 3,500. The Central Limit The-
orem implies that X � X1 � X2 � � � � � X30 can be closely approximated by a normal
distribution X� with E(X�) � 30(100) � 3,000 and var X� � 30(3,000) � 90,000 and 

Stocking Chocolate Bars

Solution Letting X � annual demand for Prozac, we seek a value x such that P(X � x) � .01 or
P(X 	 x) � .99. Thus, we seek the 99th percentile of Prozac demand, which we find (in
millions) with the formula

�NORMINV(.99,60,5)

Excel returns 71.63, so Lilly must produce 71,630,000 d.o.t. This assumes, of course, that
Lilly begins the year with no Prozac on hand. If the company had a beginning inventory
of 10 million d.o.t., it would need to produce 61,630,000 d.o.t. during the current year.
Figure 10 displays the 99th percentile of Prozac demand.

E X A M P L E  1 3

Family income in Bloomington is normally distributed, with m � $30,000 and s �
$8,000. The poorest 10% of all families in Bloomington are eligible for federal aid. What
should the aid cutoff be?

Solution If X � income of a Bloomington family, we seek an x such that P(X 	 x) � .10. Thus,
we seek the 10th percentile of Bloomington family income, which we find with the 
statement

�NORMINV(.10,30000,8000)

Excel returns $19,747.59. Thus, aid should be given to all families with incomes smaller
than $19,749.59. Figure 11 displays the 10th percentile of family income.

Family Income
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sx� � (90,000)1/2 � 300. Then we approximate the probability that Gillis will run out of
stock during the next 30 days by

P(X� � 3,500) � P��X� �

300
3000
� � �

3,500
3
�

00
3,000
��

� P(Z � 1.67) � 1 � P(Z 	 1.67)

� 1 � F(1.67) � 1 � .9525 � .0475

Let c � number of chocolate bars that should be stocked to have only a 1% chance of run-
ning out of chocolate bars within the next 30 days. We seek c satisfying P(X� � c) � .01, or

P��X� �

30
3
0
,000

� � �
c �

30
3
0
,000
�� � .01

This is equivalent to

P�Z � �
c �

30
3
0
,000
�� � .01

Since F(2.33) � P(Z 	 2.33) � .99,

�
c �

30
3
0
,000
� � 2.33 or c � 3,699

Thus, if Gillis has 3,699 chocolate bars in stock, there is a 1% probability that the store
will run out during the next 30 days. (We have defined running out of chocolate bars as
having no chocolate bars left at the end of 30 days.)

Alternatively, we could find the probability that the demand is at least 3,500 with the
Excel formula

�1 � NORMDIST(3500,3000,300,1)

This formula returns .0475.
We could also have used Excel to determine the level that must be stocked to have a

1% chance of running out as the 99th percentile of the demand distribution. Simply use
the formula

�NORMINV(.99,3000,300)

This formula returns the value 3,699.

P R O B L E M S
Group A
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1 The daily demand for milk (in gallons) at Gillis Grocery
is N (1,000, 100). How many gallons must be in stock at the
beginning of the day if Gillis is to have only a 5% chance
of running out of milk by the end of the day?

2 Before burning out, a light bulb gives X hours of light,
where X is N (500, 400). If we have 3 bulbs, what is the
probability that they will give a total of at least 1,460 hours
of light?

Group B

3 The number of traffic accidents occurring in Bloom-
ington in a single day has a mean and a variance of 3. What
is the probability that during a given year (365-day period),
there will be at least 1,000 traffic accidents in Bloomington?

4 Suppose that the number of ounces of soda put into a
Pepsi can is normally distributed, with m � 12.05 oz and 
s � .03 oz.

a Legally, a can must contain at least 12 oz of soda.
What fraction of cans will contain at least 12 oz of soda?



b What fraction of cans will contain under 11.9 oz of
soda?
c What fraction of cans will contain between 12 and
12.08 oz of soda?
d 1% of all cans will contain more than           oz.
e 10% of all cans will contain less than           oz.
f Pepsi controls the mean content in a can by setting a
timer. For what mean should the timer be set so that only
1 in 1,000 cans will be underfilled?
g Every day, Pepsi produces 10,000 cans. The govern-
ment inspects 10 randomly chosen cans per day. If at
least two are underfilled, Pepsi is fined $10,000. Given
that m � 12.05 oz and s � .03 oz, what is the chance
that Pepsi will be fined on a given day?

5 Suppose the annual return on Disney stock follows a
normal distribution, with mean .12 and standard deviation .30.

a What is the probability that Disney’s value will de-
crease during a year?
b What is the probability that the return on Disney
during a year will be at least 20%?
c What is the probability that the return on Disney
during a year will be between �6% and 9%?
d There is a 5% chance that the return on Disney dur-
ing a year will be greater than or equal to          .
e There is a 1% chance that the return on Disney dur-
ing a year will be less than          .
f There is a 95% chance that the return on Disney dur-
ing a year will be between           and          .

6 The daily demand for six-packs of Coke at Mr. D’s
follows a normal distribution, with a mean of 120 and a
standard deviation of 30. Every Monday, the delivery driver
delivers Coke to Mr. D’s. If the store wants to have only a
1% chance of running out of Coke by the end of the week,
how many six-packs should be ordered for the week?
(Assume that orders can be placed Sunday at midnight.)
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7 The Coke factory fills bottles of soda by setting a timer
on a filling machine. It has been observed that the number
of ounces the machine puts in a bottle has a standard
deviation of .05 oz. If 99.9% of all bottles are to have at
least 16 oz of soda, to what amount should the average
amount be set? (Hint: Use the Excel Goal Seek feature.)

8 We assemble a large part by joining two smaller parts
together. In the past, the smaller parts we have produced
have had a mean length of 1� and a standard deviation of
.01�. Assume that the lengths of the smaller parts are
normally distributed and are independent.

a What fraction of the larger parts are more than 2.05�
in diameter?
b What fraction of the larger parts are between 1.96�
and 2.02� in diameter?

9 Weekly Ford sales follow a normal distribution, with a
mean of 50,000 cars and a standard deviation of 14,000
cars.

a There is a 1% chance that Ford will sell more than  
cars during the next year.

b The chance that Ford will sell between 2.4 and 2.7
million cars during the next year is          .

10 Warren Dinner has invested in nine different
investments. The profits earned on the different investments
are independent. The return on each investment follows a
normal distribution, with a mean of $500 and a standard
deviation of $100.

a There is a 1% chance that the total return on the nine
investment is less than          .
b The probability that Warren’s total return is between
$4,000 and $5,200 is          .

12.7 z-Transforms
Consider a discrete random variable X whose only possible values are nonnegative inte-
gers. For n � 0, 1, 2, . . . , let P(X � n) � an. We define (for |z| 	 1) the z-transform of
X (call it pT

X(z)) to be

E(zX) � �
n�∞

n�0

anzn

To see why z-transforms are useful, note that


�dp
d

T
X

z
(z)
��

z�1
� 
 �

n�∞

n�1

nzn�1an�
z�1

� E(X)

Also note that


�d
2

d
p
z

T
X
2
(z)

��
z�1

� 
 �
n�∞

n�1

n(n � 1)zn�2an�
z�1

� E(X2) � E(X)


	operational-research- Winston-Full Book 723
	operational-research- Winston-Full Book 724
	operational-research- Winston-Full Book 725
	operational-research- Winston-Full Book 726
	operational-research- Winston-Full Book 727
	operational-research- Winston-Full Book 728
	operational-research- Winston-Full Book 729
	operational-research- Winston-Full Book 730
	operational-research- Winston-Full Book 731
	operational-research- Winston-Full Book 732
	operational-research- Winston-Full Book 733
	operational-research- Winston-Full Book 734
	operational-research- Winston-Full Book 735
	operational-research- Winston-Full Book 736
	operational-research- Winston-Full Book 737
	operational-research- Winston-Full Book 738
	operational-research- Winston-Full Book 739
	operational-research- Winston-Full Book 740
	operational-research- Winston-Full Book 741
	operational-research- Winston-Full Book 742
	operational-research- Winston-Full Book 743
	operational-research- Winston-Full Book 744
	operational-research- Winston-Full Book 745
	operational-research- Winston-Full Book 746

