Abrasion Test Using Los Angeles Machine

- Toughness is the percent loss of material from an aggregate blend during the Los Angeles Abrasion test
- The aim of abrasion test using Los Angeles machine is to measure aggregate resistance to degradation due to mechanical action.
- Examples of Mechanical Actions:
- During stockpiling,
- During placing,
- During mixing,
- During compaction,
- During service, by traffic.
- This test covers a procedure for testing aggregates up to 1.5 in . $(37.5 \mathrm{~mm})$ in size.
- The standard L.A. abrasion test subjects a coarse aggregate sample (retained on the No. 12 sieve) to abrasion in a rotating steel drum containing a specified number of steel spheres.
- Number of spheres is determined according the gradation of the sample.
- After being subjected to the rotating drum, the aggregate that is retained on a No. 12 sieve is weighed.
- The Los Angeles abrasion loss is the difference between the original and final mass of the sample is expressed as a percentage of the original mass after washing off the No. 12 $(1.70 \mathrm{~mm})$ screen.

Calculate loss percentage.

$$
\text { Loss } \%=\frac{\text { Original Weight }- \text { Weight Retained on Sieve } \# 12}{\text { Original Weight }} \times 100
$$

Standards:

- Rotational speed $=30 \mathrm{rpm}$
- Number of revolutions $=500$ revolution
- Typical test values range from 10% for extremely hard rocks (e.g. basalt) to 60% for soft rocks (e.g. limestone).
- Maximum loss of 40% for surface courses or 50% for base courses.
- An abrasion loss value of 40 indicates that 40% of the original sample passed through the No. 12 sieve and 60% of the original sample retained.
- The higher abrasion loss value the weaker the aggregate.
- Aggregates not adequately resistant to abrasion and polishing may cause premature structural failure and/or a loss of skid resistance.
- Furthermore, poor resistance to abrasion can produce excessive dust during HMA production resulting in possible environmental problems as well as mixture control problems.

Soundness test

- Soundness is the percent loss of material from an aggregate blend during the sodium or magnesium sulfate soundness test.
- The aim of sulfate soundness test is to measure aggregate resistance to disintegration due to chemical action.
- Examples of Chemical Actions:
- Polluted rain.
- Water runoff.
- Ground water.
- The soundness test is a durability test.
- The soundness test repeatedly submerges an aggregate sample in a sodium sulfate or magnesium sulfate solution.
- This process causes salt crystals to form in the aggregate's water permeable pores.
- The formation of these crystals creates internal forces that apply pressure on aggregate pores and tend to break the aggregate.

- A quantitative measurement is applied to determine percentage loss of material.
- A qualitative measurement is applied to determine percentage loss of quality.

$$
\text { Loss } \%=\frac{\text { mass before the test }- \text { mass after the test }}{\text { mass before the test }} \times 100
$$

- Standards:
- At least five cycles.
- Maximum loss 12% when sodium sulfate is used.
- Maximum loss 18% when magnesium sulfate is used.

California Bearing Ratio Test for Aggregate and Soil

- California Bearing Ratio (CBR) test is a simple strength test that compares the bearing capacity of a material with that of a well-graded crushed stone.
- A high quality crushed stone material should have a CBR @ 100%.
- The basic CBR test involves applying load to a small penetration piston at a rate of $0.05^{\prime \prime}$ per minute and recording the total load at penetrations ranging from 0.025 " up to 0.3 "

- Sample should be compacted at optimum water content, w_{\circ}.
- The sample should be compacted in five equal layers, each subjected to 10 blows of a 10-$\mathrm{lb}(4.5-\mathrm{kg})$ hammer at $18 \mathrm{in} .(457 \mathrm{~mm})$ drop.
- CBR is used in thickness design.
- For any layer, if it has a low CBR, the above layer shall has a larger thickness so it can reduce the load concentration.

Values obtained are inserted into the following equations to obtain a CBR value:
$C B R \%_{0.1}=\frac{\text { unit load at } 0.1^{\prime \prime} \text { penetration for the sample }}{\text { unit load at } 0.1^{\prime \prime} \text { penetration for standard crushed stone }(1000 \text { Psi })} \times 100$ $C B R \%_{0.2}=\frac{\text { unit load at } 0.2^{\prime \prime} \text { penetration for the sample }}{\text { unit load at } 0.2^{\prime \prime} \text { penetration for standard crushed stone }(1500 \text { Psi })} \times 100$

- If Soil A has a CBR of 50% and Soil B has a CBR of 70% that means Soil B has a higher strength than Soil A.
- Recent test used is Resilient Modulus; MR, which is a modulus of elasticity of a material, resulted from dividing the stress by the strain.

