Introduction to Parsing

Outline

- Regular languages revisited
- Parser overview
- Context-free grammars (CFG's)
- Derivations
- Ambiguity

Languages and Automata

- Formal languages are very important in CS

 Especially in programming languages
- Regular languages
 - The weakest formal languages widely used
 - Many applications
- We will also study context-free languages, tree languages

Beyond Regular Languages

- Many languages are not regular
- Strings of balanced parentheses are not regular:

{(ⁱ)ⁱ | i>=0}

- There are many similar constructs in programming languages that cannot be handled with regular expressions
- E.g., nested if statements

What Can Regular Languages Express?

- So what can regular languages express?
- Consider the following FA

What can it do?

- It can tell if the number of ones in the input is divisible by 2
- i.e. it can count mod 2
- In general a FA can count mod k, where k is the number of states
- but cannot remember how many ones it has seen
- Therefore it cannot express (ⁱ)ⁱ
- Languages requiring counting modulo a fixed integer
- Intuition: A finite automaton that runs long enough must repeat states
- Finite automaton can't remember # of times it has visited a particular state

The Functionality of the Parser

• Input: sequence of tokens from lexer

• Output: parse tree of the program (But some parsers never produce a parse tree . . .)

Example

if x = y then 1 else 2 fi

Parser input

IF ID = ID THEN INT ELSE INT FI

Parser output

Comparison with Lexical Analysis

Phase	Input	Output
Lexer	String of characters	String of tokens
Parser	String of tokens	Parse tree

The Role of the Parser

- Not all strings of tokens are programs . . .
- . . . parser must distinguish between valid and invalid strings of tokens
- We need
 - A language for describing valid strings of tokens
 - A method for distinguishing valid from invalid strings of tokens

Context-Free Grammars

- Programming language constructs have recursive structure .
- An EXPR is if EXPR then EXPR else EXPR fi while EXPR loop EXPR pool

. . .

 Context-free grammars are a natural notation for this recursive structure

CFGs (Cont.)

- A CFG consists of
 - A set of terminals T
 - A set of non-terminals N
 - A start symbol S(a non-terminal)
 - A set of productions

 $X \longrightarrow Y_1 Y_2 \dots Y_n$

where $X \in N$ and $Y_i \in T \cup N \cup \{\varepsilon\}$

Notational Conventions

- In these lecture notes
 - Non-terminals are written upper-case
 - Terminals are written lower-case
 - The start symbol is the left-hand side of the first production

Terminals

- Terminals are so-called because there are no rules for replacing them
- Once generated, terminals are permanent
- Terminals ought to be tokens of the language

Examples of CFGs

EXPR → if EXPR then EXPR else EXPR fi | while EXPR loop EXPR pool | id Simple arithmetic expressions:

The Language of a CFG

• Read productions as rules (replacement rules):

$$X \rightarrow Y_1 \dots Y_n$$

Means X can be replaced by $Y_1 \dots Y_n$

Key Idea

- 1. Begin with a string consisting of the start symbol "S"
- 2. Replace any non-terminal X in the string by a the right-hand side of some production

 $X \rightarrow Y_1 \dots Y_n$

3. Repeat (2) until there are no non-terminals in the string

The language of a CFG

• More Formally, write a single step

 $X_1 \dots X_i \dots X_n \xrightarrow{\bullet} X_1 \dots X_{i-1} Y_1 \dots Y_m X_{i+1} \dots X_n$

• If there is a production

 $X_i \rightarrow Y_1 \dots Y_m$

The language of a CFG

• Multiple steps (0 or more steps)

$$\alpha_0 \rightarrow \alpha_1 \rightarrow \alpha_2 \rightarrow \dots \rightarrow \alpha_n$$

$$\alpha_0 \rightarrow^* \alpha_n$$
 (in 0 or more steps)

The Language of a CFG

• Let G be a context-free grammar with start symbol S. Then the language of G is:

{ $\alpha_{1} \alpha_{n} | S \rightarrow^{*} \alpha_{1} \alpha_{n}$ and every α_{i} is a terminal}

 What this says is the language of a CFG is the set of strings that can be derived starting from the start symbols and contain only terminal symbols.

Examples

L(G) is the language of CFG G

Strings of balanced parentheses $\left\{ \binom{i}{i}^{i} \mid i \geq 0 \right\}$

Two grammars:

Examples of CFG

- Write a CFG that generates Even Palindrome
 S → aSa | bSb | ε
- Write a CFG that generates Odd Palindrome
 S → aSa | bSb | a | b
- Write a CFG that generates Equal number of a's and b's

 $S \rightarrow aSbS | bSaS | \epsilon$

More CFG Examples

 Write a CFG that generates Equal number of a's, b's and c's

S \rightarrow aSbScS | aScSbS | bSaScS | bScSaS | cSaSbS | cSbSaS | ϵ

Derivations and Parse Trees

 A derivation is a sequence of productions

 $\mathsf{S} {\rightarrow} \ldots {\rightarrow} \ldots {\rightarrow} \ldots {\rightarrow} \ldots$

- A derivation can be drawn as a tree
 - -Start symbol is the tree's root
 - -For a production $X \rightarrow Y_1 \dots Y_n$ add children $Y_1 \dots Y_n$ to node X

Derivation Example

• Grammar

 $E \rightarrow E + E | E^*E|$ (E) | id

String
 id * id + id

Derivation Example

Notes on Derivations

• A parse tree has

- Terminals at the leaves

-Non-terminals at the interior nodes

- An in-order traversal of the leaves is the original input
- The parse tree shows the precedence of operations, the input string does not

Left-most and Right-most Derivations

- The example is a *leftmost* derivation
 - At each step, replace the left-most non-terminal
- There is an equivalent notion of a *right-most* derivation

E E+E \rightarrow E+id \rightarrow E * E + id \rightarrow E * id + id \rightarrow \rightarrow id * id + id

Right-most Derivation in Detail

Derivations and Parse Trees

- Note that right-most and leftmost derivations have the same parse tree
- The difference is the order in which branches are added

Summary of Derivations

- We are not just interested in whether s ∈L(G)
 - We need a parse tree for s
- A derivation defines a parse tree
 - But one parse tree may have many derivations
- Left-most and right-most derivations are important in parser implementation

Ambiguity

• Grammar

$E \rightarrow E+E \mid E * E \mid (E) \mid id$

• String:

id * id + id

Ambiguity

This string has two parse trees

Ambiguity

- A grammar is ambiguous if it has more than one parse tree for some string
 - Equivalently, there is more than one rightmost or left-most derivation for some string

- Ambiguity is BAD
 - Leaves meaning of some programs illdefined

Dealing with Ambiguity

- There are several ways to handle ambiguity
- Most direct method is to rewrite grammar unambiguously
 - $E \rightarrow E' + E \mid E'$ $E' \rightarrow id * E' \mid id \mid (E) * E' \mid (E)$
 - Enforces precedence of * over +
Ambiguity: The Dangling Else

Consider the grammar
 E → if E then E
 | if E then E else E
 | OTHER

This grammar is also ambiguous

The Dangling Else: Example

• The expression

if E_1 then if E_2 then E_3 else E_4

has two parse trees

Typically we want the second form

The Dangling Else: A Fix

- else matches the closest unmatched then
- We can describe this in the grammar
 - $E \rightarrow MIF /* all then are matched */$ | UIF /* some then is unmatched */ $MIF \rightarrow if E then MIF else MIF$ | OTHER $UIF \rightarrow if E then E$ | if E then MIF else UIF
- Describes the same set of strings

• The expression if E_1 then if E_2 then E_3 else E_4

 A valid parse tree (for a UIF)

 Not valid because the then expression is not a MIF

Ambiguity

- No general techniques for handling ambiguity
- Impossible to convert automatically an ambiguous grammar to an unambiguous one
- Used with care, ambiguity can simplify the grammar
 - Sometimes allows more natural definitions
 - We need disambiguation mechanisms

Precedence and Associativity Declarations

- Instead of rewriting the grammar
 - Use the more natural (ambiguous) grammar
 - Along with disambiguating declarations
- Most tools allow precedence and associativity declarations to disambiguate grammars
- Examples ...

Associativity Declarations

- Consider the grammar $E \rightarrow E + E \mid int$
- Ambiguous: two parse trees of int + int + int

Left associativity declaration: %left +

Precedence Declarations

Consider the grammar E → E + E | E * E | int
 And the string int + int * int

Precedence declarations: %left +

A General Algorithm: Recursive Descent

- Let TOKEN be the type of all special tokens: INT, OPEN, CLOSE, PLUS, TIMES.
- Let the global variable next point to the next token.
- Define boolean functions that check for a match of

– A given token terminal boolean term(Token tok) {return next++==tok;}

- The nth production of non-terminal S; boolean S_n(){...}
- Try all productions of S (which succeeds if any of the productions for S matches the input) boolean S(){...}

Example

 $E \rightarrow T$ $E \rightarrow T+E$ $T \rightarrow int$ $T \rightarrow int^{*}T$ $T \rightarrow (E)$

- To start the parser
 - Initialize next to point to first token
 - Invoke E()
- Easy to implement by hand.

```
E \rightarrow T | T + E
T \rightarrow int | int * T | (E)
```

```
bool term(TOKEN tok) { return *next++ == tok; }
```

```
bool E<sub>1</sub>() { return T(); }
bool E<sub>2</sub>() { return T() && term(PLUS) && E(); }
```

```
bool E() {TOKEN *save = next; return (next = save, E_1())

|| (next = save, E_2()); }

bool T_1() { return term(INT); }

bool T_2() { return term(INT) && term(TIMES) && T(); }

bool T_3() { return term(OPEN) && E() && term(CLOSE); }
```

```
bool T() { TOKEN *save = next; return (next = save, T<sub>1</sub>())
|| (next = save, T<sub>2</sub>())
|| (next = save, T<sub>3</sub>()); }
```

(int)

Problem: Left Recursion

- Given a production S→Sα
 boolean S1(){return S()&&term(α)
 boolean S(){return S1();}
- S() goes into an infinite loop.
- Because of the left recursion
- Recursive Descent does not work in such cases
- We need to eliminate left recursion

Eliminating Left Recursion

- Consider the grammar $s \rightarrow S\alpha | \beta$
- Notice this grammar generates all strings starting with a β and followed by any number of $\alpha's$
- To eliminate left recursion, we will rewrite using right recursion.
- We introduce a new non-terminal S', and write
- S→ßS′
- S'→αS'|ξ

In General

- $S \rightarrow S\alpha_1 | ... | S\alpha_n | \beta_1 | ... | \beta_m$
- All strings derived from S start with one of β_1 , ..., β_m and continue with several instances of $\alpha_1...\alpha_n$.
- Rewrite as
- S→ß₁S'|...|ß_mS'
- $S' \rightarrow \alpha_1 S' | \dots | \alpha_n S' | \xi$

Predictive Parsing

- Like recursive descent but parser predict which production to use
 - Using look ahead (works with restricted grammar)
 No backtracking
- Predictive parsers accept LL(K) grammars
 - Left to right
 - Left most derivation
 - K tokens look ahead (usually k=1)

LL(1)

• In LL(1)

At each step only one choice of production

Given wAb on input t, there is at most one production that can be used

Refactoring

- Consider the grammar
- E→T+E|T
- $T \rightarrow int | int T | (E)$
- It is hard to predict which production to use
 - There are two production that can be used for E
 - and two productions that can be used for T (the two that begin with int)
 - This grammar is not acceptable for predictive LL(1) parsing

- We need to left-factor the grammar
- By eliminating common prefixes
- Example
 - E→T+E|T
- Becomes

E**→**TX X**→**+E|ξ

- T→int|int*T|(E)
- Becomes
 - $-T \rightarrow int Y|(E)$
 - -Y**→***T|ξ

- What we did
 - We factored out the common prefix (which is T in the first example and int in the second)
 - We introduced a new nonterminal (X in the first example and Y in the second)
 - We used one production for T and
 - one for the new non-terminal that list all choices

Predictive Parsing

- Like recursive descent but parser predict which production to use
 - Using look ahead (works with restricted grammar)
 No backtracking
- Predictive parsers accept LL(K) grammars
 - Left to right
 - Left most derivation
 - K tokens look ahead (usually k=1)

LL(1)

• In LL(1)

At each step only one choice of production

Given wAb on input t, there is at most one production that can be used

Refactoring

- Consider the grammar
- E→T+E|T
- $T \rightarrow int | int T | (E)$
- It is hard to predict which production to use
 - There are two production that can be used for E
 - and two productions that can be used for T (the two that begin with int)
 - This grammar is not acceptable for predictive LL(1) parsing

- We need to left-factor the grammar
- By eliminating common prefixes
- Example
 - E→T+E|T
- Becomes

E**→**TX X**→**+E|ξ

- T→int|int*T|(E)
- Becomes
 - $-T \rightarrow int Y|(E)$
 - -Y**→***T|ξ

- What we did
 - We factored out the common prefix (which is T in the first example and int in the second)
 - We introduced a new nonterminal (X in the first example and Y in the second)
 - We used one production for T and
 - one for the new non-terminal that list all choices

•Left factored grammar $E \rightarrow TX$ $X \rightarrow +E|\xi$ $T \rightarrow (E) |Y$ $Y \rightarrow *T| \xi$

•The LL(1) parsing table

	int	*	+	()	\$
E	ТΧ			ТΧ		
×			+ E		3	3
т	int Y			(E)		
У		* T	3		3	3

•The leftmost column represents the leftmost. non-terminal symbol in a derivation

•The top row represents the next input token.

•For example the [E, int] entry, says

•When current non-terminal is E and next input is int, use production E \rightarrow TX

- Notice blank entries represent errors
- For example entry [E, *] is blank
- Indicating that there is no production to use for E to get successful parsing, in the input token is *.

LL(1) algorithm

- A method similar to recursive descent except
 - For the leftmost non-terminal S
 - We look at the next input token a
 - And choose the production shown at [S,a]
- Use a stack to record leaf nodes (frontiers) of the parse tree
- The top of stack is the leftmost pending terminal or non-terminal
- Reject on reaching error state
- Accept on end of input and empty stack

The LL(1) Algorithm

- Suppose a grammar has start symbol S and LL(1) parsing table T. We want to parse string ω
- Initialize a stack containing S\$.
- Repeat until the stack is empty:
 - Let the next character of $\boldsymbol{\omega}$ be t
 - If the top of the stack is a terminal r:
 - If r and t don't match, report an error.
 - Otherwise consume the character t and pop r from the stack.
 - Otherwise, the top of the stack is a nonterminal A:
 - If T[A, t] is undefined, report an error.
 - Replace the top of the stack with T[A, t].

Example

 Let's parse int*int, drawing the parse tree at each step.

LL(1) Parsing Example

Stack	Input	Action
E\$	int * int \$	тх
тх\$	int * int \$	int Y
int Y X \$	int * int \$	terminal
YX\$	* int \$	* т
* T X \$	* int \$	terminal
тх\$	int \$	int Y
int Y X \$	int \$	terminal
YX\$	\$	ε
X \$	\$	8
\$	\$	ACCEPT

Constructing the Parse Table

- Consider
 - A non-terminal A
 - Production $A \rightarrow \alpha$
 - And an input token t
 - We want to know the conditions under which we can make the move T[A,t]=α
- We make the move T[A,t]=α in two situations
 1. If α→*tβ i.e. α can derive a t in the first position
 In this case we say that t ∈ First(α)
 And the move T[A,t]=α is reasonable

- 2. Or if $A \rightarrow \alpha$, and
 - $\alpha \rightarrow^* \xi$ (i.e. α can disappear), and
 - $S \rightarrow^* \beta A t \delta$ (notice since α can disappear so does A)
- Notice that this is useful if t can follow A and A can disappear.
- In other words A does not derive t but t follows A.
- This case we say t \in Follow(A)

First Sets

- Def.
- First(X)={t | $X \rightarrow^* t\alpha$ } \lor { ξ | $X \rightarrow^* \xi$ }
- Notice that the last part is there because we need to keep track of whether or not X can produce ξ.
- Algorithm :
- 1. If t is a terminal
 First (t) = { t }
- 2. If X is non-terminal, then $\xi \in First(X)$
 - 1. If $X \rightarrow \xi$
 - 2. Or if $X \rightarrow A_1, ..., A_n$ and $\xi \in First(A_i)$ for $1 \le i \le n$ i.e. if $A_1, ..., A_n$ can disappear by producing ξ
- 3. First (α) is a subset of First(X) if

$$\begin{split} X &\to A_1, \dots A_n \ \alpha \\ \text{and } \xi \in \text{First}(A_i) \ \text{ for } 1 \leq i \leq n \\ \text{(i.e. } A_1, \dots A_n \ \text{can all disappear)} \end{split}$$

Example on First Sets

- $E \rightarrow T X$
- $T \rightarrow (E) \mid int Y$
- 1. Terminals
 - First(+)={+} First(*)={*} First(()={(} First())={)}
 - First(int)={int}

 $\begin{array}{l} X \rightarrow +E \mid \xi \\ Y \rightarrow * T \mid \xi \end{array}$

- 2. Non-terminals
 - First(E)
 - Since E → TX , then First(E) is a super set of First(T) and First(T) = { (, int }
 - 2. Notice if $T \rightarrow \xi$ then First(E) is a super set of First(X) but this is not the case since First(T) does not contain ξ

Therefore, First(E) = First(T)= { (, int }

- First(X)= { + ,
$$\xi$$
 }

Follow Sets

- Notice Follow(X) is not about what X produces but rather about where X appears.
- Definition

Follow(X)={ t | S $\rightarrow^* \beta X t \delta$ }

- Intuition
 - $If X \rightarrow A\beta$ then
 - First(B) is a subset of Follow(A)
 - Follow(X) is a subset of Follow(B) (i.e., anything that can come after X is included in the follow of B)

- If X → Aβ and β →^{*} ξ then Follow(X) is a subset of Follow(A)
 (i.e., anything that can come after X is included in Follow(A))
- If S is the start symbol, then \$ ∈ Follow(S) (we always add \$ in the Follow of the start symbol) Because it is what we have when we runout of input)

Algorithm

- 1. $\xi \in Follow(S)$, where S is the start symbol
- For each production A → α X β
 First(β) { ξ } is a subset of Follow(X)
 (notice that we exclude ξ , because ξ is never in a follow set)
- 3. For each production A $\rightarrow \alpha X \beta$

if $\xi \in First(\beta)$ (i.e., β can completely disappear) then whatever is in Follow(A) is also in Follow(X) i.e., Follow(A) is a subset of Follow(X)

Example

- $E \rightarrow T X$ $X \rightarrow +E \mid \xi$
- $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \xi$
- Remember to determine the follow of X we need to look at where X appears
- Follow(E)
 - 1. Since E is a start symbol, \$ is ϵ Follow(E)
 - 2. Since $T \rightarrow (E)$, then) is \in Follow(E)
 - 3. Since $X \rightarrow +E$, then anything that is in the follow of X is also in the follow of E (i.e. Follow(X) is a subset of Follow(E))
 - 4. Since $E \rightarrow T X$ then any thing that is in the follow of E is also in the follow of X (i.e. Follow(E) is a subset of Follow(X))
 - 5. From 3 and 4 we conclude that Follow(E)=Follow(X)
 - 6. Both are { \$,) }

- Follow(T)
 - 1. Since $E \rightarrow T X$, then Follow(T) includes First(X) (which is {+, ξ } but we must exclude ξ).
 - 2. Since $X \rightarrow \xi$, Follow(T) must include follow(E)
 - 3. (i.e. Follow(E) is a subset of Follow(T))
 - 4. Since T also appears in Y → * T then Follow(T) includes Follow(Y) (Follow(Y) is a subset of Follow(T)
 - But notice that T → int Y so Follow(T) is also a subset of Follow(Y)
 - 6. From 4 and 5, we conclude that Follow(T)=Follow(Y)={ +, \$, }

Follow of Terminal Symbols

- Follow('(')
 - Since '(' appears in T → (E), then Follow('(') includes First(E) (i.e. it includes { (, int })
 - Since '(' does not appear anywhere else
 - Follow('(')= { (, int }

Follow(')')

— Since ')' appears only in T → (E),
 Follow(')') must include only Follow(T)

- Follow(')') = {+, \$, }}

- Follow('+')
 - Since + is only used in $X \rightarrow +E$ Follow('+') includes First(E), which is { (, int} .
 - Notice the E cannot produce $\boldsymbol{\xi}$
 - Follow('+') = { (, int}

• Follow('*')

– Since '*' is only used in Y \rightarrow * T

Follow('*') includes First(T), which is { (, int}

- Since T cannot got to $\boldsymbol{\xi}$ then that is it
- Follow('*')= { (, int}

- Follow(int)
 - Since int only appears in T \rightarrow int Y
 - Follow(int) includes First(Y) which is {*}
 - But since Y→ξ, Y can completely diappear therefore, Follow(int) must include Follow(T) (which is {+,\$,)})

- Follow(int)={*, +,\$,)}

Putting Together First sets and Follow Sets to Construct an LL(1) table

- For each production $A \rightarrow \alpha$ in G do
 - For each terminal t \in First(α) do
 - $T[A,t] = \alpha$ because obviously would is useful here
 - If $\xi \in First(\alpha)$, for each t \in Follow(A) do
 - $T[A,t] = \alpha$ because α can completely disappear and consequently A disappears.
 - If $\xi \in First(\alpha)$ and $\xi \in Follow(A)$ do
 - $T[A,\$] = \alpha$ This is useful when we ran out of input because the only hope would be is to get rid of whatever is on the stack.

Example

- $E \rightarrow T X$ $X \rightarrow +E \mid \xi$
- $T \rightarrow (E) \mid int Y$

 $Y \rightarrow * T | \xi$

	()	+	*	int	\$
E	ТХ				ТХ	
Т	(E)				int Y	
X		ξ	+E			ξ
Y		ξ	ξ	*T		ξ

T[E,(] = T[E, int] = TXT[T, (] = (E)T[T, int] = int YT[X, +] = +ET[Y, *] = *T $T[X,] = \xi$ $T[X, $] = {$ $T[Y,] = \xi$ $T[Y, +] = \xi$ Τ[Υ, \$] = ξ

because (and int are in the First of TX because (is in the First ((E)) because int is in the First(int Y) because + is in the First(+E) because * is in the First(*T) because $X \rightarrow \xi$ and) is in the Follow(X) because $X \rightarrow \xi$ and ξ is in the Follow(X) because $Y \rightarrow \xi$ and) is in the follow(Y) because $Y \rightarrow \xi$ and + is in the follow(Y) because $Y \rightarrow \xi$ and ξ is in the follow(Y)

Not all grammars are LL(1) grammars

- Example:
- $S \rightarrow Sa \mid b$
- First(S) = {b}
- Follow(S) = { \$, a}
- Let's try to construct an LL(1) table

	а	b	\$
S		b Sa	

- Notice that we have multiply defined entry
- i.e., 2 possible moves to make, not deterministic
- We conclude that the grammar is not LL(1) grammar

- If an entry is multiply defined, the G is not an LL(1) grammar
- The list includes (but not limited to)
 - Any grammar that is not left factored
 - Any grammar that contains left recursion (the above example)
 - Any grammar that is ambiguous
 - Any grammar that requires more than 1 look ahead token
- Remember the above list is not comprehensive
- The only way to make sure is by trying to construct an LL(1) parsing table

- Most programming languages CFGs are not LL(1).
- LL(1) grammars are to weak to capture many interesting constructs in PLs
- The solution will build up on what we have learned so far.