
Compilers and Programming
Languages

An Introduction

1

How are Languages Implemented?

• Two major strategies:

– Interpreters (older)

– Compilers (newer)

– A Combination

• Interpreters run programs “as is”

– Little or no preprocessing

• Compilers do extensive preprocessing

2

The Structure of a Compiler

1. Lexical Analysis

2. Parsing

3. Semantic Analysis

4. Optimization

5. Code Generation

The first 3, at least, can be understood by

analogy to how humans comprehend a natural
language.

3

Lexical Analysis

• First step: recognize words.

– Smallest unit above letters

– This is a sentence.

• Lexical analyzer divides program text into
“words” or “tokens”

If x == y then z = 1; else z = 2;

4

Parsing

• Once words are understood, the next step is
to understand sentence structure

• Parsing = Diagramming Sentences

– The diagram is a tree

5

Diagramming Sentences

6

Diagramming Sentences

• Parsing program expressions is the same

• Consider:

– If x == y then z = 1; else z = 2;

• Diagrammed:

7

Semantic Analysis

• Once sentence structure is understood, we
can try to understand “meaning”

– But meaning is too hard for compilers

• Compilers perform limited analysis to catch
inconsistencies.

8

Semantic Analysis in English

• Example:

Jack said Jerry left his assignment at home.

– What does “his” refer to? Jack or Jerry?

• Even worse:
Jack said Jack left his assignment at home?

– How many Jacks are there?

– Which one left the assignment?

9

Semantic Analysis in Programming

• Semantic Analysis in Programming

{

int Jack = 3;

{

int Jack = 4;

cout << Jack;

}

}

10

More Semantic Analysis

• Compilers perform many semantic checks
besides variable bindings

• Example:

Jack left her homework at home.

• A “type mismatch” between her and Jack; we
know they are different people (Presumably
Jack is male).

11

Optimization

• No strong counterpart in English, but akin to
editing

– You can express the same idea using fewer words

• Automatically modify programs so that they

– Run faster

– Use less memory

– In general, conserve some resource

12

Optimization Example

• X = Y * 0 is the same as X = 0

13

Code Generation

• Produces assembly code (usually)

• A translation into another language

– Analogous to human translation

14

Issues

• Compiling is almost this simple, but there are
many pitfalls.

• Example: How are erroneous programs
handled?

• Language design has big impact on compiler

– Determines what is easy and hard to compile

– many trade-offs in language design

15

Compilers Today

• The overall structure of almost every compiler
adheres to our outline

• The proportions have changed since FORTRAN

– Early: lexing, parsing most complex, expensive

– Today: optimization dominates all other phases,
lexing and parsing are cheap

16

Why So Many Languages?

• Application domains have distinctive and conflicting
needs.

• E.g. For scientific applications you need
– floating point representation
– Arrays and operations on arrays
– Parallism

• For business Applications, you need
– Persistence (you do not want to loose your data)
– Report generation
– Data analysis (i.e. you need to be able to ask questions

about your data)
– SQL

17

• System Languages e.g.

– Embedded systems

– Operating systems

• For such applications, you need

– Very low level control over resources

– Real time constraints, you need to be able to
reason about time

18

Why are there new programming
languages?

• Programmer trainer is the most dominant cost factor for a
programming language

• Widely used languages are slow to change (because any
change required educating a large number of people)

• Easy to start a new language (0 users = 0 training cost to
begin with)
– People will convert to the new language if productivity >

training cost

• Languages are developed to fill a void as new technology
appears e.g. mobile devices, internet, etc

• New languages look a lot like old languages (to reduce the
training cost)

19

What is a good programming
language?

• There is no universally accepted metric for
language design.

• i.e.. people tend to disagree on what makes a
good programming language

• 4 criteria

20

Language Evaluation Criteria

 Readability: maintenance is considered to be the major part
of the software lifecycle, and maintainability is directly
related to how easily a program may be read.

 Writeability: this is the measure of how easily a language
may be used to create programs, and is closely related to
readability.

 Reliability: a program is reliable if it performs to its
specification under all conditions.

 Cost: the ultimate total cost.

21

1-22

Evaluation Criteria: Readability
• Overall simplicity

– A manageable set of features and constructs
– Minimal feature multiplicity (small variety)
– Minimal operator overloading

• Orthogonality
– A relatively small set of primitive constructs can be combined in a relatively small

number of ways to get the desired results.
– The more orthogonal the design, the fewer exceptions.
– Example In IBM assembly lang there are two instructions for addition

• A Reg1, memory_cell
• AR Reg1, Reg2

– However in VAX’s lang there is one that is more general
• ADDL operand1, operand2

– VAX’s instruction for addition is more orthogonal than the instructions provided by
IBM; hence, it is easier for the programmer to remember (and use) than the one
provided by IBM.

– This makes it easier to learn, read and write programs in a programming language.
– Every possible combination is legal fewer exceptions

Evaluation Criteria: Readability

• Data types
– Adequate predefined data types

• Syntax considerations
– Identifier forms: flexible composition
– Special words and methods of forming compound statements
– Form and meaning: self-descriptive constructs, meaningful keywords

1-23

1-24

Evaluation Criteria: Writability
• Simplicity and orthogonality

– Few constructs, a small number of primitives, a small set of rules for
combining them

• Support for abstraction

– The ability to define and use complex structures or operations in ways
that allow details to be ignored

• Expressivity

– A set of relatively convenient ways of specifying operations

– Strength and number of operators and predefined functions

1-25

Evaluation Criteria: Reliability

• Type checking
– Testing for type errors

• Exception handling
– Intercept run-time errors and take corrective measures

• Aliasing
– Presence of two or more distinct referencing methods for the same memory

location

• Readability and writability
– A language that does not support “natural” ways of expressing an algorithm

will require the use of “unnatural” approaches, and hence reduced reliability

1-26

Evaluation Criteria: Cost

• Training programmers to use the language

• Writing programs (closeness to particular
applications)

• Compiling programs

• Executing programs

• Language implementation system:
availability of free compilers

• Reliability: poor reliability leads to high costs

• Maintaining programs

1-27

Language Design Trade-Offs

• Reliability vs. cost of execution
– Example: Java demands all references to array elements be checked

for proper indexing, which leads to increased execution costs

• Readability vs. writability
Example: APL provides many powerful operators (and a large number of

new symbols), allowing complex computations to be written in a
compact program but at the cost of poor readability

• Writability (flexibility) vs. reliability
– Example: C++ pointers are powerful and very flexible but are

unreliable

1-28

Evaluation Criteria: Others

• Portability

– The ease with which programs can be moved from
one implementation to another

• Generality

– The applicability to a wide range of applications

• Well-definedness

– The completeness and precision of the language’s
official definition

29

Assessment characteristics
Criteria

Characteristic Readability Writeability Reliability

Simplicity/orthogonality • • •

Control structures • • •

Data types and structures • • •

Syntax design • • •

Support for abstraction • •

Expressivity • •

Type checking •

Exception handling •

Restricted aliasing •

1-30

Influences on Language Design

• Computer Architecture
– Languages are developed around the prevalent

computer architecture, known as the von
Neumann architecture

• Programming Methodologies
– New software development methodologies (e.g.,

object-oriented software development) led to
new programming paradigms and by extension,
new programming languages

1-31

Influences on Language Design

• Computer Architecture
– Languages are developed around the prevalent

computer architecture, known as the von
Neumann architecture

• Programming Methodologies
– New software development methodologies (e.g.,

object-oriented software development) led to
new programming paradigms and by extension,
new programming languages

1-32

Computer Architecture Influence

• Well-known computer architecture: Von Neumann

• Imperative languages, most dominant, because of von
Neumann computers
– Data and programs stored in memory

– Memory is separate from CPU

– Instructions and data are piped from memory to CPU

– Basis for imperative languages

• Variables model memory cells

• Assignment statements model piping

• Iteration is efficient

1-33

The von Neumann Architecture

1-34

The von Neumann Architecture

• Fetch-execute-cycle (on a von Neumann
architecture computer)

initialize the program counter

repeat forever

fetch the instruction pointed by the counter

increment the counter

decode the instruction

execute the instruction

end repeat

1-35

Programming Methodologies Influences

• 1950s and early 1960s: Simple applications; worry about
machine efficiency

• Late 1960s: People efficiency became important; readability,
better control structures
– structured programming

– top-down design and step-wise refinement

• Late 1970s: Process-oriented to data-oriented
– data abstraction

• Middle 1980s: Object-oriented programming
– Data abstraction + inheritance + polymorphism

1-36

Language Categories
• Imperative

– Central features are variables, assignment statements, and iteration
– Include languages that support object-oriented programming
– Include scripting languages
– Include the visual languages
– Examples: C, Java, Perl, JavaScript, Visual BASIC .NET, C++

• Functional
– Main means of making computations is by applying functions to given

parameters
– Examples: LISP, Scheme

• Logic
– Rule-based (rules are specified in no particular order)
– Example: Prolog

• Markup/programming hybrid
– Markup languages extended to support some programming
– Examples: JSTL, XSLT (a language for transforming XML documents into other XML documents, or other objects

such as HTML for web pages, plain text or into XSL Formatting Objects which can then be converted
to PDF, PostScript and PNG.[2]

http://en.wikipedia.org/wiki/XSLT

1-37

Implementation Methods

• Compilation
– Programs are translated into machine language

• Pure Interpretation
– Programs are interpreted by another program known as an interpreter

• Hybrid Implementation Systems
– A compromise between compilers and pure interpreters

1-38

Layered View of Computer
The operating system
and language
implementation are
layered over
machine interface of a
computer

1-39

Compilation

• Translate high-level program (source language) into machine
code (machine language)

• Slow translation, fast execution

• Compilation process has several phases:
– lexical analysis: converts characters in the source program into lexical

units

– syntax analysis: transforms lexical units into parse trees which
represent the syntactic structure of program

– Semantics analysis: generate intermediate code

– code generation: machine code is generated

1-40

The Compilation Process

1-41

Additional Compilation Terminologies

• Load module (executable image): the user and
system code together

• Linking and loading: the process of collecting
system program units and linking them to a
user program

1-42

Von Neumann Bottleneck

• Connection speed between a computer’s
memory and its processor determines the speed
of a computer

• Program instructions often can be executed
much faster than the speed of the connection;
the connection speed thus results in a bottleneck

• Known as the von Neumann bottleneck; it is the
primary limiting factor in the speed of computers

1-43

Pure Interpretation

• No translation

• Easier implementation of programs (run-time errors can
easily and immediately be displayed)

• Slower execution (10 to 100 times slower than compiled
programs)

• Often requires more space

• Now rare for traditional high-level languages

• Significant comeback with some Web scripting languages
(e.g., JavaScript, PHP)

1-44

Pure Interpretation Process

1-45

Hybrid Implementation Systems

• A compromise between compilers and pure
interpreters

• A high-level language program is translated to an
intermediate language that allows easy
interpretation

• Faster than pure interpretation
• Examples

– Perl programs are partially compiled to detect errors before
interpretation

– Initial implementations of Java were hybrid; the intermediate form, byte
code, provides portability to any machine that has a byte code interpreter
and a run-time system (together, these are called Java Virtual Machine)

1-46

Hybrid Implementation Process

1-47

Just-in-Time Implementation Systems

• Initially translate programs to an intermediate language

• Then compile the intermediate language of the subprograms
into machine code when they are called

• Machine code version is kept for subsequent calls

• JIT systems are widely used for Java programs

• .NET languages are implemented with a JIT system

Why Study Languages and Compilers ?

1. Increase capacity of expression

2. Improve understanding of program behavior

3. Increase ability to learn new languages

4. Learn to build a large and reliable system

5. See many basic CS concepts a

48

