Introduction to Parsing

Outline

- Regular languages revisited
- Parser overview
- Context-free grammars (CFG's)
- Derivations
- Ambiguity

Languages and Automata

- Formal languages are very important in CS
- Especially in programming languages
- Regular languages
- The weakest formal languages widely used
- Many applications
- We will also study context-free languages, tree languages

Beyond Regular Languages

- Many languages are not regular
- Strings of balanced parentheses are not regular:

$$
\left\{\left(^{(i)} \quad \mid i>=0\right\}\right.
$$

- There are many similar constructs in programming languages that cannot be handled with regular expressions
- E.g., nested if statements

What Can Regular Languages Express?

- So what can regular languages express?
- Consider the following FA

What can it do?

- It can tell if the number of ones in the input is divisible by 2
- i.e. it can count mod 2
- In general a FA can count mod k, where k is the number of states
- but cannot remember how many ones it has seen
- Therefore it cannot express (i $)^{i}$
- Languages requiring counting modulo a fixed integer
- Intuition: A finite automaton that runs long enough must repeat states
- Finite automaton can't remember \# of times it has visited a particular state

The Functionality of the Parser

- Input: sequence of tokens from lexer
- Output: parse tree of the program
(But some parsers never produce a parse tree . . .)

Example

$$
\text { if } x=y \text { then } 1 \text { else } 2 \mathrm{fi}
$$

- Parser input

IF ID = ID THEN INT ELSE INT FI

- Parser output

Comparison with Lexical Analysis

Phase	Input	Output
Lexer	String of characters	String of tokens
Parser	String of tokens	Parse tree

The Role of the Parser

- Not all strings of tokens are programs ...
- . . . parser must distinguish between valid and invalid strings of tokens
- We need
- A language for describing valid strings of tokens
- A method for distinguishing valid from invalid strings of tokens

Context-Free Grammars

- Programming language constructs have recursive structure .
- An EXPR is
if EXPR then EXPR else EXPR fi
while EXPR loop EXPR pool
- Context-free grammars are a natural notation for this recursive structure

CFGs (Cont.)

- A CFG consists of
- A set of terminals T
- A set of non-terminals N
- A start symbol S(a non-terminal)
- A set of productions

$$
X \longrightarrow Y_{1} Y_{2} \ldots Y_{n}
$$

where $X \in N$ and $Y_{i} \in T \cup N \cup\{\varepsilon\}$

Notational Conventions

- In these lecture notes
- Non-terminals are written upper-case
- Terminals are written lower-case
- The start symbol is the left-hand side of the first production

Terminals

- Terminals are so-called because there are no rules for replacing them
- Once generated, terminals are permanent
- Terminals ought to be tokens of the language

Examples of CFGs

EXPR \rightarrow if EXPR then EXPR else EXPR fi
| while EXPR loop EXPR pool
| id

Simple arithmetic expressions:

$$
\begin{array}{rll}
\mathrm{E} & \rightarrow & \mathrm{E} * \mathrm{E} \\
\mid & \mathrm{E}+\mathrm{E} \\
\mid & (\mathrm{E}) \\
& & \text { id }
\end{array}
$$

The Language of a CFG

- Read productions as rules (replacement rules):

$$
X \rightarrow Y_{1} \ldots Y_{n}
$$

Means X can be replaced by $Y_{1} \ldots Y_{n}$

Key Idea

1. Begin with a string consisting of the start symbol "S"
2. Replace any non-terminal X in the string by a the right-hand side of some production

$$
X \rightarrow Y_{1} \ldots Y_{n}
$$

3. Repeat (2) until there are no non-terminals in the string

The language of a CFG

- More Formally, write a single step
$X_{1} \ldots X_{i} \ldots X_{n} \rightarrow X_{1} \ldots X_{i-1} Y_{1} \ldots Y_{m} X_{i+1} \ldots X_{n}$
- If there is a production

$$
\mathrm{X}_{\mathrm{i}} \rightarrow \mathrm{Y}_{1} \ldots \mathrm{Y}_{\mathrm{m}}
$$

The language of a CFG

- Multiple steps (0 or more steps)

$$
\begin{aligned}
& \alpha_{0} \rightarrow \alpha_{1} \rightarrow \alpha_{2} \rightarrow \ldots \rightarrow \alpha_{n} \\
& \alpha_{0} \rightarrow^{*} \alpha_{n} \text { (in } 0 \text { or more steps) }
\end{aligned}
$$

The Language of a CFG

- Let G be a context-free grammar with start symbol S . Then the language of G is:
$\left\{\alpha_{1 \ldots} \alpha_{n} \mid S \rightarrow^{*} \alpha_{1 \ldots} \alpha_{n}\right.$ and every α_{i} is a terminal $\}$
- What this says is the language of a CFG is the set of strings that can be derived starting from the start symbols and contain only terminal symbols.

Examples

$L(G)$ is the language of CFG G
Strings of balanced parentheses $\left\{\left({ }^{i}\right)^{i} \mid i \geq 0\right\}$
Two grammars:

$$
\begin{array}{llllll}
S & \rightarrow & (S) \\
S & \rightarrow & \text { OR } & S & \rightarrow & (S) \\
S & & & \mid & \varepsilon
\end{array}
$$

Examples of CFG

- Write a CFG that generates Even Palindrome

$$
\mathrm{S} \rightarrow \mathrm{aSa}|\mathrm{bSb}| \epsilon
$$

- Write a CFG that generates Odd Palindrome

$$
\mathrm{S} \rightarrow \mathrm{aSa}|\mathrm{bSb}| \mathrm{a} \mid \mathrm{b}
$$

- Write a CFG that generates Equal number of a's and b's

$$
S \rightarrow \text { aSbS }|\mathrm{bSaS}| \epsilon
$$

More CFG Examples

- Write a CFG that generates Equal number of a's, b's and c's

$$
\begin{aligned}
& S \rightarrow \text { aSbScS |aScSbS | bSaScS | bScSaS | } \\
& \quad \text { cSaSbS |cSbSaS | } \epsilon
\end{aligned}
$$

Derivations and Parse Trees

- A derivation is a sequence of productions

$$
s \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots
$$

- A derivation can be drawn as a tree
-Start symbol is the tree's root
-For a production $X \rightarrow Y_{1} \ldots Y_{n}$ add children $Y_{1} \ldots Y_{n}$ to node X

Derivation Example

- Grammar

$$
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}\left|\mathrm{E}^{*} \mathrm{E}\right|(\mathrm{E}) \mid \mathrm{id}
$$

- String

$$
\mathrm{id} * \mathrm{id}+\mathrm{id}
$$

Derivation Example

Notes on Derivations

- A parse tree has
- Terminals at the leaves
- Non-terminals at the interior nodes
- An in-order traversal of the leaves is the original input
- The parse tree shows the precedence of operations, the input string does not

Left-most and Right-most Derivations

- The example is a leftmost derivation
- At each step, replace the left-most non-terminal

$$
\begin{array}{ll}
& \mathrm{E} \\
\rightarrow & \mathrm{E}+\mathrm{E} \\
\rightarrow & \mathrm{E}+\mathrm{id} \\
\rightarrow & \mathrm{E} * \mathrm{E}+\mathrm{id} \\
\rightarrow & \mathrm{E} * \mathrm{id}+\mathrm{id} \\
\rightarrow & \mathrm{id} * \mathrm{id}+\mathrm{id}
\end{array}
$$

- There is an equivalent notion of a right-most derivation

Right-most Derivation in Detail

Derivations and Parse Trees

- Note that right-most and leftmost derivations have the same parse tree
- The difference is the order in which branches are added

Summary of Derivations

- We are not just interested in whether $s \in L(G)$
- We need a parse tree for s
- A derivation defines a parse tree
- But one parse tree may have many derivations
- Left-most and right-most derivations are important in parser implementation

Ambiguity

- Grammar

$$
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{E} * \mathrm{E}|(\mathrm{E}) \mid \mathrm{id}
$$

- String:
id * id + id

Ambiguity

This string has two parse trees

Ambiguity

- A grammar is ambiguous if it has more than one parse tree for some string
- Equivalently, there is more than one rightmost or left-most derivation for some string
- Ambiguity is BAD
-Leaves meaning of some programs illdefined

Dealing with Ambiguity

- There are several ways to handle ambiguity
- Most direct method is to rewrite grammar unambiguously

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}^{\prime}+\mathrm{E} \mid \mathrm{E}^{\prime} \\
& \mathrm{E}^{\prime} \rightarrow \mathrm{id} * \mathrm{E}^{\prime}|\mathrm{id}|(\mathrm{E}) * \mathrm{E}^{\prime} \mid(\mathrm{E})
\end{aligned}
$$

- Enforces precedence of * over +

Ambiguity: The Dangling Else

- Consider the grammar

$$
\begin{aligned}
E & \rightarrow \text { if } E \text { then } E \\
& \mid \text { if } E \text { then } E \text { else } E \\
& \mid O T H E R
\end{aligned}
$$

- This grammar is also ambiguous

The Dangling Else: Example

- The expression
if E_{1} then if E_{2} then E_{3} else E_{4}
has two parse trees

- Typically we want the second form

The Dangling Else: A Fix

- else matches the closest unmatched then
- We can describe this in the grammar

$$
\begin{aligned}
E \rightarrow \text { MIF } & \text { /* all then are matched */ } \\
\mid \text { UIF } & \text { /* some then is unmatched */ }
\end{aligned}
$$

MIF \rightarrow if E then MIF else MIF
\mid OTHER
UIF \rightarrow if E then E
| if E then MIF else UIF

- Describes the same set of strings
- The expression if E_{1} then if E_{2} then E_{3} else E_{4}

- A valid parse tree (for a UIF)

- Not valid because the then expression is not a MIF

Ambiguity

- No general techniques for handling ambiguity
- Impossible to convert automatically an ambiguous grammar to an unambiguous one
- Used with care, ambiguity can simplify the grammar
- Sometimes allows more natural definitions
- We need disambiguation mechanisms

Precedence and Associativity Declarations

- Instead of rewriting the grammar
- Use the more natural (ambiguous) grammar
- Along with disambiguating declarations
- Most tools allow precedence and associativity declarations to disambiguate grammars
- Examples ...

Associativity Declarations

- Consider the grammar $\quad E \rightarrow E+E \mid$ int
- Ambiguous: two parse trees of int + int + int

- Left associativity declaration: \%left +

Precedence Declarations

- Consider the grammar $E \rightarrow E+E|E * E|$ int
- And the string int + int * int

- Precedence declarations: \%left +
\%left *

A General Algorithm: Recursive Descent

- Let TOKEN be the type of all special tokens: INT, OPEN, CLOSE, PLUS, TIMES.
- Let the global variable next point to the next token.
- Define boolean functions that check for a match of
- A given token terminal boolean term(Token tok) \{return next++==tok;\}
- The nth production of non-terminal S; boolean $\mathrm{S}_{\mathrm{n}}()\{\ldots\}$
- Try all productions of S (which succeeds if any of the productions for S matches the input) boolean $S()\{\ldots\}$

Example

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T} \\
& \mathrm{E} \rightarrow \text { T+E } \\
& \mathrm{T} \rightarrow \text { int } \\
& \mathrm{T} \rightarrow \text { int* } \\
& \mathrm{T} \rightarrow \text { (E) }
\end{aligned}
$$

- To start the parser
- Initialize next to point to first token
- Invoke E()
- Easy to implement by hand.

$\mathrm{E} \rightarrow \mathrm{T} \mid \mathrm{T}+\mathrm{E}$

```
bool term(TOKEN tok) { return *next++ == tok; }
```

```
bool E () {return T(); }
bool E E () {return T() && term(PLUS) & & E(); }
bool E() {TOKEN *save = next; return (next = save, E ( ))
    || (next = save, E E ()); }
bool T}\mp@subsup{T}{1}{\prime}){\mathrm{ return term(INT); }
bool T () { return term(INT) && term(TIMES) && T(); }
bool T () { return term(OPEN) && E() && term(CLOSE); }
bool T() {TOKEN *save = next; return (next = save, T T ())
    || (next = save, T2())
    || (next = save, 'T}\mp@subsup{}{3}{\prime}()); 
```


Problem: Left Recursion

- Given a production $\mathrm{S} \rightarrow \mathrm{S} \alpha$ boolean S1()\{return S()\&\&term(α) boolean S()\{return S1();\}
- $S()$ goes into an infinite loop.
- Because of the left recursion
- Recursive Descent does not work in such cases
- We need to eliminate left recursion

Eliminating Left Recursion

- Consider the grammar

$$
s \rightarrow S \alpha \mid \beta
$$

- Notice this grammar generates all strings starting with a β and followed by any number of α 's
- To eliminate left recursion, we will rewrite using right recursion.
- We introduce a new non-terminal S^{\prime}, and write
- $S \rightarrow \beta S^{\prime}$
- $S^{\prime} \rightarrow \alpha S^{\prime} \mid \xi$

In General

- $S \rightarrow S \alpha_{1}|\ldots| S \alpha_{n}\left|\beta_{1}\right| \ldots \mid \beta_{m}$
- All strings derived from S start with one of β_{1}, ..., β_{m} and continue with several instances of $\alpha_{1} \ldots \alpha_{n}$.
- Rewrite as
- $S \rightarrow \beta_{1} S^{\prime}|\ldots| \beta_{m} S^{\prime}$
- $S^{\prime} \rightarrow \alpha_{1} S^{\prime}|\ldots| \alpha_{n} S^{\prime} \mid \xi$

Predictive Parsing

- Like recursive descent but parser predict which production to use
- Using look ahead (works with restricted grammar)
- No backtracking
- Predictive parsers accept LL(K) grammars
- Left to right
- Left most derivation
- K tokens look ahead (usually $\mathrm{k}=1$)

LL(1)

- $\ln \operatorname{LL}(1)$
- At each step only one choice of production
- Given wAb on input t, there is at most one production that can be used

Refactoring

- Consider the grammar
- $\mathrm{E} \rightarrow \mathrm{T}+\mathrm{E} \mid \mathrm{T}$
- $\mathrm{T} \rightarrow$ int|int*T|(E)
- It is hard to predict which production to use
- There are two production that can be used for E
- and two productions that can be used for T (the two that begin with int)
- This grammar is not acceptable for predictive $\operatorname{LL}(1)$ parsing
- We need to left-factor the grammar
- By eliminating common prefixes
- Example

$$
\mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \mid \mathrm{T}
$$

- Becomes

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{TX} \\
& X \rightarrow+\mathrm{E} \mid \xi
\end{aligned}
$$

- T $\boldsymbol{\rightarrow}$ int \mid int* ${ }^{*} \mid(E)$
- Becomes

$$
\begin{aligned}
& -T \rightarrow \operatorname{int} Y \mid(E) \\
& -Y \rightarrow * T \mid \xi
\end{aligned}
$$

- What we did
- We factored out the common prefix (which is T in the first example and int in the second)
- We introduced a new nonterminal (X in the first example and Y in the second)
- We used one production for T and
- one for the new non-terminal that list all choices

Predictive Parsing

- Like recursive descent but parser predict which production to use
- Using look ahead (works with restricted grammar)
- No backtracking
- Predictive parsers accept LL(K) grammars
- Left to right
- Left most derivation
- K tokens look ahead (usually $\mathrm{k}=1$)

LL(1)

- $\ln \operatorname{LL}(1)$
- At each step only one choice of production
- Given wAb on input t, there is at most one production that can be used

Refactoring

- Consider the grammar
- $\mathrm{E} \rightarrow \mathrm{T}+\mathrm{E} \mid \mathrm{T}$
- $\mathrm{T} \rightarrow$ int|int*T|(E)
- It is hard to predict which production to use
- There are two production that can be used for E
- and two productions that can be used for T (the two that begin with int)
- This grammar is not acceptable for predictive $\operatorname{LL}(1)$ parsing
- We need to left-factor the grammar
- By eliminating common prefixes
- Example

$$
\mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \mid \mathrm{T}
$$

- Becomes

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{TX} \\
& X \rightarrow+\mathrm{E} \mid \xi
\end{aligned}
$$

- T $\boldsymbol{\rightarrow}$ int \mid int* ${ }^{*} \mid(E)$
- Becomes

$$
\begin{aligned}
& -T \rightarrow \operatorname{int} Y \mid(E) \\
& -Y \rightarrow * T \mid \xi
\end{aligned}
$$

- What we did
- We factored out the common prefix (which is T in the first example and int in the second)
- We introduced a new nonterminal (X in the first example and Y in the second)
- We used one production for T and
- one for the new non-terminal that list all choices
- Left factored grammar

$$
\begin{array}{ll}
\mathrm{E} \rightarrow \mathrm{TX} & \mathrm{X} \rightarrow+\mathrm{E} \mid \xi \\
\mathrm{T} \rightarrow(\mathrm{E}) \mid \mathrm{Y} & \mathrm{Y} \rightarrow{ }^{*} \mathrm{~T} \mid \xi
\end{array}
$$

-The LL(1) parsing table

	int	^ *	+	$($	$)$	$\$$
E	$T X$			$T X$		
X			$+E$		ε	ε
T	int Y			(E)		
Y		${ }^{*} T$	ε		ε	ε

-The leftmost column represents the leftmost. non-terminal symbol in a derivation
-The top row represents the next input token.
\bullet-For example the [E, int] entry, says

- When current non-terminal is E and next input is int, use production E \rightarrow TX
- Notice blank entries represent errors
- For example entry [$\mathrm{E},{ }^{*}$] is blank
- Indicating that there is no production to use for E to get successful parsing, in the input token is *.

LL(1) algorithm

- A method similar to recursive descent except
- For the leftmost non-terminal S
- We look at the next input token a
- And choose the production shown at [S,a]
- Use a stack to record leaf nodes (frontiers) of the parse tree
- The top of stack is the leftmost pending terminal or non-terminal
- Reject on reaching error state
- Accept on end of input and empty stack

The LL(1) Algorithm

- Suppose a grammar has start symbol S and LL(1) parsing table T. We want to parse string ω
- Initialize a stack containing $\$ \$$.
- Repeat until the stack is empty:
- Let the next character of ω be t
- If the top of the stack is a terminal r :
- If r and t don't match, report an error.
- Otherwise consume the character t and pop r from the stack.
- Otherwise, the top of the stack is a nonterminal A:
- If $\mathrm{T}[\mathrm{A}, \mathrm{t}]$ is undefined, report an error.
- Replace the top of the stack with T[A, t].

Example

- Let's parse int*int, drawing the parse tree at each step.

LL(1) Parsing Example

Stack	Input	Action	E
E \$	int * int \$	TX	,
TX\$	int * int \$	int Y	$I \times$
int Y X ${ }^{\text {S }}$	int * int \$	terminal	(1)
$\mathrm{Y} \times$ \$	* int \$	* T	int 46
* TX\$	* int \$	terminal	
TX	int \$	int Y	
int Y X ${ }^{\text {S }}$	int \$	terminal	
$\mathrm{Y} \times$ \$	\$	ε	
\times \$	\$	E	$\underline{1}$
\$	\$	ACCEPT	1

Constructing the Parse Table

- Consider
- A non-terminal A
- Production $A \rightarrow \alpha$
- And an input token t
- We want to know the conditions under which we can make the move $T[A, t]=\alpha$
- We make the move $T[A, t]=\alpha$ in two situations

1. If $\alpha \rightarrow^{*} \mathrm{t} \beta$ i.e. α can derive at in the first position In this case we say that $t \in \operatorname{First}(\alpha)$ And the move $T[A, t]=\alpha$ is reasonable
2. Or if $A \rightarrow \alpha$, and $\alpha \rightarrow^{*} \xi$ (i.e. α can disappear), and $S \rightarrow{ }^{*} \beta A t \delta \quad$ (notice since α can disappear so does A)

- Notice that this is useful if t can follow A and A can disappear.
- In other words A does not derive t but t follows A.
- This case we say $\mathrm{t} \epsilon$ Follow(A)

First Sets

- Def.
- $\operatorname{First}(X)=\left\{t \mid X \rightarrow^{*} \operatorname{ta\} } \vee\left\{\xi \mid X \rightarrow^{*} \xi\right\}\right.$
- Notice that the last part is there because we need to keep track of whether or not X can produce ξ.
- Algorithm :

1. If t is a terminal

First $(\mathrm{t})=\{\mathrm{t}\}$
2. If X is non-terminal, then $\xi \in \operatorname{First}(X)$

1. If $X \rightarrow \xi$
2. Or if $X \rightarrow A_{1}, \ldots A_{n}$ and $\xi \in \operatorname{First}\left(A_{i}\right)$ for $1 \leq i \leq n$ i.e. if $A_{1}, \ldots A_{n}$ can disappear by producing ξ
3. First (α) is a subset of First (X) if
$X \rightarrow A_{1}, \ldots A_{n} \alpha$
and $\xi \in \operatorname{First}\left(A_{i}\right)$ for $1 \leq i \leq n$
(i.e. $\mathrm{A}_{1}, \ldots \mathrm{~A}_{\mathrm{n}}$ can all disappear)

Example on First Sets

- $\mathrm{E} \rightarrow \mathrm{TX}$
- $T \rightarrow(E) \mid$ int Y

1. Terminals

First(+)=\{+\}
First($\left.{ }^{*}\right)=\{*\}$
First(() $=\{(\}$
First())=\{)\}
First(int)=\{int $\}$

2. Non-terminals

- First(E)

1. Since $E \rightarrow T X$, then First(E) is a super set of First(T) and First(T) $=\{$ (, int $\}$
2. Notice if $T \rightarrow^{*} \xi$ then $\operatorname{First}(E)$ is a super set of First(X) but this is not the case since $\operatorname{First}(T)$ does not contain ξ
Therefore, $\operatorname{First}(E)=\operatorname{First}(T)=\{($, int $\}$
$-\operatorname{First}(X)=\{+, \xi\}$
$-\operatorname{First}(Y)=\{*, \xi\}$

Follow Sets

- Notice Follow(X) is not about what X produces but rather about where X appears.
- Definition

$$
\text { Follow }(X)=\left\{t \mid S \rightarrow^{*} \beta X t \delta\right\}
$$

- Intuition
- If $X \rightarrow A \beta$ then
- First(B) is a subset of Follow(A)
- Follow (X) is a subset of Follow(B) (i.e., anything that can come after X is included in the follow of B)
- If $X \rightarrow A \beta$ and $\beta \rightarrow{ }^{*} \xi$ then Follow(X) is a subset of Follow(A)
(i.e., anything that can come after X is included in Follow(A))
- If S is the start symbol, then $\$ \in$ Follow(S) (we always add \$ in the Follow of the start symbol) Because it is what we have when we runout of input)

Algorithm

1. $\$ \in \operatorname{Follow}(S)$, where S is the start symbol
2. For each production $A \rightarrow \alpha \times \beta$

First $(\beta)-\{\xi\}$ is a subset of Follow (X)
(notice that we exclude ξ, because ξ is never in a follow set)
3. For each production $A \rightarrow \alpha \times \beta$
if $\xi \in \operatorname{First}(\beta) \quad$ (i.e., β can completely disappear)
then whatever is in $\operatorname{Follow}(A)$ is also in $\operatorname{Follow}(X)$
i.e., $\operatorname{Follow}(A)$ is a subset of Follow(X)

Example

- $\mathrm{E} \rightarrow \mathrm{TX}$
- $T \rightarrow(E) \mid \operatorname{int} Y$

$$
\begin{aligned}
& X \rightarrow+\mathrm{E} \mid \xi \\
& \mathrm{Y} \rightarrow{ }^{*} \mathrm{~T} \mid \xi
\end{aligned}
$$

- Remember to determine the follow of X we need to look at where X appears
- Follow(E)

1. Since E is a start symbol, $\$$ is \in Follow(E)
2. Since $T \rightarrow(E)$, then) is \in Follow(E)
3. Since $X \rightarrow+E$, then anything that is in the follow of X is also in the follow of E (i.e. Follow(X) is a subset of Follow(E))
4. Since $E \rightarrow T X$ then any thing that is in the follow of E is also in the follow of X (i.e. Follow(E) is a subset of Follow(X))
5. From 3 and 4 we conclude that $\operatorname{Follow}(E)=\operatorname{Follow}(X)$
6. Both are $\{\$)$,

- Follow(T)

1. Since $E \rightarrow T X$, then Follow(T) includes First (X) (which is $\{+, \xi\}$ but we must exclude ξ).
2. Since $X \rightarrow \xi$, Follow(T) must include follow(E)
3.

(i.e. Follow(E) is a subset of Follow(T))
4. Since T also appears in $Y \rightarrow{ }^{*} T$ then Follow(T) includes Follow $(\mathrm{Y})(\operatorname{Follow}(\mathrm{Y})$ is a subset of Follow(T)
5. But notice that $T \rightarrow$ int Y so Follow (T) is also a subset of Follow(Y)
6. From 4 and 5 , we conclude that Follow(T)=Follow(Y)=\{+,\$,) \}

Follow of Terminal Symbols

- Follow('(')
- Since '(' appears in $T \rightarrow(E)$, then Follow('(') includes First(E) (i.e. it includes \{ (, int \})
- Since '(' does not appear anywhere else
- Follow('(')= \{ (, int \}
- Follow(')')
- Since ')' appears only in $T \rightarrow(E)$,

Follow(')') must include only Follow(T)

- Follow(' $\left.\left.)^{\prime}\right)=\{+, \$),\right\}$
- Follow('+')
- Since + is only used in $\mathrm{X} \rightarrow+\mathrm{E}$

Follow('+') includes First(E), which is $\{(, \mathrm{int}\}$.

- Notice the E cannot produce ξ
- Follow('+') = $\{$ (, int $\}$
- Follow(**)
- Since ${ }^{* *}$ ' is only used in $Y \rightarrow{ }^{*} T$

Follow(${ }^{*}$ ') includes First(T), which is $\{(, \mathrm{int}\}$

- Since T cannot got to ξ then that is it
- Follow(${ }^{(*)}$) $=\{$ (, int $\}$
- Follow(int)
- Since int only appears in $T \rightarrow$ int Y
- Follow(int) includes First(Y) which is \{*\}
- But since $Y \rightarrow \zeta, Y$ can completely diappear therefore, Follow(int) must include Follow(T) (which is $\{+, \$, \mathbf{,})$)
- Follow(int)=\{*, $+, \$, \mathbf{,})\}$

Putting Together First sets and Follow Sets to Construct an LL(1) table

- For each production $\mathrm{A} \rightarrow \alpha$ in G do
- For each terminal $t \in \operatorname{First}(\alpha)$ do
- $T[A, t]=\alpha \quad$ because obviously would is useful here
- If $\xi \in \operatorname{First}(\alpha)$, for each $t \in \operatorname{Follow}(A)$ do
- $T[A, t]=\alpha \quad$ because α can completely disappear and consequently A disappears.
- If $\xi \in \operatorname{First}(\alpha)$ and $\$ \in \operatorname{Follow}(A)$ do
- $T[A, \$]=\alpha \quad$ This is useful when we ran out of input because the only hope would be is to get rid of whatever is on the stack.

Example

- $\mathrm{E} \rightarrow \mathrm{TX}$
- $T \rightarrow(E) \mid \operatorname{int} Y$

$$
\begin{aligned}
& X \rightarrow+\mathrm{E} \mid \xi \\
& \mathrm{Y} \rightarrow{ }^{*} \mathrm{~T} \mid \xi
\end{aligned}
$$

	1	$)$	+	*	int	\$
E	TX				TX	
T	(E)				int Y	
X		ξ	+E			ξ
Y		ξ	ξ	*T		ξ

$T[E,(]=T[E$, int $]=T X \quad$ because (and int are in the First of TX
$\mathrm{T}[\mathrm{T},(\mathrm{]}=(\mathrm{E})$
$T[T$, int $]=\operatorname{int} Y$
$\mathrm{T}[\mathrm{X},+\mathrm{]}=+\mathrm{E}$
$\mathrm{T}\left[\mathrm{Y},{ }^{*}\right]={ }^{*} \mathrm{~T}$
$T[X),]=\xi$
$T[X, \$]=\xi$
$T[Y),]=\xi$
$T[Y,+]=\xi$
$T[Y, \$]=\xi$
because (is in the First((E)) because int is in the First(int Y) because + is in the First(+E) because * is in the First(*T) because $X \rightarrow \xi$ and) is in the Follow(X) because $X \rightarrow \xi$ and $\$$ is in the Follow(X) because $Y \rightarrow \xi$ and) is in the follow(Y) because $\mathrm{Y} \rightarrow \xi$ and + is in the follow (Y) because $\mathrm{Y} \rightarrow \xi$ and $\$$ is in the follow (Y)

Not all grammars are LL(1) grammars

- Example:
- $S \rightarrow$ Sa|b
- First(S) = \{b\}
- Follow(S) = \{ \$, a $\}$
- Let's try to construct an LL(1) table

	a	\mathbf{b}	$\mathbf{\$}$
S		b Sa	

- Notice that we have multiply defined entry
- i.e., 2 possible moves to make, not deterministic
- We conclude that the grammar is not $\mathrm{LL}(1)$ grammar
- If an entry is multiply defined, the G is not an $\mathrm{LL}(1)$ grammar
- The list includes (but not limited to)
- Any grammar that is not left factored
- Any grammar that contains left recursion (the above example)
- Any grammar that is ambiguous
- Any grammar that requires more than 1 look ahead token
- Remember the above list is not comprehensive
- The only way to make sure is by trying to construct an $\mathrm{LL}(1)$ parsing table
- Most programming languages CFGs are not LL(1).
- LL(1) grammars are to weak to capture many interesting constructs in PLs
- The solution will build up on what we have learned so far.

