
Introduction to Parsing

Outline

• Regular languages revisited

• Parser overview

• Context-free grammars (CFG’s)

• Derivations

• Ambiguity

Languages and Automata

• Formal languages are very important in CS

– Especially in programming languages

• Regular languages

– The weakest formal languages widely used

– Many applications

• We will also study context-free languages, tree
languages

Beyond Regular Languages

• Many languages are not regular

• Strings of balanced parentheses are not
regular:

{(i)i | i>=0}
• There are many similar constructs in

programming languages that cannot be
handled with regular expressions

• E.g., nested if statements

What Can Regular Languages Express?

• So what can regular languages express?

• Consider the following FA

What can it do?

• It can tell if the number of ones in the input is divisible by 2
• i.e. it can count mod 2
• In general a FA can count mod k, where k is the number of

states
• but cannot remember how many ones it has seen
• Therefore it cannot express (i)i

• Languages requiring counting modulo a fixed integer
• Intuition: A finite automaton that runs long enough must

repeat states
• Finite automaton can’t remember # of times it has visited a

particular state

The Functionality of the Parser

• Input: sequence of tokens from lexer

• Output: parse tree of the program

(But some parsers never produce a parse tree . . .)

Example

Comparison with Lexical Analysis

The Role of the Parser

• Not all strings of tokens are programs . . .

• . . . parser must distinguish between valid and
invalid strings of tokens

• We need

– A language for describing valid strings of tokens

– A method for distinguishing valid from invalid
strings of tokens

Context-Free Grammars

• Programming language constructs have

recursive structure .

• An EXPR is
if EXPR then EXPR else EXPR fi

while EXPR loop EXPR pool

…

• Context-free grammars are a natural notation

for this recursive structure

CFGs (Cont.)

• A CFG consists of

– A set of terminals T

– A set of non-terminals N

– A start symbol S(a non-terminal)

– A set of productions

X—> Y1 Y2 … Yn

Notational Conventions

• In these lecture notes

– Non-terminals are written upper-case

– Terminals are written lower-case

– The start symbol is the left-hand side of the first
production

Terminals

• Terminals are so-called because there are no
rules for replacing them

• Once generated, terminals are permanent

• Terminals ought to be tokens of the language

Examples of CFGs

EXPR  if EXPR then EXPR else EXPR fi

| while EXPR loop EXPR pool

| id

The Language of a CFG

• Read productions as rules (replacement rules):

X Y1 … Yn

Means X can be replaced by Y1… Yn

Key Idea

1. Begin with a string consisting of the start
symbol “S”

2. Replace any non-terminal X in the string by a
the right-hand side of some production

X Y1 … Yn

3. Repeat (2) until there are no non-terminals in
the string

The language of a CFG

• More Formally, write a single step

X1 … Xi … Xn X1 … Xi-1Y1 … Ym Xi+1 … Xn

• If there is a production

XiY1 … Ym

The language of a CFG

• Multiple steps (0 or more steps)

α 0α1α2 …αn

α0
* αn (in 0 or more steps)

The Language of a CFG

• Let G be a context-free grammar with start
symbol S. Then the language of G is:

{ α1 … αn | S* α1 …αn and every αi is a terminal}

• What this says is the language of a CFG is the
set of strings that can be derived starting from
the start symbols and contain only terminal
symbols.

Examples

Examples of CFG

• Write a CFG that generates Even Palindrome

S  aSa | bSb | є

• Write a CFG that generates Odd Palindrome

S  aSa | bSb | a | b

• Write a CFG that generates Equal number of a’s
and b’s

S  aSbS | bSaS | є

More CFG Examples

• Write a CFG that generates Equal number of
a’s, b’s and c’s

S  aSbScS | aScSbS | bSaScS | bScSaS |

cSaSbS | cSbSaS | є

Derivations and Parse Trees

• A derivation is a sequence of
productions

S …  …  …  …

• A derivation can be drawn as a tree

–Start symbol is the tree’s root

–For a production X Y1 … Yn add
children Y1 … Yn to node X

Derivation Example

• Grammar

E E +E | E*E| (E) | id

• String

id * id + id

Derivation Example

Notes on Derivations

• A parse tree has

– Terminals at the leaves

–Non-terminals at the interior nodes

• An in-order traversal of the leaves is the
original input

• The parse tree shows the precedence of
operations, the input string does not

Left-most and Right-most Derivations

Right-most Derivation in Detail

Derivations and Parse Trees

• Note that right-most and left-
most derivations have the same
parse tree

• The difference is the order in
which branches are added

Summary of Derivations

• We are not just interested in whether
s ϵL(G)

– We need a parse tree for s

• A derivation defines a parse tree

– But one parse tree may have many
derivations

• Left-most and right-most derivations are
important in parser implementation

Ambiguity

• Grammar

E→ E+E | E * E | (E) | id

• String:

id * id + id

Ambiguity

Ambiguity

• A grammar is ambiguous if it has more
than one parse tree for some string

– Equivalently, there is more than one right-
most or left-most derivation for some string

• Ambiguity is BAD

– Leaves meaning of some programs ill-
defined

Dealing with Ambiguity

• There are several ways to handle ambiguity

• Most direct method is to rewrite grammar
unambiguously

Ambiguity: The Dangling Else

The Dangling Else: Example

The Dangling Else: A Fix

Ambiguity

• No general techniques for handling ambiguity

• Impossible to convert automatically an
ambiguous grammar to an unambiguous one

• Used with care, ambiguity can simplify the
grammar

– Sometimes allows more natural definitions

– We need disambiguation mechanisms

Precedence and Associativity Declarations

• Instead of rewriting the grammar

– Use the more natural (ambiguous) grammar

– Along with disambiguating declarations

• Most tools allow precedence and associativity
declarations to disambiguate grammars

• Examples …

Associativity Declarations

Precedence Declarations

A General Algorithm: Recursive Descent

• Let TOKEN be the type of all special tokens:
INT, OPEN, CLOSE, PLUS, TIMES.

• Let the global variable next point to the next
token.

• Define boolean functions that check for a
match of
– A given token terminal

boolean term(Token tok)

{return next++==tok;}

• The nth production of non-terminal S;

boolean Sn(){…}

• Try all productions of S (which succeeds if any
of the productions for S matches the input)

boolean S(){…}

Example

E T

E T+E

T int

T int*T

T (E)

• To start the parser

– Initialize next to point to first token

– Invoke E()

• Easy to implement by hand.

Problem: Left Recursion

• Given a production SSα

boolean S1(){return S()&&term(α)

boolean S(){return S1();}

• S() goes into an infinite loop.

• Because of the left recursion

• Recursive Descent does not work in such cases

• We need to eliminate left recursion

Eliminating Left Recursion

• Consider the grammar
SSα|β

• Notice this grammar generates all strings starting
with a β and followed by any number of α’s

• To eliminate left recursion, we will rewrite using
right recursion.

• We introduce a new non-terminal S’, and write

• SßS’

• S’αS’|ξ

In General

• SSα1|…|Sαn|ß1|…|ßm

• All strings derived from S start with one of ß1,
…, ßm and continue with several instances of
α1…αn.

• Rewrite as

• Sß1S’|…|ßmS’

• S’α1S’|…|αnS’|ξ

Predictive Parsing

• Like recursive descent but parser predict
which production to use

– Using look ahead (works with restricted grammar)

– No backtracking

• Predictive parsers accept LL(K) grammars
– Left to right

– Left most derivation

– K tokens look ahead (usually k=1)

LL(1)

• In LL(1)

– At each step only one choice of production

– Given wAb on input t, there is at most one
production that can be used

Refactoring

• Consider the grammar

• ET+E|T

• Tint|int*T|(E)

• It is hard to predict which production to use
– There are two production that can be used for E

– and two productions that can be used for T (the
two that begin with int)

– This grammar is not acceptable for predictive LL(1)
parsing

• We need to left-factor the grammar

• By eliminating common prefixes

• Example

ET+E|T

• Becomes

ETX

X+E|ξ

• Tint|int*T|(E)

• Becomes

– T int Y|(E)

– Y*T|ξ

• What we did

– We factored out the common prefix (which is T in
the first example and int in the second)

– We introduced a new nonterminal (X in the first
example and Y in the second)

– We used one production for T and

– one for the new non-terminal that list all choices

Predictive Parsing

• Like recursive descent but parser predict
which production to use

– Using look ahead (works with restricted grammar)

– No backtracking

• Predictive parsers accept LL(K) grammars
– Left to right

– Left most derivation

– K tokens look ahead (usually k=1)

LL(1)

• In LL(1)

– At each step only one choice of production

– Given wAb on input t, there is at most one
production that can be used

Refactoring

• Consider the grammar

• ET+E|T

• Tint|int*T|(E)

• It is hard to predict which production to use
– There are two production that can be used for E

– and two productions that can be used for T (the
two that begin with int)

– This grammar is not acceptable for predictive LL(1)
parsing

• We need to left-factor the grammar

• By eliminating common prefixes

• Example

ET+E|T

• Becomes

ETX

X+E|ξ

• Tint|int*T|(E)

• Becomes

– T int Y|(E)

– Y*T|ξ

• What we did

– We factored out the common prefix (which is T in
the first example and int in the second)

– We introduced a new nonterminal (X in the first
example and Y in the second)

– We used one production for T and

– one for the new non-terminal that list all choices

•Left factored grammar
E → TX X→ +E|ξ
T → (E) |Y Y → *T| ξ

•The LL(1) parsing table

•The leftmost column represents the leftmost. non-terminal symbol in a
derivation
•The top row represents the next input token.
•For example the [E, int] entry, says

•When current non-terminal is E and next input is int, use
production E → TX

• Notice blank entries represent errors

• For example entry [E, *] is blank

• Indicating that there is no production to use
for E to get successful parsing, in the input
token is *.

LL(1) algorithm
• A method similar to recursive descent except

– For the leftmost non-terminal S

– We look at the next input token a

– And choose the production shown at [S,a]

• Use a stack to record leaf nodes (frontiers) of the
parse tree

• The top of stack is the leftmost pending terminal or
non-terminal

• Reject on reaching error state

• Accept on end of input and empty stack

The LL(1) Algorithm
• Suppose a grammar has start symbol S and LL(1)

parsing table T. We want to parse string ω

• Initialize a stack containing S$.

• Repeat until the stack is empty:

– Let the next character of ω be t

– If the top of the stack is a terminal r:
• If r and t don't match, report an error.

• Otherwise consume the character t and pop r from the stack.

– Otherwise, the top of the stack is a nonterminal A:
• If T[A, t] is undefined, report an error.

• Replace the top of the stack with T[A, t].

Example

• Let’s parse int*int, drawing the parse tree at
each step.

Constructing the Parse Table

• Consider

– A non-terminal A

– Production A→α

– And an input token t

– We want to know the conditions under which we can make
the move T[A,t]=α

• We make the move T[A,t]=α in two situations

1. If α→*tβ i.e. α can derive a t in the first position

In this case we say that t ϵ First(α)

And the move T[A,t]=α is reasonable

2. Or if A→α, and

α→* ξ (i.e. α can disappear), and

S →* β A t δ (notice since α can disappear so does A)

– Notice that this is useful if t can follow A and
A can disappear.

– In other words A does not derive t but t
follows A.

• This case we say t ϵ Follow(A)

First Sets

• Def.

• First(X)={t | X→* tα} ˅ { ξ | X→* ξ }

• Notice that the last part is there because we
need to keep track of whether or not X can
produce ξ.

• Algorithm :

1. If t is a terminal
First (t) = { t }

2. If X is non-terminal, then ξ ϵ First(X)
1. If X →ξ

2. Or if X → A1,…An and ξ ϵ First(Ai) for 1 ≤ i ≤ n
i.e. if A1,…An can disappear by producing ξ

3. First (α) is a subset of First(X) if
X → A1,…An α

and ξ ϵ First(Ai) for 1 ≤ i ≤ n

(i.e. A1,…An can all disappear)

Example on First Sets

• E → T X X → +E | ξ

• T → (E) | int Y Y → * T| ξ

1. Terminals

First(+)={+}

First(*)={*}

First(()={(}

First())={)}

First(int)={int}

2. Non-terminals
– First(E)

1. Since E → TX , then First(E) is a super set of First(T)
and First(T) = { (, int }

2. Notice if T →* ξ then First(E) is a super set of First(X)
but this is not the case since First(T) does not contain
ξ

Therefore, First(E) = First(T)= { (, int }

– First(X)= { + , ξ }

– First(Y)= { * , ξ }

Follow Sets

• Notice Follow(X) is not about what X produces
but rather about where X appears.

• Definition

Follow(X)={ t | S →* β X t δ }

• Intuition
– If X → Aβ then

• First(B) is a subset of Follow(A)

• Follow(X) is a subset of Follow(B) (i.e., anything that
can come after X is included in the follow of B)

• If X → Aβ and β →* ξ
then Follow(X) is a subset of Follow(A)

(i.e., anything that can come after X is included in
Follow(A))

• If S is the start symbol, then $ ϵ Follow(S)
(we always add $ in the Follow of the start symbol)

Because it is what we have when we runout of
input)

Algorithm
1. $ ϵ Follow(S), where S is the start symbol
2. For each production A → α X β

First(β) – { ξ } is a subset of Follow(X)
(notice that we exclude ξ , because ξ is never in a
follow set)

3. For each production A → α X β
if ξ ϵ First(β) (i.e., β can completely disappear)

then whatever is in Follow(A) is also in Follow(X)

i.e., Follow(A) is a subset of Follow(X)

Example
• E → T X X → +E | ξ

• T → (E) | int Y Y → * T| ξ
• Remember to determine the follow of X we need to look at

where X appears

• Follow(E)
1. Since E is a start symbol, $ is ϵ Follow(E)

2. Since T → (E) , then) is ϵ Follow(E)

3. Since X → +E, then anything that is in the follow of X is
also in the follow of E (i.e. Follow(X) is a subset of Follow(E))

4. Since E → T X then any thing that is in the follow of E is
also in the follow of X (i.e. Follow(E) is a subset of Follow(X))

5. From 3 and 4 we conclude that Follow(E)=Follow(X)

6. Both are { $,) }

• Follow(T)

1. Since E → T X, then Follow(T) includes First(X)
(which is {+, ξ} but we must exclude ξ).

2. Since X → ξ , Follow(T) must include follow(E)

3. (i.e. Follow(E) is a subset of Follow(T))

4. Since T also appears in Y → * T then Follow(T)
includes Follow(Y) (Follow(Y) is a subset of
Follow(T)

5. But notice that T → int Y so Follow(T) is also a
subset of Follow(Y)

6. From 4 and 5, we conclude that
Follow(T)=Follow(Y)={ +, $,) }

Follow of Terminal Symbols

• Follow(‘(‘)

– Since ‘(‘ appears in T → (E), then Follow(‘(‘)
includes First(E) (i.e. it includes { (, int })

– Since ‘(‘ does not appear anywhere else

– Follow(‘(‘)= { (, int }

• Follow(‘)’)

– Since ‘)’ appears only in T → (E),

Follow(‘)’) must include only Follow(T)

– Follow(‘)’) = {+, $,)}

• Follow(‘+’)

– Since + is only used in X → +E

Follow(‘+’) includes First(E), which is { (, int} .

– Notice the E cannot produce ξ

– Follow(‘+’) = { (, int}

• Follow(‘*’)

– Since ‘*’ is only used in Y → * T

Follow(‘*’) includes First(T), which is { (, int}

– Since T cannot got to ξ then that is it

– Follow(‘*’)= { (, int}

• Follow(int)

– Since int only appears in T → int Y

– Follow(int) includes First(Y) which is {*}

– But since Y→ξ, Y can completely diappear
therefore, Follow(int) must include Follow(T)
(which is {+,$,)})

– Follow(int)={*, +,$,)}

Putting Together First sets and Follow Sets to
Construct an LL(1) table

• For each production A→ α in G do

– For each terminal t ϵ First(α) do

• T[A,t]= α because obviously would is useful here

– If ξ ϵ First(α), for each t ϵ Follow(A) do

• T[A,t]= α because α can completely disappear and

consequently A disappears.

– If ξ ϵ First(α) and $ ϵ Follow(A) do

• T[A,$]= α This is useful when we ran out of input because the

only hope would be is to get rid of whatever is on
the stack.

Example
• E → T X X → +E | ξ

• T → (E) | int Y Y → * T| ξ

() + * int $

E TX TX

T (E) int Y

X ξ +E ξ

Y ξ ξ *T ξ

T[E,(] = T[E, int] = TX because (and int are in the First of TX
T[T, (] = (E) because (is in the First((E))
T[T, int] = int Y because int is in the First(int Y)
T[X, +] = +E because + is in the First(+E)
T[Y, *] = *T because * is in the First(*T)
T[X,)] = ξ because X → ξ and) is in the Follow(X)
T[X,$]= ξ because X → ξ and $ is in the Follow(X)
T[Y,)] = ξ because Y → ξ and) is in the follow(Y)
T[Y, +] = ξ because Y → ξ and + is in the follow(Y)
T[Y, $] = ξ because Y → ξ and $ is in the follow(Y)

Not all grammars are LL(1) grammars

• Example:
• S→ Sa| b

• First(S) = {b}

• Follow(S) = { $, a}

• Let’s try to construct an LL(1) table

• Notice that we have multiply defined entry

• i.e., 2 possible moves to make, not deterministic

• We conclude that the grammar is not LL(1) grammar

a b $

S b
Sa

• If an entry is multiply defined, the G is not an LL(1)
grammar

• The list includes (but not limited to)

– Any grammar that is not left factored

– Any grammar that contains left recursion (the above
example)

– Any grammar that is ambiguous

– Any grammar that requires more than 1 look ahead
token

• Remember the above list is not comprehensive

• The only way to make sure is by trying to construct an
LL(1) parsing table

• Most programming languages CFGs are not
LL(1).

• LL(1) grammars are to weak to capture many
interesting constructs in PLs

• The solution will build up on what we have
learned so far.

