Preparation Of Different Buffer Solutions

BCH 312 [Practical]

Introduction:

\square All biochemical reactions occur under strict conditions of the concentration of hydrogen ion.
$\square \quad$ Biological life cannot withstand large changes in hydrogen ion concentrations which we measure as the pH .

Those solutions that have the ability to resist changes in $\mathbf{~} \mathbf{H}$ upon the addition of limited amounts of acid or base are called Buffers.

Blood pH Levels

Buffers

\square are solutions that have the ability to resist changes in pH . upon the addition of limited amounts of acid or base.

- A buffer is made up of a weak acid and its conjugate base. Or a weak base and its conjugate acid.

$\left[\begin{array}{lll} 0 & 0 & 8 \\ 0 & 0 & 0 \\ 0 & 8 \end{array}\right] \downarrow \downarrow \downarrow\left[\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \end{array}\right]$			

Types of Buffer:

[acidic buffer]

- Is made of a Weak acid and its conjugated base [its salt]

Example:

1. CH3COOH / CH3COONa (Pka)
$\Rightarrow \mathrm{CH} 3 \mathrm{COOH}$ (Weak acid)
$\Rightarrow \mathrm{CH} 3 \mathrm{COONa}$ (conjugated base -its salt)
2. H2CO3 / HCO3Na (Pka)
3. NaH2PO4 / Na2HPO4 (Pka)

[basic buffer]

- is made of Weak base and its conjugated acid [its salt]
- Example: NH3/NH4CL (Pkb)
\Rightarrow NH3 (Weak base)
\Rightarrow NH4CL (conjugated acid -its salt)

Mechanism of Action (Buffer):

How buffers can resist the change in pH ?

Example using [HA/A-] buffer

HA: Weak acid. A-: conjugated base [its salt].

$\mathrm{HA} \rightleftharpoons \mathrm{H}_{+}+\mathrm{A}-$

[a] If $\mathrm{H}+$ is added to this buffer system $\rightarrow \mathrm{H}+$ will react with conjugated base \rightarrow to give conjugate acid.

[b] If $\mathrm{OH}-$ is added to this buffer system [HA/A-] $\rightarrow \mathrm{OH}$ will react with conjugated acid to give conjugate base and H 2 O .

Mechanism of Action (Buffer):

- Example:
- Buffer system: CH3COOH / CH3COO- , (CH3COOH :acid - CH3COO-: conjugated base)

When acid [H+] added:

When base [OH] added:

\square NOTE: It resists pH changes when it's two components are present in specific proportions.

- Thus a buffer can protect against pH changes from added $\mathrm{H}+$ or OH - ion as long as there is sufficient basic and acidic forms respectively. As soon as you run out of one of the forms you no longer have a buffer .

Henderson-Hasselbalch equation

\square The Henderson-Hasselbalch equation is an equation that is often used to:
1- To calculate the PH of the Buffer.
2-To prepare Buffer.

$$
p H=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]}
$$

It relates the Ka [dissociation constant] of a weak acid, [HA] concentration Of weak acid,
[A-] concentration Of conjugate base [salt of the weak acid] components and the $\mathbf{p H}$ of the buffer.

- A buffer is best used close to its pKa .[to act as a good buffer the pH of the solution must be within one pH unit of the pKa].
\square The buffer capacity is optimal when the ratio of the weak acid to its salt is $1: 1$; that is, when $\mathrm{pH}=\mathrm{pKa}$

$$
\begin{gathered}
\mathrm{pH}=\mathrm{pka}+\log 1 \\
\mathrm{pH}=\mathrm{pka}+\mathrm{o} \\
\mathrm{pH}=\mathrm{pka}
\end{gathered}
$$

Buffer capacity

Quantitative measure of this resistance to pH changes is called Buffer capacity
\square Buffer capacity can be defined in many ways, it can be defined as:
\Rightarrow The number of moles of $\mathrm{H}+/ \mathrm{OH}$ - ions that must be added to one liter of the buffer in order to decrease /increase the pH by one unit respectively.

$$
\beta=\frac{2.3 K_{a}\left[H^{+}\right][C]}{\left(K_{a}+\left[H^{+}\right]\right)^{2}}
$$

From the equation the buffer capacity is directly proportional to the buffer concentration.
\square The buffer capacity is expressed as $\boldsymbol{\beta}$ and can be derived from Henderson Hasselbalch equation:
\square Where : $\boldsymbol{\beta}=$ the buffer capacity , $[\mathbf{H +}]=$ the hydrogen ion concentration of the buffer , $[\mathbf{C}]=$ concentration of the buffer and $\mathbf{K a =}$ acid dissociation constant

pH Calculation

1- for weak acid [not buffers]:

$$
\mathrm{pH}=\frac{\mathrm{pka}+\mathrm{p}[\mathrm{HA}]}{2}
$$

* $\mathrm{P}[\mathrm{HA}]=-\log [\mathrm{HA}]$

2- for weak base [not buffers] :

$$
\mathrm{pOH}=\frac{\mathrm{pkb}+\mathrm{p}[\mathrm{OH}]}{2}
$$

$$
\text { ** } \mathrm{P}[\mathrm{OH}]=-\log [\mathrm{OH}]
$$

3- for buffers :

Practical Part

Objective:

1) To understand the nature of buffers solutions.
2) To learn how to prepare buffers.

A. Nature of Buffers:

Method:

You are provided with: 0.2 M solution of $\mathrm{CH} 3 \mathrm{COOH}, 0.2 \mathrm{M}$ solution of CH 3 COONa .

1. Determine which is the weak acid and which is the conjugated base [or its salt].
2. Calculate the volume that you must take from CH 3 COOH and CH 3 COONa to prepare the following mixtures with final volume of the solution $\mathbf{= 2 0} \mathbf{~ m l}$:
a. 100% [HA]
b. 75% [HA] , 25% [A-]
c. 50% [HA] , 50% [A-]
d. 25% [HA] , 75% [A-]
3. Calculate the pH for each solution $[\mathrm{pKa}$ of $\mathrm{CH} 3 \mathrm{COOH}=4.76]$.
4. Follow the table.

Calculations

1- Volume calculation

To Calculate the volume that you must take from CH 3 COOH and CH 3 COONa to prepare previous mixtures in final volume of 20 ml :

- (A) $\mathbf{1 0 0 \%}$ [HA]:

The final volume is 20 ml , So:
$20 \times 100 \%=(20 \times 100) / 100=20 \mathrm{ml}$
\rightarrow take 20 ml HA and measure the PH .

- (B) 75% [HA], 25\% [A-]:

From HA= $20 \times 75 \%=(20 \times 75) / 100=15 \mathrm{ml}$
From A- $=20 \times 25 \%=(20 \times 25) / 100=5 \mathrm{ml}$
\rightarrow Mix 15 ml HA and 5 ml A - and measure the PH (measured PH) note that the total volume is $20 \mathrm{ml}[15 \mathrm{ml}+5 \mathrm{ml}=20 \mathrm{ml}]$

- The same way for the other mixtures.

Calculations Cont ${ }^{\prime}$

To calculate the pH for the previous mixtures with pKa of $\mathrm{CH} 3 \mathrm{COOH}=4.76$:
\square (A) [100\%] HA :

$$
\mathrm{pH}=\frac{\mathrm{pka}+\mathrm{p}[\mathrm{HA}]}{2}
$$

$\mathrm{p}[\mathrm{HA}]=-\log [\mathrm{HA}]=-\log 0.2=0.69$
$\mathrm{pH}=\frac{4.76+0.698}{2}=2.72$

- (B) $75 \% \mathrm{HA}, 25 \% \mathrm{~A}-$:

$$
\begin{aligned}
& \mathrm{PH}=\mathbf{P k a}+\log [\mathrm{A}-\mathrm{l} /[\mathrm{HA}] \\
& \mathrm{PH}=4.76+\log [\mathrm{A}-] /[\mathrm{HA}] \\
& {[\mathrm{HA}]=\mathrm{C} 1 \times \mathrm{V} 1=\mathrm{C} 2 \mathrm{X} \mathrm{~V} 2=0.2 \times 15=\mathrm{C} 2 \times 20=0.15 \mathrm{M}} \\
& {[\mathrm{~A}-]=\mathrm{C} 1 \mathrm{X} \mathrm{~V} 1=\mathrm{C} 2 \mathrm{X} \mathrm{~V} 2=0.2 \times 5=\mathrm{C} 2 \mathrm{X} 20=0.05 \mathrm{M}}
\end{aligned}
$$

- So, $\mathrm{PH}=4.76+\log 0.05 / 0.15, \mathbf{p H}=4.282$
(C) $50 \%[\mathrm{HA}], 50 \%[\mathrm{~A}]:$
$\mathbf{p H}=\mathbf{P k a}+\log [\mathrm{A}-] /[\mathrm{HA}], \mathrm{pH}=4.76+\log [\mathrm{A}-] /[\mathrm{HA}]$
$[\mathrm{HA}]=\mathrm{C} 1 \mathrm{X} \mathrm{V} 1=\mathrm{C} 2 \mathrm{X} \mathrm{V} 2=0.2 \mathrm{X} 10=\mathrm{C} 2 \mathrm{X} 20=\mathrm{C} 2=0.1 \mathrm{M}$
$[\mathrm{A}-]=\mathrm{C} 1 \mathrm{X} \mathrm{V} 1=\mathrm{C} 2 \mathrm{X} \mathrm{V} 2=0.2 \times 10=\mathrm{C} 2 \mathrm{X} 20=\mathrm{C} 2=0.1 \mathrm{M}$
So, $\mathrm{pH}=4.76+\log 0.1 / 0.1, \mathrm{pH}=4.76 \quad[\mathrm{pH}=\mathrm{pka}]$ Best
(D) 25% [HA], 75% [A-] :
pH = pka+ \log [A-] / [HA], pH= $4.76+\log [\mathrm{A}-] /[\mathrm{HA}]$
[HA] = C1X V1 $=\mathrm{C} 2 \mathrm{X} \mathrm{V2}=0.2 \mathrm{X} 5=\mathrm{C} 2 \mathrm{X} 20=\mathrm{C} 2=0.05 \mathrm{M}$
[A-] = C1X V1 $=\mathrm{C} 2 \mathrm{X} \mathrm{V2}=0.2 \mathrm{X} 15=\mathrm{C} 2 \mathrm{X} 20=\mathrm{C} 2=0.15 \mathrm{M}$
- You are provided with: 0.2 M solution of $\mathrm{CH} 3 \mathrm{COOH}, 0.2 \mathrm{M}$ solution of CH 3 COONa .
- Calculate the volume that you must take from CH 3 COOH and CH 3 COONa
- With (the final volume of the solution $=20 \mathrm{ml}$) and pKa of $\mathrm{CH} 3 \mathrm{COOH}=4.76$

Solution	ml HA [CH3COOH]	ml A- [CH3COONa]	Final vol. [ml]	Calculated pH	Meaured pH	Add 0.1 ml 2M Hcl	$\begin{gathered} \text { Measured } \\ \mathrm{pH} \end{gathered}$	The difference
100\% HA	20 ml	0	20 ml	2.729		0.1		
$\begin{gathered} 75 \% \mathrm{HA}, \\ 25 \% \mathrm{~A}- \end{gathered}$	15 ml	5 ml	20 ml	4.28		0.1		
$\begin{gathered} 50 \% \mathrm{HA}, \\ 50 \% \mathrm{~A}- \end{gathered}$	10 ml	10 ml	20 ml	4.76		0.1		
$\begin{gathered} 25 \% \mathrm{HA}, \\ 75 \% \mathrm{~A}- \end{gathered}$	5 ml	15 ml	20 ml	5.24		0.1		

(2) Preparation of buffer:

You are provided with 0.2 M acetic acid and solid sodium acetate.
Prepare 50 ml of a $\mathbf{0 . 1 9 \mathrm { M }}$ acetate buffer $\mathrm{pH}=4.86$ if you know that $\mathrm{pK}_{\mathrm{a}}=4.76$.

- Calculations:
- Provided:
- Solid sodium acetate [as A-]
- 0.2M Acetic acid. [as HA]
- \quad Pka $=4.76$
- Required:
- Final volume of buffer $=50 \mathrm{ml}$
$\mathrm{pH}=4.86$
- Buffer concentration $=0.19 \mathrm{M}$

Buffer Concentration $=[\mathrm{HA}]+[\mathrm{A}-]$

$$
0.19=[\mathrm{HA}]+[\mathrm{A}-]
$$

Calculations

\square To prepare a buffer Henderson-Hasselbalch equation is used:

$$
\mathrm{pH}=\mathrm{pka}+\log [\mathrm{A}-] \backslash[\mathrm{HA}]
$$

\square First calculate the concentrations of HA and A- in the buffer:
Assume [A-] $=y, \quad[H A]=0.19-y$
$4.86($ of buffer $)=4.76+\log \frac{y}{0.19-y} \rightarrow 0.1=\log \frac{y}{0.19-y}$
by taking the "Anti log for both sides":
$1.26=\frac{y}{0.19-y} \longrightarrow y=1.26 x(0.19-y) \longrightarrow y=0.24-1.26 y \longrightarrow y+1.26 y=0.24 \longrightarrow 2.26 y=0.24$
$\square \quad \mathrm{y}=\mathbf{0 . 1 1} \mathbf{M}$ [which is the concentration of [A-] in the buffer]
$\square \quad$ Buffer Concentration $=[\mathrm{HA}]+[\mathrm{A}-] \quad 0.19=[\mathrm{HA}]+[\mathrm{A}-]$
\square So, $[\mathrm{HA}]=0.19-0.11=0.08 \mathbf{M}$ [which is the concentration of [HA] in the buffer]

Calculations Cont'

2- To calculate the volume needed from [HA] to prepare the buffer, No. of mole of [HA] should be calculated first :
\square Calculate moles in buffer: No. of mole (of HA) = molarity (of HA calculated in buffer) X volume L (volume of buffer required)

$$
=0.08 \times 0.05=0.004 \mathrm{~mole}
$$

\square Calculate the volume of stock HA: M (of stock HA in Q$)=$ no. of mole (of HA calculated) / Volume in Liter (volume of HA ?)

$$
\begin{aligned}
0.2 & =0.004 / \mathrm{V} \\
\mathrm{~V} & =0.02 \mathrm{~L}=20 \mathrm{ml}
\end{aligned}
$$

\square 3- To calculate the weight needed from [A-] to prepare the buffer, No. of mole of [A-] should be calculated first :
$\square \quad$ Calculate moles in buffer: No. of mole (of A-) = molarity (of A-calculated in buffer) X volume L (volume of buffer required)

$$
=0.11 \times 0.05=0.0055 \text { mole }
$$

$\square \quad$ Calculate the wight of stock A-: wt in (g) of [A-] = mole X Mw

$$
=0.0055 \times 82=0.45 \mathrm{~g}
$$

Method

\square Now take 20 ml from 0.2 M acetic acid and 0.45 g from solid sodium acetate then complete the volume up to 50 ml by addition of water.

- Check the pH

(3)Testing for buffering behavior:

Method:

- In one beaker add 10 ml of 0.19 M acetate buffer that you have prepared, and in another beaker add 10 ml of 0.2 M KCl .
- Measure the pH .
- Add 0.1 ml from 2 M HClto for both solutions.
\square Measure the pH after the addition.

Solution (10 ml of each)	Measured $\mathbf{p H}$	Add $\mathbf{2 M} \mathbf{~ H C l}$ $\mathbf{(0 . 1 \mathbf { m l })}$	$\mathbf{p H}$ after HCl
0.19 M acetate buffer.		0.1 ml	
0.2 M KCl.		0.1 ml	

You are provided with 0.5 M acetic acid and 0.5 M sodium acetate.
Prepare $\mathbf{1 0 0} \mathbf{~ m l}$ of a $\mathbf{0 . 3 M}$ acetate buffer $\mathrm{pH}=5.2$ if you know that $\mathrm{pK}_{\mathrm{a}}=4.76$.

