Preparation Of Buffer Solutions By Different Laboratory Ways

BCH 312 [Practical]

Dissociation of Triprotic acid

\square Triprotic acid is acid that contain three hydrogens ions.

- It dissociates in solution in three steps, with three Ka values.
\square phosphoric acid is an example of triprotic acid .
\square It dissociates in solution as following:

$$
\begin{array}{ll}
\mathrm{H}_{3} \mathrm{PO}_{4} \leftrightharpoons \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} & \mathrm{pK}_{1}=2.12 \\
\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} \leftrightharpoons \mathrm{H}^{+}+\mathrm{HPO}_{4}{ }^{2-} & \mathrm{pK}_{2}=7.21 \\
\mathrm{HPO}_{4}{ }^{2-} \leftrightharpoons \mathrm{H}^{+}+\mathrm{PO}_{4}^{3 .} & \mathrm{pK}_{3}=12.30
\end{array}
$$

preparation of Buffer by several ways:

For example if you asked to prepare sodium phosphate buffer $\left[\mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}\right]$
You can prepare it by:

1. By mixing $\mathrm{NaH}_{2} \mathbf{P O}_{4}$ (conjugate acid) and $\mathrm{Na}_{2} \mathbf{H P O}_{4}$ (conjugate base) in the proper proportions,
2. By starting with $\mathbf{H}_{3} \mathrm{PO}_{4}$ and converting it to $\mathbf{N a H}_{2} \mathbf{P O}_{4}$ plus $\mathbf{N a}_{2} \mathbf{H P O}_{4}$ by adding the proper amount of $\mathbf{N a O H}$.
3. By starting with $\mathbf{N a H}_{2} \mathbf{P O}_{4}$ and converting a portion of it to $\mathbf{N a}_{\mathbf{2}} \mathbf{H P O}_{4}$ by adding $\mathbf{N a O H}$.
4. By starting with $\mathbf{N a}_{2} \mathbf{H P O}_{4}$ and converting a portion of it to $\mathbf{N a H}_{\mathbf{2}} \mathbf{P O}_{\mathbf{4}}$ by adding a strong acid such as HCL.
5. By starting with $\mathbf{N a}_{3} \mathbf{P O}_{4}$ and converting it to $\mathbf{N a}_{2} \mathbf{H P O}_{\mathbf{4}}$ plus $\mathbf{N a H}_{\mathbf{2}} \mathbf{P O}_{4}$ by adding HCL.
6. By mixing $\mathbf{N a}_{\mathbf{3}} \mathbf{P O}_{\mathbf{4}}$ and $\mathbf{N a H}_{\mathbf{2}} \mathbf{P O}_{4}$ in the proper proportions.

$\uparrow \mathrm{H}_{3} \mathrm{PO}_{4}$

$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$

NaOH
 ${ }^{\prime}$ accept \mathbf{H}^{+},

$\mathrm{HPO}_{4}{ }^{2-}$
$\mathrm{PO}_{4}{ }^{3-}$

Example: Prepare 0.1 liters of 0.045 M sodium phosphate buffer, $\mathrm{pH}=7.5,\left[\mathrm{pka}_{1}=2.12, \mathrm{pka}_{2}=7.21\right.$ and $\left.\mathrm{pka} \mathrm{a}_{3}=12.30\right]$

a) From concentrated (15M) $\mathrm{H}_{3} \mathrm{PO}_{4}$ and solution of 1.5 M NaOH .
b) From solid $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and solid NaOH .

Calculations:

$1^{\text {st }}$, write the equations of Dissociation of phosphoric acid and the pka of corresponding ones: Because phosphoric acid $\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]$ has (Triprotenation : it has 3 dissociation phases) so,

2nd , choose the pka value which is near the pH value of the required buffer, to be able to know the ionic species involved in your buffer:

The pH of the required buffer $[\mathrm{pH}=7.5]$ is near the value of pka_{2}, consequently , the two major ionic species present are $\underline{H}_{2} \mathrm{Po}_{\mathbf{2}}-($ conjugate acid) and $\underline{\mathrm{HPO}_{\underline{1}}^{-2}}$ (conjugate base). with the HPO_{4}^{-2} predominating \{ since the pH of the buffer is slightly basic \}
$3^{\text {rd }}$, calculate No. of moles for the two ionic species in the buffer:
$\mathbf{p H}=\mathbf{p K a} 2+\log [\mathbf{H P O} 42-] /[\mathrm{H} 2 \mathrm{PO} 4-] \rightarrow$ Note that : [A-] = HPO42-, [HA] = H2PO4-

```
! Note
[A-] = HPO
```

! HA$]=\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$

- Since the buffer concentration is 0.045 M , so assume[A-] = y, [HA]= $0.045-\mathrm{y}$:
$7.5=7.2+\log (y / 0.045-y)$
$7.5-7.2=\log (y / 0.045-y)$
$0.3=\log (y / 0.045-\mathrm{y}) \rightarrow$ antilog for both sides
$2=(\mathrm{y} / 0.045-\mathrm{y}) \rightarrow \mathrm{y}=0.09-2 \mathrm{y} \rightarrow 3 \mathrm{y}=0.09 \rightarrow \mathrm{y}=0.09 / 3=\underline{\underline{0.03 \mathrm{M}} \rightarrow \text { conc. of }[\mathrm{HPO} 22-]=[\mathrm{A}-]=\mathrm{y} .0}$
So, conc. of $[\mathrm{H} 2 \mathrm{PO} 4-] \equiv[\mathrm{HA}]=0.045-\mathrm{y}=0.045-0.03=0.015 \mathrm{M}$
- Now found the number of mole for the two ionic species in the buffer:

No. of moles of $=$ HPO42-(A-) $=\mathrm{M} \mathrm{XV}=0.03 \times 0.1=\mathbf{0 . 0 0 3}$ moles.
No. of moles of H2PO4-(HA) $=\mathrm{M} \times \mathrm{V}=0.015 \times 0.1=0.0015$ moles

Note: Total no. of moles of
phosphate buffer $=\mathrm{M} \times \mathrm{V}=$
$0.045 \times 0.1=\mathbf{0 . 0 0 4 5}$ moles.

Now, to prepare the required buffer:
 a) From concentrated (15M) $\mathrm{H}_{3} \mathrm{PO}_{4}$ and solution of 1.5 M NaOH .

Calculations:

- Start with 0.0045 mole of $\mathbf{H}_{3} \mathrm{PO}_{4}$ and add 0.0045 moles of NaOH to convert $\mathrm{H}_{3} \mathrm{PO}_{4}$ completely to $\underline{\mathrm{H}}_{2} \mathrm{PO}_{4}^{-}(\mathrm{HA})$, then add 0.003 moles of NaOH to convert $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$to give $\underline{H P O}_{4}^{-2}\left(\mathrm{~A}^{-}\right)$:

ㅁ No. of moles needed of $\mathbf{N a O H}=0.0045+0.003=0.0075$ moles

Volume of $\mathbf{N a O H}$ needed $(\mathrm{L})=$ no.of moles $($ of NaOH$) / \mathrm{M}($ of NaOH$)=0.0075 / 1.5=0.005 \mathbf{L}=5 \mathrm{ml}$
$\square \quad$ Volume of $\mathbf{H}_{3} \mathrm{PO}_{4}$ needed $(\mathrm{L})=$ no. of moles $($ of H 3 PO 4$) / \mathrm{M}($ of H 3 PO 4$)=0.0045 / 15=0.0003 \mathbf{L}=0.3 \mathrm{ml}$
\rightarrow Add 5 ml of NaOH to the 0.3 ml of concentrate $\mathrm{H}_{3} \mathrm{PO}_{4}$, mix ; then add sufficient water to bring the final volume to 0.1 liters $(100 \mathrm{ml})$, and check the pH .

- Calculations

\square Start with $\mathbf{0 . 0 0 4 5}$ mole of $\mathrm{NaH}_{2} \mathrm{PO}_{4}(\mathrm{HA})$ and add 0.003 moles of $\mathbf{N a O H}$
0.0045 moles $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$

NaOH
0.003 moles to convert $\mathrm{Na}_{2} \mathbf{P O}_{4}$ to give $\mathrm{Na}_{2} \underline{H P O}_{4}\left(\mathrm{~A}^{-}\right)$:

- Weight in grams of $\mathbf{N a H}_{2} \mathbf{P O}_{4}$ needed $=$ no.of moles $\times \mathrm{MW}=0.0045 \times 119.98=\mathbf{0 . 5 4} \mathbf{g}$
- Weight in grams of $\mathbf{N a O H}$ needed $=$ no. of moles $\times \mathrm{MW}=0.003 \times 40=\mathbf{0 . 1 2} \mathrm{g}$
- Dissolve the 0.54 g of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and 0.12 g of NaOH in some water, mix ; then add sufficient water to bring the final volume to 0.1 liters (100 ml), and check the pH

Practical Part

Objective:

\square To learn how to prepare a buffer by different laboratory ways.

Method:

Prepare 0.1 litersof 0.045 M sodium phosphate buffer, $\mathrm{pH}=7.5$,
$[\mathrm{pKa} 1=2.12, \mathrm{pKa} 2=7.21$ and $\mathrm{pKa3}=12.30]$:
a) From concentrated (15M) H3PO4 and solution of 1.5 M NaOH :

Add 5 ml of NaOH to the 0.3 ml of concentrate $\mathbf{H 3 P O}$, mix ; then add sufficient water to bring the final volume to 0.1 liters $(100 \mathrm{ml})$, and check the pH .
b) From solid NaH 2 PO 4and solid NaOH :

Dissolve the 0.54 g of NaH 2 PO 4 and 0.12 g of NaOH in some water, mix ; then add sufficient water to bring the final volume to 0.1 liters $(100 \mathrm{ml})$, and check the pH .

1) Prepare 100 ml of 0.045 M sodium phosphate buffer, $\mathrm{pH}=7.5$, [pka1=2.12, pka2 = 7.21 and pka3 $=12.30]:(\mathrm{MW}$ of $\mathrm{Na} 2 \mathrm{HPO} 4=142, \mathrm{MW}$ of $\mathrm{Na} 3 \mathrm{PO} 4=164)$
c) You are provided with solid $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and 2 M solution of HCl .
d) You are provided with solid $\mathrm{Na}_{3} \mathrm{PO}_{4}$ and 2 M HCL .
2) Prepare 500 ml of 0.3 M sodium phosphate buffer, $\mathrm{pH}=\mathbf{2 . 5}$, [pka1 $=2.12, \mathrm{pka} 2=7.21$ and pka3 $=12.30$]:
a) You are provided with solid $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and $5 \mathrm{M}(\mathrm{HCl}$ or NaOH$)$.
b) You are provided with $2 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ and $5 \mathrm{M}(\mathrm{HCL}$ or NaOH$)$.
