Introduction to Parsing

Outline

Regular languages revisited
Parser overview

Context-free grammars (CFG’s)
Derivations

Ambiguity

Languages and Automata

 Formal languages are very important in CS
— Especially in programming languages
* Regular languages
— The weakest formal languages widely used
— Many applications
 We will also study context-free languages, tree
languages

Beyond Regular Languages

 Many languages are not regular
* Strings of balanced parentheses are not

regular:
{()" | i>=0}

* There are many similar constructs in
programming languages that cannot be
handled with regular expressions

* E.g., nested if statements

What Can Regular Languages Express?

* So what can regular languages express?
* Consider the following FA

What can it do?

It can tell if the number of ones in the input is divisible by 2
i.e. it can count mod 2

In general a FA can count mod k, where k is the number of
states

but cannot remember how many ones it has seen
Therefore it cannot express (')’
Languages requiring counting modulo a fixed integer

Intuition: A finite automaton that runs long enough must
repeat states

Finite automaton can’t remember # of times it has visited a
particular state

The Functionality of the Parser

* |nput: sequence of tokens from lexer

e QOutput: parse tree of the program

(But some parsers never produce a parse tree. . .)

Example

If X =y then 1 else 2 fi

* Parser input

IF ID = ID THEN INT ELSE INT FI
* Parser output

IF-THEN-ELSE
- T
= INT INT

TN
D D

Comparison with Lexical Analysis

Phase Input Output

Lexer String of String of
characters tokens

Parser String of Parse tree
tokens

The Role of the Parser

* Not all strings of tokens are programs. ..

* ...parser must distinguish between valid and
invalid strings of tokens

e We need

— A language for describing valid strings of tokens

— A method for distinguishing valid from invalid
strings of tokens

Context-Free Grammars

* Programming language constructs have
recursive structure .

* An EXPR s
if EXPR then EXPR else EXPR fi
while EXPR loop EXPR pool

* Context-free grammars are a natural notation
for this recursive structure

CFGs (Cont.)

e A CFG consists of

— Asetofterminals T

— A set of non-terminals N

— A start symbol S(a non-terminal)
— A set of productions

X—>Y,Y,...Y

N

where X €N and KETUNU{E}

Notational Conventions

 |In these lecture notes
— Non-terminals are written upper-case
— Terminals are written lower-case

— The start symbol is the left-hand side of the first
production

Terminals

e Terminals are so-called because there are no
rules for replacing them

* Once generated, terminals are permanent

 Terminals ought to be tokens of the language

Examples of CFGs

EXPR = if EXPR then EXPR else EXPR fi
| while EXPR loop EXPR pool
| id

Simple arithmetic expressions:
E — E=xE
E+E

(E)

1d

The Language of a CFG

* Read productions as rules (replacement rules):

X>Y, .. Y

N

Means X can be replaced by Y,... Y,

Key ldea

1. Begin with a string consisting of the start
symbol “S”

2. Replace any non-terminal X in the string by a
the right-hand side of some production

X>V, .Y,

3. Repeat (2) until there are no non-terminals in
the string

The language of a CFG

 More Formally, write a single step

Xy Xiotn Xo D Xy o XY, Y

m

* |f there is a production
X>Y,...Y

m

Xy ...

The language of a CFG

 Multiple steps (0O or more steps)

a,20,20,2 .20,

o, 2 o, (in0or more steps)

The Language of a CFG

* Let G be a context-free grammar with start
symbol S. Then the language of G is:

{a, o, |S2> a, a andeveryaisaterminal}

 What this says is the language of a CFG is the
set of strings that can be derived starting from
the start symbols and contain only terminal
symbols.

Examples

L(G) is the language of CFG G
Strings of balanced parentheses {(I)f = 0}

Two grammars:
S = (S 5 = (S
S — ¢ | E

Examples of CFG

* Write a CFG that generates Even Palindrome
S—>aSa | bSb | e

* Write a CFG that generates Odd Palindrome
S—=>aSa|bSb|al|b

* Write a CFG that generates Equal number of a’s
and b’s

S —> aSbS | bSaS | €

More CFG Examples

* Write a CFG that generates Equal number of

a’s, b’s and c’s
S = aSbScS
cSaSbS

aScShS
cSbSas

bSaScS | bScSas |
€

Derivations and Parse Trees

* A derivation is a sequence of
productions

S
A derivation can be drawn as a tree

—Start symbol is the tree’s root

—For a production X=2 Y, ... Y_add
childrenY, ... Y to node X

Derivation Example

e Grammar
E-=> E+E | E*E| (E) | id

* String
id *id + id

Derivation Example

E
E+E

id+*E+E -
id«id+E |
1d *=1d + 1d

AR

E * E+E /‘\

Notes on Derivations

* A parse tree has

—Terminals at the leaves

—Non-terminals at the interior nodes

e An in-order traversal of the leaves is the
original input

o T
O

ne parse tree shows the precedence of

oerations, the input string does not

Left-most and Right-most Derivations

+ The example is a /eft-
most derivation

- At each s}‘rep, replace the

[T]

left-most non-terminal — 54‘5
— E+1
* There is an equivalent E+1d
notion of a right-most — E=+E+1id
derivation J
— E=x1d +1d
— 1d=*1d +1d

Right-most Derivation in Detalil

AR

B F
E+E E/l\E
E+id /‘\ ‘
Ex<E +1d E * E id
Exid+1d | ‘

id d

1d =1d + 1d

Derivations and Parse Trees

* Note that right-most and left-
most derivations have the same
parse tree

* The difference is the order in
which branches are added

Summary of Derivations

* We are not just interested in whether
s €eL(G)
— We need a parse tree for s

* A derivation defines a parse tree

— But one parse tree may have many
derivations

e Left-most and right-most derivations are
important in parser implementation

Ambiguity

* Grammar
E>E+E | E*E | (E) | id
* String:
id *id + id

Ambiguity

This string has two parse trees

E E
e /I\
E + E E o«
FE « E Id d E E
| | | |
Id d id id

Ambiguity

A grammar is ambiguous if it has more
than one parse tree for some string

— Equivalently, there is more than one right-
most or left-most derivation for some string

 Ambiguity is BAD

— Leaves meaning of some programs ill-
defined

Dealing with Ambiguity

* There are several ways to handle ambiguity

* Most direct method is to rewrite grammar
unambiguously

E — E+E|E
E — id = E'|id|(E) = E'| (E)

+ Enforces precedence of * over +

Ambiguity: The Dangling Else

» Consider the grammar
E—if Ethen E

if EthenE else E

OTHER

° T1his grammar is also ambiguous

The Dangling Else: Example

* The expression
if E; then if E, then E; else E,

has two parse trees

if if
/‘N /\
N i /'fN
E, E; E, Es &

+ Typically we want the second form

The Dangling Else: A Fix

- else matches the closest unmatched then
+ We can describe this in the grammar

E— MIF /* all then are matched */
| UIF /* some then is unmatched */
MIF — if E then MIF else MIF
| OTHER

UIF — if E thenE
| if E then MIF else UIF
+ Describes the same set of strings

» The expression if E; then if E, then E; else E,

if
/\
E; if
E2 E3 E.q, E3
* A valid parse tree * Not valid because the
(for a UIF) then expression is not

a MIF

Ambiguity

* No general techniques for handling ambiguity

* Impossible to convert automatically an
ambiguous grammar to an unambiguous one

e Used with care, ambiguity can simplify the
grammar

— Sometimes allows more natural definitions
— We need disambiguation mechanisms

Precedence and Associativity Declarations

* |nstead of rewriting the grammar
— Use the more natural (ambiguous) grammar
— Along with disambiguating declarations

* Most tools allow precedence and associativity
declarations to disambiguate grammars

* Examples ...

Associativity Declarations

+ Consider the grammar E—E+E|int
» Ambiguous: two parse trees of int + int + int
E
T
E + E
/l\ |
E + E INt
| |
Nt iNt

+ Left associativity declaration: 7%left +

Precedence Declarations

+ Consider the grammar E—-E+E |E *E | int
- And the string int + int * int

int E * E
| |

int Nt
- Precedence declarations: 7%left +

%Ief‘l’ *

A General Algorithm: Recursive Descent

* Let TOKEN be the type of all special tokens:
NT, OPEN, CLOSE, PLUS, TIMES.

* Let the global variable next point to the next
token.

e Define boolean functions that check for a
match of

— A given token terminal
boolean term(Token tok)
{return next++==tok;}

* The nth production of non-terminal S;
boolean S_(){...}

* Try all productions of S (which succeeds if any
of the productions for S matches the input)

boolean S(){...}

E=2> T
E—=> T+E
T-> int
T-2 int*T
T-> (E)

Example

* To start the parser

— Initialize next to point to first token
— Invoke E()

* Easy to implement by hand.

E->T|T+E (int)
T—int |int*T|(E)

bool term(TOKEN tok) { return *next++ == tok; }

bool E,() { return T(); }
bool E,() { return T() && term(PLUS) && E(); }

bool E() {TOKEN *save = next; return (next = save, E,())
|| (next = save, E)()); }
bool T,() { return term(INT); }
bool T,() { return term(INT) && term(TIMES) && T{(); }
bool T,() { return term(OPEN) && E() && term(CLOSE); }

bool T() { TOKEN *save = next; return (next =save, T,())
|| (next = save, T,())
|| (next = save, T,()); }

Problem: Left Recursion

Given a production S=2Sa

boolean S1(){return S()&&term(a)
boolean S(){return S1();}

S() goes into an infinite loop.

Because of the left recursion

Recursive Descent does not work in such cases
We need to eliminate left recursion

Eliminating Left Recursion

Consider the grammar
S—2>Sa|PB

Notice this grammar generates all strings starting
with a B and followed by any number of a’s

To eliminate left recursion, we will rewrite using
right recursion.

We introduce a new non-terminal S, and write
S=>RS
S'2>aS’ | €

In General

S=>Sa,|...|Sa, | B,]...] B,

All strings derived from S start with one of 3,,
..., .. and continue with several instances of
al...an.

Rewrite as
s-)rals'|...|”s S’
S=>a,S|...]a S|

Predictive Parsing

* Like recursive descent but parser predict
which production to use

— Using look ahead (works with restricted grammar)
— No backtracking

* Predictive parsers accept LL(K) grammars
— Left to right

— Left most derivation
— K tokens look ahead (usually k=1)

LL(1)

e InLL(1)

— At each step only one choice of production

— Given wAb on input t, there is at most one
production that can be used

Refactoring

Consider the grammar

E=>T+E|T

T=>int|int*T| (E)

It is hard to predict which production to use

— There are two production that can be used for E

— and two productions that can be used for T (the
two that begin with int)

— This grammar is not acceptable for predictive LL(1)
parsing

We need to left-factor the grammar
By eliminating common prefixes

Example
E=>T+E|T

Becomes
E=>»TX
X=>+E|€&

o T=>int|int*T|(E)
* Becomes
— T=» int Y| (E)
—Y=>*T|¢

 What we did

— We factored out the common prefix (which is T in
the first example and int in the second)

— We introduced a new nonterminal (X in the first
example and Y in the second)

— We used one production for T and
— one for the new non-terminal that list all choices

Predictive Parsing

* Like recursive descent but parser predict
which production to use

— Using look ahead (works with restricted grammar)
— No backtracking

* Predictive parsers accept LL(K) grammars
— Left to right

— Left most derivation
— K tokens look ahead (usually k=1)

LL(1)

e InLL(1)

— At each step only one choice of production

— Given wAb on input t, there is at most one
production that can be used

Refactoring

Consider the grammar

E=>T+E|T

T=>int|int*T| (E)

It is hard to predict which production to use

— There are two production that can be used for E

— and two productions that can be used for T (the
two that begin with int)

— This grammar is not acceptable for predictive LL(1)
parsing

We need to left-factor the grammar
By eliminating common prefixes

Example
E=>T+E|T

Becomes
E=>»TX
X=>+E|€&

o T=>int|int*T|(E)
* Becomes
— T=» int Y| (E)
—Y=>*T|¢

 What we did

— We factored out the common prefix (which is T in
the first example and int in the second)

— We introduced a new nonterminal (X in the first
example and Y in the second)

— We used one production for T and
— one for the new non-terminal that list all choices

e eft factored grammar
E->TX X—> +E|¢&
T->(E)|Y Y *T| €

*The LL(1) parsing table

A ra [
ar

T X TX

Tl

e

int Y (

|- x| M

*The leftmost column represents the leftmost. non-terminal symbol in a
derivation
*The top row represents the next input token.
*For example the [E, int] entry, says
*When current non-terminal is E and next input is int, use
production E - TX

* Notice blank entries represent errors

* For example entry [E, *] is blank

* |Indicating that there is no production to use
for E to get successful parsing, in the input
token is *.

LL(1) algorithm

A method similar to recursive descent except
— For the leftmost non-terminal S
— We look at the next input token a
— And choose the production shown at [S,a]

Use a stack to record leaf nodes (frontiers) of the
parse tree

The top of stack is the leftmost pending terminal or
non-terminal

Reject on reaching error state
Accept on end of input and empty stack

The LL(1) Algorithm

e Suppose a grammar has start symbol S and LL(1)
parsing table T. We want to parse string w

* |nitialize a stack containing SS.

* Repeat until the stack is empty:
— Let the next character of w be t

— If the top of the stack is a terminal r:

* If rand t don't match, report an error.

e Otherwise consume the character t and pop r from the stack.
— Otherwise, the top of the stack is a nonterminal A:

* If T[A, t] is undefined, report an error.

* Replace the top of the stack with T[A, t].

Example

e Let’s parse int*int, drawing the parse tree at
each step.

LL(1) Parsing Example

Stack Input Action =
E$ int * int % TX 7N\
TX % int * int $ int ¥ > -
intyY X% int ™ int $ terminal \ T
Y X $ * int $. T wr ¢ ©
*TX % * int $ terminal = .
TX$ int $ int Y 7/ \
intyY X % int % terminal = L
WX & % . N

X $ $ g nt Y
$ % ACCEPT 61

Constructing the Parse Table

* Consider
— A non-terminal A
— Production A—>a
— And an input token t

— We want to know the conditions under which we can make
the move T[A,t]=a

* We make the move T[A,t]=a in two situations

1. Ifa>"tB i.e. acan derive atin the first position

In this case we say that t € First(a)
And the move T[A,t]=a is reasonable

2. Orif A=>a, and
a—>" € (i.e. o can disappear), and
S 9* B At O (notice since acan disappear so does A)

— Notice that this is useful if t can follow A and
A can disappear.

— |n other words A does not derive t but t
follows A.

* This case we say t € Follow(A)

1.

First Sets

Def.
First(X)={t | X> ta}V{€& | X>" ¢}
Notice that the last part is there because we

need to keep track of whether or not X can
produce ¢.

Algorithm :

If tis a terminal
First (t)={t}

2. If Xis non-terminal, then € € First(X)

1. IfX>¢

2. OrifX—>A,..A and ¢ eFirst(A,) forl<i<n
l.e. if A,,...A can disappear by producing ¢

3. First (a) is a subset of First(X) if
X>A,.A d
and ¢ € First(A)) for1<i<n
(i.e. A,,...A, can all disappear)

Example on First Sets

*cE2>TX X—>+E | €
e T>(E)|intY Y>*T| ¢
1. Terminals

First(+)={+}

First(*)={*}

First(()={(}

First())={)}
First(int)={int}

2. Non-terminals
— First(E)

1. Since E - TX, then First(E) is a super set of First(T)
and First(T) ={(, int}

2. Noticeif T >* ¢ then First(E) is a super set of First(X)
but this is not the case since First(T) does not contain

S
Therefore, First(E) = First(T)={(, int }

— First(X)={+, ¢}
— First(Y)={*, ¢}

Follow Sets

* Notice Follow(X) is not about what X produces
but rather about where X appears.

 Definition
Follow(X)={t | S>"B Xt &}
* |ntuition

—If X > AB then
* First(B) is a subset of Follow(A)

* Follow(X) is a subset of Follow(B) (i.e., anything that
can come after X is included in the follow of B)

e IfX>ABandB>"¢
then Follow(X) is a subset of Follow(A)

(i.e., anything that can come after X is included in
Follow(A))

* IfSisthe start symbol, then S € Follow(S)
(we always add S in the Follow of the start symbol)

Because it is what we have when we runout of
input)

Algorithm

1. S eFollow(S), where S is the start symbol
2. For each production A > a Xp
First(B) —{ € } is a subset of Follow(X)

(notice that we exclude €, because € is never in a
follow set)

3. For each production A > a X 8
if & € First(B) (i.e., B can completely disappear)
then whatever is in Follow(A) is also in Follow(X)
i.e., Follow(A) is a subset of Follow(X)

Example

E>TX X—>+E | ¢
T>(E)|intY Y *T| €

Remember to determine the follow of X we need to look at
where X appears

Follow(E)
1. Since E is a start symbol, S is € Follow(E)
2. SinceT - (E), then) is € Follow(E)
3. Since X = +E, then anything that is in the follow of X is
also in the follow of E (i.e. Follow(X) is a subset of Follow(E))
4. Since E - T X then any thing that is in the follow of E is
also in the follow of X (i.e. Follow(E) is a subset of Follow(X))
5. From 3 and 4 we conclude that Follow(E)=Follow(X)
6. Bothare{s,)}

* Follow(T)

1.

Since E - T X, then Follow(T) includes First(X)
(which is {+, &} but we must exclude ¢).

2. Since X - ¢, Follow(T) must include follow(E)

(i.e. Follow(E) is a subset of Follow(T))

4. Since T also appearsinY - * T then Follow(T)

includes Follow(Y) (Follow(Y) is a subset of
Follow(T)

But notice that T = int Y so Follow(T) is also a
subset of Follow(Y)

From 4 and 5, we conclude that
Follow(T)=Follow(Y)={+, S,) }

Follow of Terminal Symbols

* Follow(‘()
— Since ‘(“ appears in T = (E), then Follow(‘()
includes First(E) (i.e. it includes { (, int })
— Since ‘(“ does not appear anywhere else

— Follow(‘(‘)={ (, int }

* Follow()’)
— Since ‘) appears only in T = (E),
Follow(‘)’) must include only Follow(T)
— Follow(‘)’) = {+, S,)}

Follow(+")
— Since + isonly used in X - +E
Follow(‘+’) includes First(E), which is { (, int} .
— Notice the E cannot produce ¢
— Follow(‘+’) ={ (, int}

Follow(“*”)
— Since ¥ isonlyusedinY > * T
Follow(*’) includes First(T), which is { (, int}

— Since T cannot got to ¢ then that is it
— Follow(*")={ (, int}

* Follow(int)
— Since int only appearsin T = intY
— Follow(int) includes First(Y) which is {*}

— But since Y=>¢, Y can completely diappear

therefore, Follow(int) must include Follow(T)
(which is {+,$,)})

— Follow(int)={*, +,$,)}

Putting Together First sets and Follow Sets to
Construct an LL(1) table

* For each production A— ain G do

— For each terminal t € First(a) do

 TIAt]= a because obviously would is useful here
— If € € First(a), for each t € Follow(A) do
* T[At]= a because a can completely disappear and

consequently A disappears.
— If € € First(a) and S € Follow(A) do

* T[A,S]=a This is useful when we ran out of input because the

only hope would be is to get rid of whatever is on
the stack.

Example

e ES>TX X—>+E| ¢
« T (E)|intY Y *T| €
() + * int S

E TX TX

T (E) intY

X 3 +E §

Y § § *T §
T[E,(]=T[E,int]=TX because (and int are in the First of TX
T[T, (]=(E) because (is in the First((E))

T[T, int]=intY because int is in the First(intY)
T[X,+]=+E because + is in the First(+E)

TLY, *] =*T because * is in the First(*T)

T X,)]=¢ because X - € and) is in the Follow(X)
T[X,S]= € because X > € and S is in the Follow(X)
T Y,)]=¢ because Y - € and) is in the follow(Y)
T[Y, +]=¢ because Y = € and + is in the follow(Y)
T[Y, S]=¢ because Y & € and S is in the follow(Y)

Not all grammars are LL(1) grammars

Example:

S—>Sal b

First(S) = {b}

Follow(S) ={ S, a}

Let’s try to construct an LL(1) table

a b S

S b
Sa

Notice that we have multiply defined entry
i.e., 2 possible moves to make, not deterministic

We conclude that the grammar is not LL(1) grammar

If an entry is multiply defined, the G is not an LL(1)
grammar

The list includes (but not limited to)
— Any grammar that is not left factored

— Any grammar that contains left recursion (the above
example)

— Any grammar that is ambiguous

— Any grammar that requires more than 1 look ahead
token

Remember the above list is not comprehensive

The only way to make sure is by trying to construct an
LL(1) parsing table

* Most programming languages CFGs are not
LL(1).

e LL(1) grammars are to weak to capture many
Interesting constructs in PLs

* The solution will build up on what we have
learned so far.

