
Quantitative estimation of protein in urine

By sulphosalicalic acid Method

BCH 472

- In a healthy renal and urinary tract system, the urine contains <u>no protein</u> or only <u>trace</u> amounts.
- The presence of increased amounts of protein in the urine can be an important indicator of renal disease. It may be the first sign of a serious problem and may appear before any other clinical symptoms.
- However, there are other physiologic conditions (eg, <u>exercise</u>, <u>fever</u>) that can lead to increased protein excretion in urine. Also, there are some renal disorders in which proteinuria is absent.

Proteinuria:

- Protein in normal urine should be <u>less</u> than 150 mg/L
- **Proteinuria** is defined as urinary protein excretion of <u>greater</u> than 150 mg per day(per one liter).
- Note: **Dipsticks** (is the most common initial screening test for proteinuria) can only detect <u>around 150 mg/L</u> of albumin(The dipstick <u>will not detect nonalbumin proteins</u>).
- Note: /L = /24-hour = /day.

Types of Proteinuria:

Type	Cause	
Glomerular proteinuria	• Results from a disruption of the glomerular filtration barrier which increased filtration of normal plasma protein and because albumin has the highest concentration in the plasma it is called albuminuria eg. Malignant hypertention	
Tubular proteinuria	 Defect in the reabsorption eg, <u>Fanconi Syndrom</u> low molecular weight protein that is found in urine 	
Overflow proteinuria	 Overflow of high plasma high concentrations of low molecular weight protein found in urine eg, Multiple myloma. In multiple myeloma excessive amounts of immunoglobulin light chains are produced. 	
Secretory proteinuria	• Over secretion of certain proteins in the tubules, most notably the over secretion of Tamm-Horsfall proteins eg, in <u>interstitial nephritis</u>	

Types of Proteinuria:

Cause of Proteinuria as Related to Quantity

Protein amount per 24-hour	Type of proteinuria
0.15 to 2.0 g	 Tubular proteinuria Overflow proteinuria (an increased proportion of low molecular weight proteins)
2.0 to 4.0 g	 Usually glomerular
> 4.0 g	Always glomerular (mainly albumin)

- The quantitative estimation of the daily excretion of protein is of value to the clinician in order to give a general idea of the <u>type of renal disease</u>, its <u>severity</u> and to monitor the results of <u>treatment</u> given.
- The protein content can be determined by numerous methods eg, Biuret, Lowry, Bradford.
- In this lab turbidimetric method will be used.
- Determination of total protein <u>by measurement of protein turbidity</u> produce by mixed with an anionic organic acid such as sulfosalicylic acid, TCA, or benzethonium chloride.
- Sulphosalicylic acid is used in this experiment to precipitate the protein in *a 24 hour* sample of urine. The <u>turbidity</u> is **proportional** to the concentration of the protein, and may be measured with a spectrophotometer at **500 nm**.

Practical Part

Sulfosalicylic acid (SSA) test:

• The sulfosalicylic acid (SSA) turbidity test quantitatively screens for proteinuria. The advantage of this **easily** performed test is its greater **sensitivity** for proteins such as Bence Jones.

• The SSA reaction will detect <u>globulin</u> and <u>Bence-Jones proteins</u>, in addition to <u>albumin</u> (although it is more sensitive to albumin).

Principle:

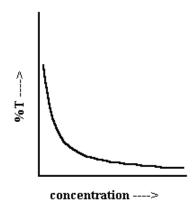
- Sulfosalsalyic acid is an **anion(-)** which <u>neutralizes</u> the protein **cations(+)** leading to its <u>precipitation</u> (pH in highly **acidic** media, the protein will be positively charged, which is attracted to the acid anions that cause them to precipitate.)
- Then the radiation of a wavelength which is not absorbed by the solution is made to pass through the suspension and the apparent <u>absorption will be solely</u> because of the **scattering** by the particles.
- The transmission decrease with increasing protein concentration.

Method:

1-Set up a series of test tube as follows, label from 1-7

Tube	Protein Stock Solution(140 mg/dl)	0.85% Saline	Protein concentration mg/dl
1	4.5	1.5	
2	3	3	
3	2.4	3.6	
4	1.5	4.5	
5	0.9	5.1	
6	0.3	5.7	
7(Blank)	0	6	
Urine Sample	-	-	

2-Set another 8 test tube labeled 1-7 and pipette in each one Add 8 ml of sulfosalicylic acid


Tube	sulfosalicylic acid
1	8 ml
2	8 ml
3	8 ml
4	8 ml
5	8 ml
6	8 ml
7(Blank)	8 ml
Urine Sample	8 ml

- 3-Into tube 1 pipette 2 ml of protein solution 1, into tube 2 pipette 2 ml of protein solution 2 etc. For the Urine Sample pipette 2ml of the Sample.
- 4-Mix contents of each tube well and allow standing for 5 minutes.
- 5-Using solution 7 (Blank) to set transmittance at 100 at 500nm.
- 6-Then use solutions from 1-6, to recorded respective **transmittance** of each suspension.

Results:

Tube	Transmittance at 500 nm	Protein concentration mg/dl
7(Blank)	100 %	
1		
2		
3		
4		
5		
6		
Urine Sample		

- Plot Transmittance against Protein concentration mg/dl.
- Determine the Protein concentration of Urine Sample from the standard curve.
- Compare the result you got with the normal range of protein execration in 24 h urine specimen (you must convert the unit to g/L) if you know that the protein execration in healthy sample (0- less than 0.150g/24 h).
- Comment on the clinical conditions of the patient if it is present.
- Assuming that the 24 hour urine sample for the patient = 1000 ml.

Questions:

Which protein can be used as a marker of Multiple myloma? And how?

Explain how total protein can be determined by measuring protein turbidity?

Why the resulting graph is a <u>descending</u> curve?