WBC DIFFERENTIAL COUNT

• Objective:

determine the percentage of each type of WBC in well stained blood film.

Count 100 WBCs using Bright field microscope 40x or 100x.

Ν	L	E	Μ	В	TOTAL /10
11/11 11	111				10
1 [*] 11 1 <i>*</i> 11					10
111	1111	1	1		10
1111	111	1	1		10
111	111	1	11	1	10
1111	1111	1	1		10
1111	1111	11			10
11	1111	1	111		10
11	1111	1	111		10
1111	1	1	111		10
45%	31%	9%	14%	1%	100

Haemostasis:

A balance to keep the blood inside the vein in a liquid state if there is bleeding disorder.

 It is a mechanism that results from a balance between coagulation & anticoagulation &fibrinolysis.

Function of Haemostasis:

 To maintain blood in a fluid state within the vascular system.

 To arrest bleeding at the site of injury or blood loss.

 To ensure complete removal of the pulg when healing is complete

Component of Homeostasis:

Blood vessels Platelets Plasma coagulation factors Plasma coagulation inhibitors Fibrinolytic system

1-blood vessels

Artery is bigger and thicker than a vein and it has ↑ elastic fiber capable of vasoconstriction help in arrest the blood loss.

A good site for adhesion of platelets.

2-Platelets:

produced in the BM by fragmentation of cytoplasm derived from megakaryocyte (CFU_{GEMM})

Platelets Functions:

- adhesion to injured vessels
- Secretion of fibrinogen& heparin
- Fusion in blood vessels so stimulate the coagulation activity
- platelets Aggregation on the wall of blood vessels to make temporary block in site of injury

platelets

 Normal life span :8-14 days
 Normal platelets count: 150-450x10⁹ cell/L 150-450 x10³ cell/μL

Low platelets count =thrombocytopenia
 High platelets count=thrombocytosis

3- Plasma coagulation factors

Activation of clotting factors to form fibrin clot by intrensic &extrensic pathway. **4-Plasma coagulation inhibitors**

 Activation of coagulation inhibitors to localize &limit the formation of fibrin clot.

5-fibrinolysis

 To get rid from fibrin clot after healing of the wound (FDPs)

Coagulation Cascade

Causes of hemorrhagic disorder:

Deficiency of clotting factors
 Platelet disorders
 Quantitative : Thrombocytopenia
 Qualitative -: Platelet function disorders

Defective capillaries
Excessive fibrinolysis

Screening Tests :

- Prothrombin time <u>Pt</u> (extrinsic)
- Activated partial thromboplastin time <u>Aptt (intrinsic)</u>
- Bleeding time <u>BT</u> (blood vessels contracting)
- Fibrinogen titer concentration
- Platelets count
- fibrinogen degradation products <u>FDPs</u>

BT bleeding time:

Principle:

A standard incision is made on the volar surface of the forearm and the time of the incision bleeds is measured

Normal range :2 – 7 min

Prolong BT is indicative of capillary defect or platelets dysfunction or thrombocytopenia

Platelets count

■ In platelets count use diluent →3.2formal citrate= RBC diluent → transparence → gives color to RBCs and platelets and lyses the WBC

method:
 20 µL from EDTA blood
 +
 4mL from diluent(formalcitrate)=4000µL

Platelets count

 Using Improved neubauer counting champer Called (haemocytometer)
 Put the haemocytometer in wet apetridish to allow the platelets to settle down for 10 min.

count at 40 X objective

They appear small and shiny while the RBC s are big

Haemocytometer=Contain 9 squares each square area size is 1mm X 1mm, each square contain a volume of 0.1ML of diluted blood.

we count the platelets in 5 squares
 N= <u>0.1=</u> 0.02 ML
 5
 Dilutiom factor= 200

Number of platelets in 1ML in diluted blood=

$= \underline{N} = \underline{N} = \underline{NX100} = NX50$ $0.02 \underline{2} \qquad 2$ 100Number of platelets in 1ML in whole blood = NX50X200 = NX10000