Preparation of Staining & examination of blood
film
we can see cells in :
1-venous blood

2-BM

Isological block of the bloc

Blood film is important in:

1-haematological diagnosis as in anemia and leukemia to see the morphology of the cells.

2-WBC differential count to see the account of each type of WBC.

3- estimate the nb of platelets

- Films may be spread by hand or by automated slide spreader.
- Blood film prepared from fresh blood ,use anticoagulant (EDTA) by using capillary tubes.
- No depressing from sample i.e clot
- o not short, not long.

2 types of blood film:

1- Thick blood film \rightarrow big drop

Used for parasite examination. e.g:Malaria

2-thin blood film

optimal shape of thin blood film

Staining of blood film :

- Romanowsky stains are universally employed for routine staining of blood film.
- It depends on 2 components :
 1-basic part (azure B include "methelene blue")

2-acidic part (eosin Y)

Methelene blue different than new methelene blue ← used in rectic count

Mechanism by which certain component of cell stain with particular dyes and other component can not stained

1-Azure B (Basic part of stain) bound to acidic part of the cell as nucleus and gives it the blue colour.

2-EosinY(Acidic part of stain) bound to basic part of the cell as protein, cytoplasm and Hb and give them the red colour

Blue – nuclei has neucleic acid – basicpart (azure B)

Red - basic part - acidic part (eosin y) Cytoplasm and Hb

Red orange — Eosinophilic granules (alkaline) — Acidic part (eosin Y) granules

Violet — Basophil has heparin which is acidic — basic part(azure B)

Types of Romanosky stain:

- Leishman stains
- Wright stain
- May grunwald stain
- Jenners stain
- Giemsa stain

widely used & simple widely used & simple rarely used rarely used(simplest) most complex

staining steps:

1-fixation of blood cells to protect the cells from haemolysis due to washing.

If the cells are well fixed the cells resist the action of water

Done by: Methanol (4 min) 2-staining 3-washing

Method of leishman&wright stain:

1-dry the film

2-1 volume of Pasteur Pipette methanol (fixation step) for 4 min

- 2-1 volume of Pasteur Pipette of the stain (staining step) (neat stain)for 6 min
- 3- gradually 2 volume of Pasteur Pipette of the diluted stain (stain+buffer PH=6.8) for 6 min

4- I volume of Pasteur Pipette of buffer for 1 min (washing step)

5- washing with water by using pasteur pipette for 1 min

Factors giving rise to faulty staining

Appearance	causes
Too blue or pale staining	1-impure dyes 2-0ver used 3-incorrect preparation
Too pink	1-impure dyes 2-excessive washing in buffer
Stain deposit on film	1-stain solution in uncovered jar 2-stain solution is not filtered
Blue background	1-inadequate fixation 2-blood collected into heparin tube

Red cell morphology:

- In healthy person, the red cells in well spread ,well stained film, they appear as reddish brown round smooth contours with a pale center.
- Its size same the nucleus of lymphocyte and has diameters of 6 to 8.5 µ.m

RBC in Healthy person Normocytic (size is normal) Normochromic(Hb content i.e colour is normal) (The red cells are stained with eosin Y component of rowmanowsky dyes)

Variation in RBCs morphology due to:

1-Abnormal erythropoiesis :production of RBC only

- 2- increased erythropoiesis
- 3-decreased Hb formation
- 4-RBC damage

These causes result in the following variation:

- Anisocytosis → variation in size (micro or macro)
- **Poikilocytosis** \rightarrow variation in shape
- Variation in colour
- Variation in content

1. Variation in Size:

Normal	
Macrocyte (Large)	 Liver disease Alcoholism Megaloblastic anaemia
Microcyte (small)	 Iron deficiency anemia. Haemoglobinopathy.

2-Variation in shape:

Poikilocyte (tear shape)	1. Extra medullary haemopoiesis
Elliptocyte (rod like)	Hereditary elleptocytosis
Ovalocyte (oval)	
Shistocyte (RBC fragments,	 DIC → Disseminated intravascular coagulation.
(pyknocyte, helmet cell ,bite cell) 🛛 🔫 🥎	2. Burns
	3. Cardiac valves disease
Sickled cell (Banana shape)	Sickle cell anaemia

Burr cells (Spine projection)	
Crenation ((acanthocyte)) or spur cells	 liver disease renal failure
Ecchinocyte	 liver disease renal failure
Pencil cell	- Iron deficiency anaemia
Basket cell	G6pD deficiency anaemia
Blister cell	G6PD deficiency anaemia.

<u>3-Variation in colour:</u>

1. Hypochromasia	(colour paler)
	Than normal
2. Anisochromasia	(Dimorphic) picture
3. Target cells	iron deficiency anaemia
	liver disease
	thalassemia
	post splenectomy
4. Leptocyte	Very thin cells with colour less central
	part.(ring shape)
5. Spherocyte	Sphere like with deep colour and no central pallor found in hereditary spherocytosis.
6. Polychromasia	Pale greenish – blue color.
7. Stomatocyte	Cause by:
	liver disease

4-Variation in content

Late normoblast (nucleated RBC) Howell-Jolly body:

normally present In BM abnormal in peripheral blood e.g: thalasemia DNA remnant e.g:underdeveloped spleen

Basophilic stippling

Siderotic granules
(Pappenheimer bodies)

denatured RNA e.g:megaloblastic anaemia contain iron due to Hb oxidization

they are purple in conventional staining but blue with perl's stain

Malarial parasite inside RBC

Reticulocyte (RNA)

young RBC contain ribosome and RNA present in BM and blood Stain by supravital staining e.g:new methelene blue Brilliant cresyl blue

Heinz bodies

Oxidized denatured Hb Found in G6PD defficiency Stain by supravital staining e.g:new methelene blue Brilliant cresyl blue