
Introduction to Parsing 



Outline 

• Regular languages revisited 

• Parser overview 

• Context-free grammars (CFG’s) 

• Derivations 

• Ambiguity 



Languages and Automata

• Formal languages are very important in CS 

– Especially in programming languages 

• Regular languages 

– The weakest formal languages widely used 

– Many applications 

• We will also study context-free languages, tree 
languages



Beyond Regular Languages

• Many languages are not regular

• Strings of balanced parentheses are not 
regular:

{(i)i |  i>=0}
• There are many similar constructs in 

programming languages that cannot be 
handled with regular expressions

• E.g., nested if statements



What Can Regular Languages Express?

• So what can regular languages express?

• Consider the following FA 



What can it do?

• It can tell if the number of ones in the input is divisible by 2 
• i.e. it can count mod 2 
• In general a FA can count  mod k, where k is the number of 

states
• but cannot remember how many ones it has seen
• Therefore it cannot express (i )i

• Languages requiring counting modulo a fixed integer 
• Intuition: A finite automaton that runs long enough must 

repeat states 
• Finite automaton can’t remember # of times it has visited a 

particular state 



The Functionality of the Parser

• Input: sequence of tokens from lexer

• Output: parse tree of the program 

(But some parsers never produce a parse tree . . .) 



Example



Comparison with Lexical Analysis



The Role of the Parser

• Not all strings of tokens are programs . . . 

• . . . parser must distinguish between valid and 
invalid strings of tokens 

• We need 

– A language for describing valid strings of tokens 

– A method for distinguishing valid from invalid 
strings of tokens 



Context-Free Grammars

• Programming language constructs have 

recursive structure .

• An EXPR is 
if EXPR then EXPR else EXPR fi

while EXPR loop EXPR pool 

…

• Context-free grammars are a natural notation 

for this recursive structure



CFGs (Cont.)

• A CFG consists of 

– A set of terminals T 

– A set of non-terminals N 

– A start symbol S(a non-terminal) 

– A set of productions

X—> Y1 Y2 … Yn



Notational Conventions

• In these lecture notes 

– Non-terminals are written upper-case 

– Terminals are written lower-case 

– The start symbol is the left-hand side of the first 
production 



Terminals

• Terminals are so-called because there are no 
rules for replacing them 

• Once generated, terminals are permanent 

• Terminals ought to be tokens of the language



Examples of CFGs

EXPR  if EXPR then EXPR else EXPR fi

| while EXPR loop EXPR pool

| id





The Language of a CFG

• Read productions as rules (replacement rules):

X Y1 … Yn

Means X can be replaced by Y1… Yn



Key Idea

1. Begin with a string consisting of the start 
symbol “S”

2. Replace any non-terminal X in the string by a 
the right-hand side of some production 

X Y1 … Yn

3. Repeat (2) until there are no non-terminals in 
the string



The language of a CFG

• More Formally, write a single step

X1 … Xi … Xn X1 … Xi-1Y1 … Ym Xi+1 … Xn

• If there is a production 

XiY1 … Ym



The language of a CFG

• Multiple steps (0 or more steps)

α 0α1α2 …αn

α0
* αn (in 0 or more steps)



The Language of a CFG

• Let G be a context-free grammar with start 
symbol S. Then the language of G is:

{ α1 … αn | S* α1 …αn and every αi is a terminal}

• What this says is the language of a CFG is the 
set of strings that can be derived starting from 
the start symbols and contain only terminal 
symbols. 



Examples



Examples of CFG

• Write a CFG that generates Even Palindrome

S  aSa | bSb | є

• Write a CFG that generates Odd Palindrome

S  aSa | bSb | a | b

• Write a CFG that generates Equal number of a’s
and b’s

S  aSbS | bSaS | є



More CFG Examples

• Write a CFG that generates Equal number of 
a’s, b’s and c’s

S  aSbScS | aScSbS | bSaScS | bScSaS | 

cSaSbS | cSbSaS | є



Derivations and Parse Trees

• A derivation is a sequence of 
productions 

S …  …  …  …

• A derivation can be drawn as a tree 

–Start symbol is the tree’s root 

–For a production X Y1 … Yn add 
children Y1 … Yn to node X



Derivation Example

• Grammar

E E +E | E*E| (E) | id

• String

id * id + id 



Derivation Example



Notes on Derivations

• A parse tree has 

– Terminals at the leaves 

–Non-terminals at the interior nodes 

• An in-order traversal of the leaves is the 
original input 

• The parse tree shows the precedence of 
operations, the input string does not



Left-most and Right-most Derivations



Right-most Derivation in Detail



Derivations and Parse Trees

• Note that right-most and left-
most derivations have the same 
parse tree 

• The difference is the order in 
which branches are added



Summary of Derivations

• We are not just interested in whether
s ϵL(G)

– We need a parse tree for s

• A derivation defines a parse tree 

– But one parse tree may have many 
derivations 

• Left-most and right-most derivations are 
important in parser implementation



Ambiguity

• Grammar 

E→ E+E | E * E | (E) | id 

• String:

id * id + id 



Ambiguity



Ambiguity

• A grammar is ambiguous if it has more 
than one parse tree for some string 

– Equivalently, there is more than one right-
most or left-most derivation for some string 

• Ambiguity is BAD 

– Leaves meaning of some programs ill-
defined



Dealing with Ambiguity

• There are several ways to handle ambiguity

• Most direct method is to rewrite grammar 
unambiguously 



Ambiguity: The Dangling Else 



The Dangling Else: Example



The Dangling Else: A Fix





Ambiguity 

• No general techniques for handling ambiguity 

• Impossible to convert automatically an 
ambiguous grammar to an unambiguous one 

• Used with care, ambiguity can simplify the 
grammar 

– Sometimes allows more natural definitions 

– We need disambiguation mechanisms 



Precedence and Associativity Declarations

• Instead of rewriting the grammar 

– Use the more natural (ambiguous) grammar 

– Along with disambiguating declarations 

• Most tools allow precedence and associativity 
declarations to disambiguate grammars 

• Examples … 



Associativity Declarations 



Precedence Declarations 



A General Algorithm: Recursive Descent 

• Let TOKEN be the type of all special tokens: 
INT, OPEN, CLOSE, PLUS, TIMES.

• Let the global variable next point to the next 
token.

• Define boolean functions that check for a 
match of 
– A given token terminal

boolean term(Token tok)

{return  next++==tok;}



• The nth production of non-terminal S;

boolean Sn(){…}

• Try all productions of S (which succeeds if any 
of the productions for S matches the input)

boolean S(){…}



Example

E T 

E T+E

T int 

T int*T 

T (E)



• To start the parser

– Initialize next to point to first token

– Invoke E()

• Easy to implement by hand.





Problem: Left Recursion

• Given a production SSα

boolean S1(){return S()&&term(α)

boolean S(){return S1();}

• S() goes into an infinite loop.

• Because of the left recursion

• Recursive Descent does not work in such cases

• We need to eliminate left recursion



Eliminating Left Recursion

• Consider the grammar
SSα|β

• Notice this grammar generates all strings starting 
with a β and followed by any number of α’s

• To eliminate left recursion, we will rewrite using 
right recursion. 

• We introduce a new non-terminal S’, and write

• SßS’

• S’αS’|ξ



In General 

• SSα1|…|Sαn|ß1|…|ßm

• All strings derived from S start with one of ß1, 
…, ßm and continue with several instances of 
α1…αn.

• Rewrite as 

• Sß1S’|…|ßmS’

• S’α1S’|…|αnS’|ξ



Predictive Parsing

• Like recursive descent but parser predict 
which production to use

– Using look ahead  (works with restricted grammar)

– No backtracking

• Predictive parsers accept LL(K) grammars
– Left to right

– Left most derivation

– K tokens look ahead (usually k=1)



LL(1)

• In LL(1)

– At each step only one choice of production

– Given wAb   on input t, there is at most one 
production that can be used



Refactoring

• Consider the grammar

• ET+E|T

• Tint|int*T|(E)

• It is hard to predict which production to use
– There are two production that can be used for E

– and two productions that can be used for T (the 
two that begin with int)

– This grammar is not acceptable for predictive LL(1) 
parsing



• We need to left-factor the grammar

• By eliminating common prefixes

• Example

ET+E|T

• Becomes

ETX

X+E|ξ



• Tint|int*T|(E)

• Becomes

– T int Y|(E)

– Y*T|ξ



• What we did

– We factored out the common prefix (which is T in 
the first example and int in the second)

– We introduced a new nonterminal (X in the first 
example and Y in the second)

– We used one production for T and 

– one for the new non-terminal that list all choices



Predictive Parsing

• Like recursive descent but parser predict 
which production to use

– Using look ahead  (works with restricted grammar)

– No backtracking

• Predictive parsers accept LL(K) grammars
– Left to right

– Left most derivation

– K tokens look ahead (usually k=1)



LL(1)

• In LL(1)

– At each step only one choice of production

– Given wAb   on input t, there is at most one 
production that can be used



Refactoring

• Consider the grammar

• ET+E|T

• Tint|int*T|(E)

• It is hard to predict which production to use
– There are two production that can be used for E

– and two productions that can be used for T (the 
two that begin with int)

– This grammar is not acceptable for predictive LL(1) 
parsing



• We need to left-factor the grammar

• By eliminating common prefixes

• Example

ET+E|T

• Becomes

ETX

X+E|ξ



• Tint|int*T|(E)

• Becomes

– T int Y|(E)

– Y*T|ξ



• What we did

– We factored out the common prefix (which is T in 
the first example and int in the second)

– We introduced a new nonterminal (X in the first 
example and Y in the second)

– We used one production for T and 

– one for the new non-terminal that list all choices



•Left factored grammar
E → TX X→ +E|ξ
T → (E) |Y Y → *T| ξ

•The LL(1) parsing  table

•The leftmost column represents the leftmost. non-terminal symbol in a 
derivation
•The top row represents the next input token.
•For example the [E, int] entry, says

•When current non-terminal is E and next input is int, use 
production E → TX



• Notice blank entries represent errors

• For example entry [ E, *] is blank

• Indicating that there is no production to use 
for E to get successful parsing, in the input 
token is *.



LL(1) algorithm
• A method similar to recursive descent except

– For the leftmost non-terminal S

– We look at the next input token a

– And choose the production shown at [S,a]

• Use a stack to record leaf nodes (frontiers) of the 
parse tree

• The top of stack is the leftmost pending terminal or 
non-terminal

• Reject on reaching error state

• Accept on end of input  and empty stack



The LL(1) Algorithm
• Suppose a grammar has start symbol S and LL(1) 

parsing table T. We want to parse string ω

• Initialize a stack containing S$.

• Repeat until the stack is empty:

– Let the next character of ω be t

– If the top of the stack is a terminal r:
• If r and t don't match, report an error.

• Otherwise consume the character t and pop r from the stack.

– Otherwise, the top of the stack is a nonterminal A:
• If T[A, t] is undefined, report an error.

• Replace the top of the stack with T[A, t].



Example

• Let’s parse int*int, drawing the parse tree at 
each step.



Constructing the Parse Table

• Consider

– A non-terminal A

– Production A→α

– And an input token t

– We want to know the conditions under which we can make 
the move T[A,t]=α

• We make the move T[A,t]=α in two situations

1. If α→*tβ i.e. α can derive a t in the first position

In this case we say that t ϵ First(α)

And the move T[A,t]=α is reasonable



2. Or if A→α, and

α→* ξ (i.e. α can disappear), and 

S →* β A t δ (notice since α can disappear so does A)

– Notice that this is useful if t can follow A and 
A can disappear. 

– In other words A does not derive t but t 
follows A.

• This case we say t ϵ Follow(A)



First Sets

• Def.

• First(X)={t | X→* tα} ˅ { ξ | X→* ξ }

• Notice that the last part is there because we 
need to keep track of whether or not X can 
produce ξ.

• Algorithm :

1. If t is a terminal 
First (t) = { t }



2. If X is non-terminal, then ξ ϵ First(X) 
1. If X →ξ

2. Or if X → A1,…An and ξ ϵ First(Ai)  for 1 ≤ i ≤ n
i.e. if A1,…An can disappear by producing ξ

3. First (α) is  a subset of First(X)  if
X → A1,…An α

and ξ ϵ First(Ai)  for 1 ≤ i ≤ n 

(i.e. A1,…An can all disappear)



Example on First Sets

• E → T X X → +E | ξ

• T → (E) | int Y Y → * T| ξ

1. Terminals

First(+)={+}

First(*)={*}

First(()={(}

First())={)}

First(int)={int}



2. Non-terminals
– First(E)

1. Since E → TX , then First(E) is a super set of First(T)
and First(T) = { ( , int }

2. Notice if T →* ξ then First(E) is a super set of First(X)
but this is not the case since First(T) does not contain 
ξ

Therefore, First(E) = First(T)= { ( , int }

– First(X)= { + , ξ }

– First(Y)= { * , ξ }



Follow Sets

• Notice Follow(X) is not about what X produces 
but rather about where X appears.

• Definition

Follow(X)={ t | S →* β X t δ }

• Intuition 
– If X → Aβ then

• First(B) is a subset of Follow(A)

• Follow(X) is a subset of Follow(B)   (i.e., anything that 
can come after X is included in the follow of B)



• If X → Aβ and β →* ξ
then Follow(X) is a subset of Follow(A)

(i.e., anything that can come after X is included in 
Follow(A) )  

• If S is the start symbol, then $ ϵ Follow(S)
(we always add $ in the Follow of the start symbol)

Because it is what we have when we runout of 
input)



Algorithm
1. $ ϵ Follow(S),  where S is the start symbol
2. For each production A → α X β

First(β) – { ξ } is a subset of Follow(X)
(notice that we exclude ξ , because ξ is never in a 
follow set)

3. For each production A → α X β
if ξ ϵ First(β)     (i.e., β can completely disappear)

then  whatever is in Follow(A) is also in Follow(X)

i.e., Follow(A) is a subset of Follow(X)



Example
• E → T X X → +E | ξ

• T → (E) | int Y Y → * T| ξ
• Remember to determine the follow of X we need to look at 

where X appears

• Follow(E)
1. Since E is a start symbol, $ is ϵ Follow(E)

2. Since T → (E) , then ) is ϵ Follow(E)

3. Since X → +E, then anything that is in the follow of X is 
also in the follow of E   (i.e. Follow(X) is a subset of Follow(E))

4. Since E → T X  then any thing that is in the follow of E is 
also in the follow of X  (i.e. Follow(E) is a subset of Follow(X))

5. From 3 and 4 we conclude that Follow(E)=Follow(X)

6. Both are { $, ) }



• Follow(T)

1. Since E → T X, then Follow(T) includes First(X) 
(which is {+, ξ}  but we must exclude ξ ).

2. Since X →  ξ , Follow(T) must include follow(E)

3. (i.e. Follow(E) is a subset of Follow(T))

4. Since T also appears in Y → * T then Follow(T) 
includes Follow(Y) (  Follow(Y) is a subset of 
Follow(T)

5. But notice that T → int Y so Follow(T) is also a 
subset of Follow(Y)

6. From 4 and 5, we conclude that 
Follow(T)=Follow(Y)={ +, $, ) }



Follow of Terminal Symbols

• Follow( ‘(‘)

– Since ‘(‘ appears in T → (E), then Follow( ‘(‘) 
includes First(E) (i.e. it includes { (, int })

– Since ‘(‘ does not appear anywhere else

– Follow( ‘(‘)= { (, int  }



• Follow(‘)’)

– Since ‘)’ appears only in T → (E),

Follow(‘)’) must include  only Follow(T)

– Follow(‘)’) = {+, $, )} 



• Follow(‘+’) 

– Since + is only used in X → +E

Follow(‘+’) includes First(E), which is { (, int} .

– Notice the E cannot produce ξ

– Follow(‘+’) = { (, int}



• Follow(‘*’)

– Since ‘*’ is only used in Y → * T

Follow(‘*’)   includes First(T), which is { (, int}

– Since T cannot got to ξ then that is it

– Follow(‘*’)= { (, int}



• Follow(int)

– Since int only appears in T → int Y 

– Follow(int) includes First(Y) which is {*}

– But since Y→ξ, Y can completely diappear 
therefore, Follow(int) must include Follow(T) 
(which is {+,$,)})

– Follow(int)={*, +,$,)}



Putting Together First sets and Follow Sets to 
Construct an LL(1) table

• For each production A→ α in G do

– For each terminal t ϵ First(α) do

• T[A,t]= α because obviously would is useful here

– If ξ ϵ First(α), for each t ϵ Follow(A) do

• T[A,t]= α because α can completely disappear and 

consequently A disappears.

– If ξ ϵ First(α) and $ ϵ Follow(A)  do

• T[A,$]= α This is useful when we ran out of input because the 

only hope would be is to get rid of whatever is on 
the stack. 



Example
• E → T X X → +E | ξ

• T → (E) | int Y Y → * T| ξ

( ) + * int $

E TX TX

T (E) int Y

X ξ +E ξ

Y ξ ξ *T ξ

T[ E,( ] = T[ E, int ] = TX      because ( and int are in the First of TX
T[ T, ( ] = (E) because ( is in the First( (E))
T[ T, int ] = int Y because int is in the First( int Y)
T[ X, + ] = +E because + is in the First(+E)
T[ Y, * ]  = *T because * is in the First(*T)
T[  X, ) ] = ξ because X → ξ and ) is in the Follow(X)
T[X,$]= ξ because X → ξ and $ is in the Follow(X)
T[  Y, ) ] = ξ because Y → ξ and ) is in the follow(Y)
T[ Y, + ] = ξ because Y → ξ and + is in the follow(Y)
T[ Y, $ ] = ξ because Y → ξ and $ is in the follow(Y)



Not all grammars are LL(1) grammars

• Example:
• S→ Sa| b

• First(S) = {b}

• Follow(S) = { $, a}

• Let’s try to construct an LL(1) table

• Notice that we have multiply defined entry

• i.e., 2 possible moves to make, not deterministic

• We conclude that the grammar is not LL(1) grammar

a b $

S b
Sa



• If an entry is multiply defined, the G is not an LL(1) 
grammar

• The list includes (but not limited to)

– Any grammar that is not left factored

– Any grammar that contains left recursion (the above 
example)

– Any grammar that is ambiguous

– Any grammar that requires more than 1 look ahead 
token

• Remember the above list is not comprehensive

• The only way to make sure is by trying to construct an 
LL(1) parsing table



• Most programming languages CFGs are not 
LL(1).

• LL(1) grammars are to weak to capture many 
interesting constructs in PLs

• The solution will build up on what we have 
learned so far. 


