Titration Of A Weak Acid With Strong Base

BCH 312 [Practical]

Weak Acid :

\square Weak acids or bases do not dissociate completely, therefore an equilibrium expression with Ka must be used.
\square The $K a$ is a quantitative measure of the strength of an acid in solution. since it's value is always very low, Ka is usually expressed as pKa , where:

$$
\mathrm{pKa}=-\log \mathrm{Ka}
$$

\square As an acid/base get weaker, its $\mathbb{K} a / \mathbb{K b}$ gets smaller and $p K a / p K b$ gets larger.

- For example:
$-\mathbf{H C l}$ is a strong acid, it has $\mathbf{1 \times 1 0 ^ { 7 }} \mathrm{Ka}$ value and $-\mathbf{7} \mathrm{pKa}$ value.
$-\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid , it has $1.76 \times 10^{-5} \mathrm{Ka}$ value and 4.75 pKa value.
- Type of weak acid:
- Monoprotic (contain 1 group 'hydrogen ion'). \rightarrow Ex: $\mathrm{CH}_{3} \mathrm{COOH}$
- Diprotic (contain two group). \rightarrow Ex: $\underline{\mathrm{H}}_{2} \mathrm{SO}_{4}$
- Triprotic (contain three group). \rightarrow Ex: ${\underline{H_{3}}}_{3} \mathrm{PO}_{4}$
\rightarrow each group has own Ka value.
\square Which dissociation group will dissociate first?
\rightarrow The group that has higher Ka value or i.e that has lower pKa value
$\square \quad \mathrm{pKa}$ values of weak acids can be determined mathematically or practically by the use of titration curves.

Titration Curve:

\square Titration Curves are produced by monitoring the pH of a given volume of a sample solution after successive addition of acid or alkali.
$\square \quad$ The curves are usually plots of pH against the volume of titrant added (acid or base).

- There are many uses of titration, one of them is to indicate the pKa value of the weak acid by using the titration curve.
\square Each dissociation group represent one stage in the titration curve.

Titration curve of a weak acid with strong base:

- [1] Before any addition of strong
base the (starting point):
- ALL the weak acid is in the full protonation form [$\left.\mathrm{CH}_{3} \mathrm{COOH}\right]$ (electron donor) .

In this point pH of weak acid $<\mathrm{pKa}$.

- We can calculate the pH from:

$$
\mathrm{pH}=(\mathrm{pKa}+\mathrm{p}[\mathrm{HA}]) / 2
$$

- [2] When certain amount of strong base added (any point before the middle of titration):
- The weak acid is starting to dissociate $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]>\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$
- (Donor > Acceptor).

In this point pH of weak acid $<\mathrm{pKa}$.

- We can calculate the pH from:

$$
\mathrm{pH}=\left(\mathrm{pKa}+\log \left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right)
$$

- [3] At middle of titration:
- $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\left[\mathrm{CH}_{3} \mathrm{COO}\right]$.
- (Donor=Acceptor).
- In this point $\mathrm{pH}=\mathrm{pKa}$.
- The component of weak acid work as a Buffer (A solution that can resistant the change of pH).
- Buffer capacity $=\mathrm{pKa} \pm 1$
pKa is defined as the pH value at middle of titration at which they will be

[donor]=[acceptor].
We can calculate the pH from:
- [4] At any point after mid of titration and before end point:
- $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]<\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$.
- (Donor< Acceptor) .

In this point $\mathrm{pH}>\mathrm{pKa}$.

- We can calculate the pH from:
$\mathrm{pH}=\left(\mathrm{pKa}+\log \left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right)$

\square [5] At the end point :
- The weak acid is fully dissociated $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$. - (electron acceptor).
- In this point $\mathrm{pH}>\mathrm{pKa}$.

Approximately, all the solution contains $\mathrm{CH}_{3} \mathrm{COO}^{-}$, so we first must calculate pOH , then the pH :
$\mathrm{pOH}=\left(\mathrm{pKb}+\mathrm{p}\left[\mathrm{A}^{-}\right]\right) / 2$
$\mathrm{pH}=\mathrm{pKw}-\mathrm{pOH}$
${ }^{*} \mathrm{pKb}=\mathrm{pKw}-\mathrm{pKa}$

Calculating the pH at different point of the titration curve :

- [1] At start point [Weak acid only]:

$$
\mathrm{pH}=(\mathrm{pKa}+\mathrm{p}[\mathrm{HA}]) / 2
$$

\square [2] At any point within the curve [weak acid and conjugated base mix]:

$$
\mathrm{pH}=\left(\mathrm{pKa}+\log \left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right) \quad-H e n d e r s o n-H a s s e l l b a l c h ~ e q u a t i o n-~
$$

- [3] At the end point [approximately conjugated base only]:

$$
\mathrm{pOH}=(\mathrm{pKb}+\mathrm{p}[\mathrm{~A}-]) / 2 \rightarrow \mathrm{pH}=\mathrm{pKw}-\mathrm{pOH}
$$

\square Henderson-Hasselbalch equation is an equation that is often used to :

1. To calculate the pH of the Buffer.
2. To preparation of Buffer.
3. To calculated the pH in any point within the titration curve (Except starting and ending point)

Note:

- If you start titration using 20 ml of the weak acid, In titration curve...........
\rightarrow The total volume of weak acid is 20 ml , we need 20 ml of strong base to full dissociate the group of weak acid.
\rightarrow We can reach to middle titration if we add 10 ml of strong base (half the amount of 20 ml).
\square Bearing in mind that :

1. the weak acid and the strong base (titrant) should have the same concentration.
2. the weak acid and strong base should have the same protonation and hydroxylation state respectively (ex: monoprotic acid and monohydroxy base).

Example: Determine the pH value of 500 ml of monoproteic weak acid $(0.1 \mathrm{M})$, titrated with 0.1 M KOH ($\mathrm{pKa}=5$), after addition of:
(1) 100 ml .
(2) 250 ml
(3) 375
(4) 500 ml of KOH ?

[1] pH after addition of 100 ml of KOH ?

\rightarrow SECOND STAGE
$-\mathrm{pH}=\mathrm{pKa}+\log [\mathrm{A}-] /[\mathrm{HA}]$
$-\mathrm{HA}+\mathrm{KOH} \rightarrow \mathrm{KA}+\mathrm{H}_{2} \mathrm{O}$
-we should calculate the No. of moles of remaining [HA] first because it is reflect the pH value at this stage.
-Mole of HA [original] - mole of KOH [added] = mole of HA remaining.
-No . of $\mathrm{KOH}[\mathrm{A}]$ mole $=0.1 \mathrm{X} 0.1 \mathrm{~L}=0.01$ mole
-No. of HA mole originally $=0.1 \mathrm{X} 0.5 \mathrm{~L}=0.05$ mole

- No. of HA mole remaining $=0.05-0.01=0.04$ mole

So,

$\mathrm{pH}=5+\log [0.01] /[0.04]$
$\mathrm{pH}=4.4 \rightarrow \mathrm{pH}<\mathrm{pKa}$

[2] pH after addition of 250 ml of КОН?

\rightarrow MIDDLE STAGE

$-\mathrm{pH}=\mathrm{pKa}+\log [\mathrm{A}-] /[\mathrm{HA}]$
-Mole of HA [original] - mole of KOH [added] = mole of HA remaining.
-No. of $\mathrm{KOH}\left[\mathrm{A}^{-}\right]$mole $=0.1 \times 0.25 \mathrm{~L}=0.025$ mole

- No. of HA mole originally $=0.1 \times 0.5 \mathrm{~L}=0.05 \mathrm{~mole}$
-No. of HA mole remaining $=0.05-0.025=0.025$ mole
So,
$\mathrm{pH}=5+\log [0.025] /[0.025]$
$\mathrm{pH}=5=\mathrm{pKa} \rightarrow$ (at mid point, The component of weak acid work
as a Buffer, has a buffering capacity 5 ± 1)

[3] pH after addition of 375 ml of KOH ?

\rightarrow FOURTH STAGE
$-\mathrm{pH}=\mathrm{pKa}+\log [\mathrm{A}-] /[\mathrm{HA}]$
-Mole of HA [original] - mole of KOH [added] = mole of HA remaining.
-No. of $\mathrm{KOH}[\mathrm{A}-]$ mole $=0.1 \mathrm{X} 0.375 \mathrm{~L}=0.0375$ mole
-No. of HA mole originally $=0.1 \mathrm{X} 0.5 \mathrm{~L}=0.05$ mole
-No. of HA mole remaining $=0.05-0.0375=0.0125$ mole
So,
$\mathrm{pH}=5+\log [0.0375] /$ / [0.0125]
$\mathrm{pH}=5.48 \rightarrow \mathrm{pH}>\mathrm{pKa}$ "slightly"

[4] pH after addition of 500 ml of KOH ?

\rightarrow END STAGE (Note: 500 ml is the same volume of weak acid that mean the all weak acid are as [CH3COO-]).

```
\(-\mathrm{pOH}=\left(\mathrm{pKb}+\mathrm{p}\left[\mathrm{A}^{-}\right]\right) / 2 \rightarrow \mathrm{pKb}=\mathrm{pKw}-\mathrm{pKa}\)
\(\rightarrow \mathrm{pKb}=14-5=9\)
\(-\mathrm{p}[\mathrm{A}-]=-\log \left[\mathrm{A}^{-}\right] \rightarrow\left[\mathrm{A}^{-}\right]=? ?\)
```

No. of a mole $\mathrm{KOH}=0.1 \times 0.5$ (volume of base added) $=0.05 \mathrm{~mole}$
-[A-] $=0.05 / 1=0.05 \mathrm{M}$ (total volume $=500+500=1000=$
1L)

```
So }->\mathrm{ p[A-]= - 京 0.05= 1.3
```

$-\mathrm{pOH}=(9+1.3) / 2=5.15$
-pH=pKw-pOH
$\mathrm{pH}=14-5.15=8.85 \rightarrow \mathrm{pH}>\mathrm{pKa}$ "slightly"

Practical Part

Objectives

\square To study titration curves.

- Determine the pKa value of a weak acid.
\square Calculate the pH value at a given point.

Method:

\square You are provided with 10 ml of a $\mathbf{0 . 1} \mathbf{M} \mathbf{C H}_{\mathbf{3}} \mathbf{C O O H}$ weak acid solution, titrate it with $\mathbf{0 . 1} \mathbf{M} \mathbf{N a O H}$.
\square Add the base drop wise mixing, and recording the pH after each 0.5 ml NaOH added.

- Stop when you reach a $\mathrm{pH}=9$.

ml of $\mathbf{0 . 1} \mathbf{M ~ N a O H}$	PH
0	
0.5	
1	
1.5	
\ldots	

1. Record the values in titration table and plot a Curve of pH versus ml of NaOH added.
2. Calculate the $\mathbf{p H}$ of the weak acid HA solution after the addition of $3 \mathrm{ml}, 5 \mathrm{ml}$, and 10 ml of NaOH .
3. Determine the $\mathbf{p K a}$ value of weak acid.
4. Compare your calculated pH values with those obtained from Curve.
5. At what pH-range did the acid show buffering behavior? What are the chemical species at that region, what are their proportions? What is the buffer capacity range?

ml of $\mathbf{0 . 1} \mathbf{M ~ N a O H}$	PH
0	
0.5	
1	
1.5	
\ldots	

