

<u>Objectives:</u>

The main purpose for this lesson is to introduce the following: □ define the set and example. □ Some concepts of set. □ The Subset. The Size of a Set. □The Power Sets. The Cartesian product

DEFINITION 1

A *set* is an unordered collection of objects.
The objects in a set are called the *elements*, or *members*, of the set. A set is said to contain its elements. We write a ∈ A to denote that a is an element of the set A. The notation a ∉ A denotes that a is not an element of the set A.

EXAMPLE 1

The set O of odd positive integers less than 10 can be expressed by $O = \{1, 3, 5, 7, 9\}$.

* This way of describing a set is known as the **roster method**.

EXAMPLE 2

 $O = \{x \mid x \text{ is an odd positive integer less than } 10\}$

* Another way to describe a set is to use <u>set builder notation</u>. We characterize all those elements in the set by stating the property or properties they must have to be members or, <u>specifying the universe as the set</u> of positive integers, as $O = \{x \in \mathbb{Z}^+ | x \text{ is odd and } x < 10 \}.$

 the set Q⁺ of all positive rational numbers can be written as

 $Q^+ = \{x \in \mathbb{R} | x = \frac{p}{q}, \text{ for some positive integers p and q }\}.$

Some Important Sets

- N= {O, 1, 2, 3, ... }, the set of *natural numbers*
- Z= { . . . , -2, -1, 0, 1, 2, . . . }, the set of *integers*
- $\mathbb{Z}^+ = \{1, 2, 3, ...\}$, the set of *positive integers*
- $Q = \{p/q \mid p \in Z, q \in Z, and q \neq 0\}$, the set of *rational numbers*
- R, the set of *real numbers*.
- C, the set of *complex numbers*.

Recall the notation for <u>intervals</u> of real numbers. When a and b are real numbers with a<b, we write

- $[a,b] = \{x | a \le x \le b\}$
- $[a,b) = \{x | a \le x < b\}$
- $(a, b] = \{x | a < x \le b\}$
- $(a,b) = \{x | a < x < b\}$

Note that [a, b] is called the closed interval from a to b and (a, b) is called the open interval from a to b.

DEFINITION 2

Two sets are equal if and only if they have the same elements. That is, if A and B are sets, then A and B are equal if and only if $\forall x (x \in A \leftrightarrow x \in B)$

We write A = B if A and B are equal sets.

EXAMPLE 3

The sets { | , 3 , 5 } and { 3 , 5 , I } are equal, because they have the same elements.

Remarks:

- Note that the order in which the elements of a set are listed does not matter. Note also that it does not matter
- if an element of a set is listed more than once, so {1,3,3,3,5,5,5,5} is the same as the set {1,3,5} because they have the same elements.

Some concepts

 THE EMPTY SET There is a special set that has no elements. This set is called the empty set,
 or null set, and is denoted by Ø. The empty set can also be denoted by { }.

A set with one element is called a singleton set.

Venn Diagrams

In Venn diagrams the **universal set U**, which contains all the objects under consideration, is represented by a rectangle.

EXAMPLE 4 Draw a Venn diagram that represents V, the set of vowels in the English alphabet?

DEFINITION 3

The set A is a subset of B if and only if every element of A is also an element of B. We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

 $\forall x (x \in A \rightarrow x \in B)$

Note that to show that A is not a subset of B we need only find one element $x \in A$ with $x \notin B$ and denoted by $A \notin B$

Example 5

(6/147) Suppose that $A = \{2, 4, 6\}, B = \{2, 6\}, C = \{4, 6\},$ and $D = \{4, 6, 8\}$. Determine which of these sets are subsets of which other of these sets.

Solution:

THEOREM 1

For every set S, (i) $\emptyset \subseteq$ S and (ii) S \subseteq S.

Note : a set A is a subset of a set B but that $A \neq B$, we write $A \subset B$ and say that A is **a proper subset** of B. For $A \subset B$ to be true, it must be the case that $A \subseteq B$ and there must exist an element x of B that is not an element of A. That is, A is a proper subset of B if and only if

 $\forall x(x \in A \rightarrow x \in B) \land \exists x(x \in B \land x \notin A)$

• <u>Showing Two Sets are Equal :</u>

To show that two sets A and B are equal, show that $A \subseteq B$ and $B \subseteq A$.

Example:

Sets may have other sets as members. For instance, we have the sets A= { \emptyset , {a}, {b}, {a, b}} and B = { $x \mid x \text{ is a subset of the set } {<math>a$, b}}. Note that these two sets are equal, that is, A= B. Also note that {a} $\in A$, but $a \notin A$.

The Size of a Set

DEFINITION 4

Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a *finite set* and that n is the *cardinality of S*. The cardinality of S is denoted by I S I.

Example 6

Let A be the set of odd positive integers less than 10. Then |A| = 5.

The null set has no elements, it follows that
 |Ø| = 0.

DEFINITION 5

A set is said to be **infinite** if it is not finite.

EXAMPLE 7

The set of positive integers \mathbb{Z}^+ is infinite.

DEFINITION 6

Given a set S, the *power set* of S is the set of all subsets of the set S. The power set of S is denoted by *P(S)*.

EXAMPLE 8

What is the power set of the set {1,2}? <u>Solution:</u> P({1,2})=

• What is the power set of the empty set?

What is the power set of the set {Ø}?

 Note that the empty set and the set itself are members of this set of subsets.

<u>Remark:</u>

If a set has n elements, then its power set has 2^n elements.

Cartesian Products

DEFINITION 7

The ordered n-tuple $(a_1, a_2, ..., a_n)$ is the ordered collection that has a_1 as its first element, a_2 as its second element, ..., and a_n as its nth element.

Equality of two ordered n-tuples

- We say that two ordered n -tuples are *equal* if and only if each corresponding pair of their elements is equal.
- In other words, (a₁, a₂, ..., a_n) = (b₁, b₂, ..., b_n) if and only if a_i = b_i, for i = 1, 2, ..., n.
- In particular, 2-tuples are called ordered pairs. The ordered pairs (a,b) and (c,d) are equal if and only if
- a = c and b = d.
- Note that (a,b) and (b,a) are not equal unless
- a = b.

The Cartesian product of two sets

DEFINITION 8

Let A and B be sets. *The Cartesian product* of A and B, denoted by *A x B*, is the set of all ordered pairs (a,b), where a \in A and b \in B . Hence,

 $A x B = \{(a, b) \mid a \in A \land b \in B\}.$

EXAMPLE 9

- What is the Cartesian product of A = { 1 , 2} and B= {a , b, c}?
- And Show that the Cartesian product B × A is not equal to the Cartesian product A × B

Solution:

The Cartesian product A x B is A x B = { (1,a), (1,b) , (1,c), (2,a), (2,b) , (2,c)} . B × A = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}.

Caution!

The Cartesian products $A \times B$ and $B \times A$ *are not equal*, unless $A = \emptyset$ or $B = \emptyset$ (so that $A \times B = \emptyset$) or A = B

The Cartesian product of sets

DEFINITION 9

- The *Cartesian product* of the sets A_1, A_2, \ldots, A_n , denoted by $A_1 x A_2 X \ldots x A_n$, is the set of ordered n-tuples (a_1, a_2, \ldots, a_n) , where a_i belongs to A_i for $i = 1, 2, \ldots, n$.
- In other words $A_1 X A_2 x \cdots x A_n$ = { $(a_1, a_2, ..., a_n) | a_i \in A_i \text{ for } i = 1, 2, ..., n$ }.

EXAMPLE 10:

What is the Cartesian product A x B x C, where A = $\{0, 1\}$, B = $\{1, 2\}$, and C = $\{0, 1, 2\}$?

Solution:

The Cartesian product A x B x C consists of all ordered triples (a , b, c), where $a \in A, b \in B$, and $c \in C$. Hence, $A \times B \times C$ = {(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)}

Note:

- We use the notation A^2 to denote $A \times A$, the Cartesian product of the set A with itself.
- Similarly, $A^3 = A \times A \times A$,
- $A^4 = A \times A \times A \times A$, and so on.

More generally,

 $A^n = \{(a_1, a_2, \dots, a_n), | a_i \in A \ for \ i \ = \ 1, 2, \dots, n\}.$

Page 125/126:

1 (a,b) ,2(a) ,4 ,5 ,7(a,b,d,f) , 9 , 11, 12, 14, 19, 21(a,b), 23, 27, 30, 33(a), 34(b)