Chapter 26 Particle Properties of Light: The Photon Kane & Sternheim, Physics, 3rd Edition

الموجات الكهرومغناطيسية

$$E = hf = \frac{h c}{\lambda}$$

الموجات الكهرومغناطيس

تردد الموجة (هيرتز)

KSU Phys 145 Summer 2019

الطيف الكهرومغناطيسي المرئي

The Dual Nature of Light

- Light can be considered as a wave, and can be considered as a particle.
- All light phenomena (reflection, diffraction, refraction, propagation..etc) can be explained by any of the two pictures of light; this is called the "wave-particle duality" of light.
- The absolute true nature of light is still not completely understood.

Light as Particles (Photons)

- Considering light as particles (called *photons*) could solve many puzzled light experiments in the 20th century, e.g. blackbody radiation, the photoelectric effect, Compton effect...etc (see the textbook for further readings).
- The frequency of light determines the energy of each photon, according to the following equation:

$$E = hf = \frac{h c}{\lambda}$$

For energy in eV and λ in nm, one might use the following simplified equation:

$$E(\text{eV}) = \frac{1240}{\lambda \text{ (nm)}}$$

• Remember: $1 \text{ eV} = 1.6 \times 10^{-19} \text{ Joule}$; $1 \text{ Joule} = 6.24 \times 10^{24} \text{ eV}$

Example 1: What is the energy (in eV) of a red photon whose wavelength is 633 nm?

Example 2: What is the wavelength (in cm) of a 100 MHz radio wave?

Example 3: An X-ray machine delivers 1 Joule of x-ray photons for one film imaging? How many x-ray photons are produced assuming an average x-ray photon wavelength of 0.1 nm?

Example 4: Excimer laser (wavelength = 193 nm) 1 mJ pulses are used for remodeling the corneal stroma. How many photons are there in each pulse?

Example 5: UV-B radiation ($\sim 280 \text{ nm} - 315 \text{ nm}$), although can be harmful to the skin, is necessary for vitamin D synthesis in the body. What is the ratio of photon energy between a 300 nm UVB photon and 600 nm red photon?

Production of X-Rays

- A current in the filament causes electrons to be emitted.
- These free electrons are accelerated in vacuum (by a high voltage ΔV in ~ tens of kV) towards a dense metal target.
- Notice that the freed electrons make an electric current (in vacuum), which is usually in the range of ~ tens of mA.
- The power generated is equal to the multiplication of voltage and current (P = $\Delta V \times I$)
- The free electrons bombard the target material and produce x-ray photons. This process is very inefficient; only less than 1% of electron energy is transferred to produce x-ray photons.
- The x-ray photons produced vary greatly in their energies (see next slide).
- The maximum energy of an x-ray photon can have is when the x-ray photon absorbs the full energy of the electron i.e. (e ΔV)

Example 6: An electron is accelerated by a medical x-ray machine through 50 kV. What is the minimum wavelength photon it can produce when striking a target?

X-Ray Spectrum

The x-ray spectrum has two distinct components:

1) Bremsstrahlung: the German word for "*braking radiation*". A continuous broad spectrum that depends on voltage applied to the tube. The amount of kinetic energy lost in any given interaction can vary from zero up to the entire kinetic energy of the electron (e ΔV). Therefore, the wavelength of radiation from these interactions lies in a continuous range.

2) Characteristic X-Ray Emission: these are sharp, intense lines, which depend on the nature of the target material. Each line comes from the energy difference between two atomic orbitals in the target material.

© 2006 Brooks/Cole - Thomson

Chapter 30 Nuclear Physics Kane & Sternheim, Physics, 3rd Edition

Facts and Definitions

- The atom is made of a *nucleus* at the center and *electrons* orbiting the nucleus.
- The nucleus is made of two kinds of *nucleons*: *protons* and *neutrons*.
- Neutrons are ~ 0.1% heavier than protons.
- Protons are positively charged while neutrons are neutral.
- The positive proton charge and the negative electron charge are equal in magnitude.
- The number of protons in the nucleus is called the *atomic number* Z.
- The total number of protons and neutrons in the nucleus is called the *mass number* A.
- The number of neutrons in the nucleus is then given by N = A Z
- An element with a specific number of protons and neutrons is called a *nuclide*.

Symbols for Nuclides

• A nuclide X can be symbolized as:

Examples:

 $^{238}_{92}U$ (Uranium with 92 protons and 146 neutrons) $^{131}_{53}I$ (Iodine with 53 protons and 78 neutrons) $^{14}_{6}C$ (Carbon with 6 protons and 8 neutrons)

Nuclides can alternatively be symbolized as: X – A
 Examples: U-238; I-131; C-14

Isotopes

 Nuclides with the same number of protons but different numbers of neutrons are called *isotopes*.

Examples:

 $^{238}_{92}U$ and $^{235}_{92}U$ are isotopes (or you may write *U*-238 and *U*-235)

 $^{131}_{53}I$ and $^{127}_{53}I$ are isotopes (or you may write *I*-131 and *I*-127)

 ${}^{14}_{6}C$ and ${}^{12}_{6}C$ are isotopes (or you may write *C*-14 and *C*-12)

KSU Phys 145 Summer 2019

2 Не

H Hydrogen Nonmetal								<u></u>	He Helium Noble Gas								
3 Li Lithium Alkali Metal	4 Be Beryllium Alkaline Eart				1 H Hydroger	Ato Sy Nam	Atomic Number Symbol Name				5 B Boron Metalloid	6 C Carbon Nonmetal	7 N Nitrogen Nonmetal	8 O Oxygen Nonmetal	9 F Fluorine Halogen	10 Neon Noble Gas	
11 Na Sodium Alkali Metal	12 Mg Magnesium Alkaline Eart	12 13 14 15 16 17 Mg lagnesium aline Eart Si Si P S Cl						18 Ar Argon Noble Gas									
19 K Potassium Alkali Metal	20 Ca Calcium Alkaline Eart	21 Sc Scandium Transition Me	22 Ti Titanium Transition Me	23 V Vanadium Transition Me	24 Cr Chromium Transition Me	25 Mn Manganese Transition Me	26 Fe Iron Transition Me	27 Co Cobalt Transition Me	28 Ni Nickel Transition Me	29 Cu Copper Transition Me	30 Zn ^{Zinc} Transition Me	31 Ga Gallium Post-Transitio	32 Ge Germanium Metalloid	33 As Arsenic Metalloid	34 Se Selenium Nonmetal	35 Br Bromine Halogen	36 Kr Krypton Noble Gas
37 Rb Rubidium Alkali Metal	38 Sr Strontium Alkaline Eart	39 Y Yttrium Transition Me	40 Zr Zirconium Transition Me	41 Nb Niobium Transition Me	42 Mo Molybdenum Transition Me	43 Tc Technetium Transition Me	44 Ru Ruthenium Transition Me	45 Rh Rhodium Transition Me	46 Pd Palladium Transition Me	47 Ag Silver Transition Me	48 Cd Cadmium Transition Me	49 In Indium Post-Transitio	50 Sn Tin Post-Transitio	51 Sb Antimony Metalloid	52 Te Tellurium Metalloid	53 Iodine Halogen	54 Xe Xenon Noble Gas
55 Cs Cesium Alkali Metal	56 Ba Barium Alkaline Eart	*	72 Hf Hafnium Transition Me	73 Ta Tantalum Transition Me	74 W Tungsten Transition Me	75 Re Rhenium Transition Me	76 Os Osmium Transition Me	77 Ir Iridium Transition Me	78 Pt Platinum Transition Me	79 Au _{Gold} Transition Me	80 Hg Mercury Transition Me	81 TI Thallium Post-Transitio	82 Pb Lead Post-Transitio	83 Bi Bismuth Post-Transitio	84 Po Polonium Metalloid	85 At Astatine Halogen	86 Rn Radon Noble Gas
87 Fr Francium Alkali Metal	88 Ra Radium Alkaline Eart	**	104 Rf Rutherfordium Transition Me	105 Db Dubnium Transition Me	106 Sg Seaborgium Transition Me	107 Bh Bohrium Transition Me	108 Hs Hassium Transition Me	109 Mt Meitnerium Transition Me	110 Ds Darmstadtium Transition Me	111 Rg Roentgenium Transition Me	112 Cn Copernicium Transition Me	113 Nh Nihonium Post-Transitio	114 Fl Flerovium Post-Transitio	115 Mc Moscovium Post-Transitio	116 LV Livermorium Post-Transitio	117 Ts Tennessine Halogen	118 Og Oganesson Noble Gas
		*	57 La Lanthanum Lanthanide 89	58 Ce Cerium Lanthanide	59 Pr Praseodymium Lanthanide 91	60 Nd Neodymium Lanthanide 92	61 Pm Promethium Lanthanide 93	62 Sm Samarium Lanthanide	63 Eu Europium Lanthanide	64 Gd Gadolinium Lanthanide 96	65 Tb Terbium Lanthanide 97	66 Dy Dysprosium Lanthanide 98	67 Ho Holmium Lanthanide	68 Er Erbium Lanthanide	69 Tm Thulium Lanthanide	70 Yb Ytterbium Lanthanide	71 Lu Lutetium Lanthanide 103
** Ac			Th	Protactinium	U	Np	Pu	Am	Curium	Bk Berkelium	Cf	Es Einsteinium	Fm Fermium	Md Mendelevium	No	Lr Lawrencium	

KSU Phys 145 Summer 2019

Actinide

1

Radioactivity

- Some nuclides are *radioactive*; they are called *radionuclides*.
- A radionuclide nucleus is unstable and thus disintegrates into more stable components.
- An example of radioactivity: $^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$ *Note the conservation of proton and mass numbers.*
- This disintegration process has a random nature, and it is called radioactive nuclear decay.

Half-Life of Radionuclides

- Each radionuclide has a half-life time T, after which half of the nuclei will have had undergone a nuclear decay.
- In other words, if at t = 0, we have N_0 nuclei, then one half-life later at t = T, an average of $N_0/2$ will remain, and so on.
- At any time t, one can find the number of remaining nuclei by using the following formula:

 $N = N_0 e^{-0.693 \frac{t}{T}}$

• The above formula can sometimes be written as: $N = N_0 e^{-\lambda t}$ where $\lambda = \frac{0.693}{T}$ and is called the *decay constant*.

KSU Phys 145 Summer 2019

Biological and Effective Half-Life

- When used in medical treatment, radionuclides are steadily excreted from the human body with another half-life called the biological halflife.
- The effective half-life T_{eff} is then the combination of both the physical half-life (T_p) and the biological half-life (T_b) half-lives and is given according to the following formula:

$$\frac{1}{T_{eff}} = \frac{1}{T_p} + \frac{1}{T_b}$$

Table 30.1: Examples of Radionuclides used in medicine and biology

Nuclide	Organ Where Concentrated	Half-Life (days)			
Muenue	organ where concentrated	Physical	Biological		
³ ₁ H	Total body	4.6 × 10 ³	19		
¹⁴ ₆ C	Fat	2.09×10^{6}	35		
	Bone	2.09×10^{6}	180		
²⁴ 11Na	Total body	0.62	29		
³² ₁₅ P	Bone	14.3	1200		
³⁵ 16S	Skin	87.1	22		
³⁶ 17Cl	Total body	1.6×10^{8}	29		
⁴² ₁₉ K	Muscle	0.52	43		
⁴⁵ 20Ca	Bone	152	18000		
⁵⁹ ₂₆ Fe	Blood	46.3	65		
64 29Cu	Liver	0.54	39		
¹³¹ ₅₁ I	Thyroid	8.1	180		

Example 1

Iodine I-131 is used in the treatment of thyroid disorders. Its halflife is 8.1 days.

- a) If a patient ingests a small quantity of 131 I and assuming none is excreted from the body, what fraction N/N₀ remains after 8.1 days, 16.2 days, 60 days?
- b) If the ingested ¹³¹I quantity is naturally excreted from the body with a biological half-life of 180 days, what will be the fraction N/N_0 after 60 days?

Example 2

⁵⁹Fe is administrated to a patient to diagnose blood anomalies. The physical and biological half-lives of ⁵⁹Fe are 46.3 and 65 days respectively. Find its effective half-life?

Example 3

Tritium has a half life of 12.3 years. How many years will it take for 88.0 grams to decay to 5.50 grams?

KSU Phys 145 Summer 2019

What happens in a radioactive decay process? (types of radioactive decays)

1. α **decay:** In an α decay, an α particle (⁴₂He nucleus) is emitted, leaving behind a residual nucleus that has lost two protons and two neutron.

Example: $^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$

2. β^{\pm} **decay:** In a β decay, an electron (e⁻) or in few cases a positron (e⁺) is emitted by a nucleus. The two decays are respectively called β^{-} and β^{+} decays. β^{\pm} decays result in the following conversions:

$$n \rightarrow p + e^- + \nu$$
 (β^- decay)
 $p \rightarrow n + e^+ + \nu$ (β^+ decay)
where ν is the neutrino (a massless uncharged particle)

<u>Example:</u>

 ${}^{60}_{27}Co \rightarrow {}^{60}_{28}Ni^* + e^- + \nu$

- **3.** γ **decay:** In γ decays, the nucleus releases a high energy photon (γ rays) as means to approach a lower more stable energy state. The nucleus does not change in its atomic or mass number.

Each α , β or γ particle has energy of ~ few MeV ! When they pass through matter or through human body, they can ionize atoms in their way and make a lot of damage (*ionizing radiation*).

Chapter 31 Ionizing Radiation Kane & Sternheim, Physics, 3rd Edition

أنواع الإشعاع المُؤَيِّب

Images from: https://www.mirion.com/learning-center/radiation-safety-basics/types-of-ionizing-radiation

Energy Loss of Ionizing Radiation كيف تفقد جسيمات الإشعاع المُؤيِّس طاقتها $\Delta K \alpha - \frac{m q^2}{2K}$

Agree R R R R R R R R R R R R R R R R R R	B	Gerra V V N S	Xay Xay	N P N D D D D D D D D D D D D D D D D D
α Radiation	β Radiation	γ Radiation	X-ray Radiation	Neutron Radiation
 An α particle moves almost straight for a short distance ionizing atoms in their way until its energy is ~ 1 MeV. At ~ 1 MeV it acquires two electrons and becomes a neutral Helium (He) atom. The neutral atom comes to rest after a few more collisions. 	 A β particle has a longer range than α particles, with a random movement. Similar to α particles, they lose energy by exciting atoms in their way until they are finally captured by an atom. After loosing enough energy, β⁻ particles (electrons) are captured by atoms. On the other hand, (β⁺ particles come close to an electron and annihilate producing γ rays. 	 Photons (both γ and x-rays) Instead, they lose energy to atoms. Photons have a much loner ran Energy loss of photons to elect processes: The photoelectric efficient Here a photon is absorelectron is ejected. 2) Compton Scattering transfers some but not electron. 3) Electron-Positron Pathere a photons product 	s) don't directly ionize atoms. electrons, which in turn ionize age than α and β particles. ctrons take place by one of three fect (at energies below 0.1 MeV): rbed by an atom, and an atomic (at ~ 1 MeV): the photon of all of its energy to an atomic air (for energies > 1.02 MeV): ces an electron and a positron.	 Neutrons are uncharged and so cannot directly ionize atoms. The range of neutrons is subsequently very long. Fast neutrons loose energy by (1) direct collisions with the nuclei OR (2) by nuclear reactions. These processes can produce secondary harmful emissions (e.g. γ rays).

الوحدات الإشعاعية Radiation Units

Example 1

Carbon makes ~ 20% of our body. In other words, a 75-kg adult will have 15 kg of carbon. The radioactive nuclide ¹⁴C (lifetime of 5730 years) naturally exists in our body; one kilogram of carbon contains ~ 6.5×10^{13} ¹⁴C atoms. In one year, how many radioactive disintegrations take place inside a 75-kg human body?

Example 2

The present activity of nuclear radiation source was found to be 1.7 \times 10⁷ Bq. What is the present activity in mCi?

Example 3

A cancer is irradiated with 10^5 Grays of 60 Co γ -rays, which has a quality factor of 0.7. Find the biologically equivalent dose in Sievert?

Example 4

A laboratory experiment in a physics class uses a 10 μ Ci ¹³⁷Cs source. Each decay emits 0.66 MeV γ -ray.

- (a) How many decays occur per hour?
- (b) A 60-kg student standing nearby absorbs 10% of the γ -rays. What is his absorbed dose in rads in 1 hour?
- (c) The quality factor is 0.8. Find the biologically equivalent dose in rems.