Sets

Objectives:

The main purpose for this lesson is to introduce the following:
\square define the set and example.
\square Some concepts of set.
\square The Subset.
\square The Size of a Set.
\square The Power Sets.
\square The Cartesian product

DEFINITION 1

A set is an unordered collection of objects.
The objects in a set are called the elements, or members, of the set. A set is said to contain
its elements. We write $a \in A$ to denote that a is an element of the set A. The notation a $\notin A$ denotes that a is not an element of the set A.

EXAMPLE 1

The set O of odd positive integers less than 10 can be expressed by $O=\{1,3,5,7,9\}$.

* This way of describing a set is known as the roster method.

EXAMPLE 2

$O=\{x \mid x$ is an odd positive integer less than 10\}

* Another way to describe a set is to use set builder notation. We characterize all those elements in the set by stating the property or properties they must have to be members
or, specifying the universe as the set of positive integers, as
$O=\left\{x \in \mathbb{Z}^{+} I x\right.$ is odd and $\left.x<10\right\}$.
- the set Q^{+}of all positive rational numbers can be written as
$Q^{+}=\left\{x \in \mathbb{R} \left\lvert\, x=\frac{p}{q}\right.\right.$, for some positive integers p and $\left.q\right\}$.

Some Important Sets

- $\mathbb{N}=\{0,1,2,3, \ldots\}$, the set of natural numbers
- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$, the set of integers
- $\mathbb{Z}^{+}=\{1,2,3, \ldots\}$, the set of positive integers
- $Q=\{p / q \mid p \in Z, q \in Z$, and $q \neq 0\}$, the set of rational numbers
- \mathbb{R}, the set of real numbers.
- \mathbb{C}, the set of complex numbers.

Recall the notation for intervals of real numbers. When a and b are real numbers with $a<b$, we write

- $[a, b]=\{x \mid a \leq x \leq b\}$
- $[a, b)=\{x \mid a \leq x<b\}$
- $(a, b]=\{x \mid a<x \leq b\}$
- $(a, b)=\{x \mid a<x<b\}$

Note that [a, b] is called the closed interval from a to b and (a, b) is called the open interval from a to b.

DEFINITION 2

Two sets are equal if and only if they have the same elements. That is, if A and B are sets, then A and B are equal if and only if $\forall x(x \in A \leftrightarrow x \in B)$
We write $\mathrm{A}=\mathrm{B}$ if A and B are equal sets.
EXAMPLE 3
The sets $\{1,3,5\}$ and $\{3,5,1\}$ are equal, because they have the same elements.

Remarks:

- Note that the order in which the elements of a set are listed does not matter. Note also that it does not matter
- if an element of a set is listed more than once, so $\{1,3,3,3,5,5,5,5\}$ is the same as the set
$\{1,3,5\}$ because they have the same elements.

Some concepts

- THE EMPTY SET There is a special set that has no elements. This set is called the empty set, or null set, and is denoted by \emptyset. The empty set can also be denoted by $\}$.
- A set with one element is called a singleton set.

Venn Diagrams

In Venn diagrams the universal set U, which contains all the objects under consideration, is represented by a rectangle.

EXAMPLE 4 Draw a Venn diagram that represents V, the set of vowels in the English alphabet?

DEFINITION 3

The set A is a subset of B if and only if every element of A is also an element of B. We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

$$
\forall x(x \in A \rightarrow x \in B)
$$

Note that to show that A is not a subset of B we need only find one element $\mathrm{x} \in \mathrm{A}$ with $x \notin B$ and denoted by $A \nsubseteq B$

Example 5

(6/147) Suppose that $A=\{2,4,6\}, B=\{2,6\}, C=\{4,6\}$, and $D=\{4,6,8\}$. Determine which of these sets are subsets of which other of these sets.

Solution:

THEOREM 1

For every set S, (i) $\emptyset \subseteq S$ and (ii) $S \subseteq S$.

Note : a set A is a subset of a set B but that $A \neq B$, we write $A \subset B$ and say that A is a proper subset of B. For $A \subset B$ to be true, it must be the case that $A \subseteq B$ and there must exist an element x of B that is not an element of A. That is, A is a proper subset of B if and only if

$$
\forall x(x \in A \rightarrow x \in B) \wedge \exists x(x \in B \wedge x \notin A)
$$

- Showing Two Sets are Equal :

To show that two sets A and B are equal, show that $A \subseteq B$ and $B \subseteq A$.

Example:

Sets may have other sets as members. For instance, we have the sets A
$=\{\emptyset,\{a\},\{b\},\{a, b\}\}$ and
$B=\{x \mid x$ is a subset of the set $\{a, b\}\}$.
Note that these two sets are equal, that is, A
$=B$. Also note that $\{a\} \in A$, but $a \notin A$.

The Size of a Set

DEFINITION 4

Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by ISI.

Example 6

Let A be the set of odd positive integers less than 10. Then $|A|=5$.

- The null set has no elements, it follows that
$|\varnothing|=0$.

DEFINITION 5

A set is said to be infinite if it is not finite.

EXAMPLE 7

The set of positive integers \mathbb{Z}^{+}is infinite.

The Power Set

DEFINITION 6

Given a set S, the power set of S is the set of all subsets of the set S. The power set of S is denoted by $P(S)$.

EXAMPLE 8

What is the power set of the set $\{1,2\}$?
Solution:
$P(\{1,2\})=$

- What is the power set of the empty set?
- What is the power set of the set $\{\varnothing\}$?
- Note that the empty set and the set itself are members of this set of subsets.
- Remark:

If a set has n elements, then its power set has 2^{n} elements.

Cartesian Products

DEFINITION 7

The ordered n-tuple ($a_{1}, a_{2}, \ldots, a_{n}$) is the ordered collection that has a_{1} as its first element, a_{2} as its second element, ... , and a_{n} as its nth element.

Equality of two ordered n-tuples

We say that two ordered n-tuples are equalif and only if each corresponding pair of their elements is equal.

- In other words, $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ if and only if $a_{i}=b_{i}$, for $i=1,2, \ldots, n$.
- In particular, 2-tuples are called ordered pairs. The ordered pairs (a, b) and (c, d) are equal if and only if

$$
\mathrm{a}=\mathrm{c} \text { and } \mathrm{b}=\mathrm{d} .
$$

- Note that (a, b) and (b,a) are not equal unless $\mathrm{a}=\mathrm{b}$.

The Cartesian product of two sets

DEFINITION 8

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Hence,

$$
A \times B=\{(a, b) \mid a \in A \Lambda b \in B\}
$$

EXAMPLE 9

What is the Cartesian product of $A=\{1,2\}$ and

$$
B=\{a, b, c\} ?
$$

And Show that the Cartesian product $B \times A$ is not equal to the Cartesian product $A \times B$
Solution:
The Cartesian product $A \times B$ is
$A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c)\}$.
$B \times A=\{(a, 1),(a, 2),(b, 1),(b, 2),(c, 1),(c, 2)\}$.

Caution!

The Cartesian products $A \times B$ and $B \times A$ are not
equal, unless $A=\varnothing$ or $B=\varnothing$
(so that $A x B=\varnothing$) or $A=B$

The Cartesian product of sets

DEFINITION 9

The Cartesian product of the sets $A_{1}, A_{2}, \ldots, A_{n}$, denoted by $A_{1} \times A_{2} X \ldots \times A_{n}$, is the set of ordered n-tuples ($a_{1}, a_{2}, \ldots, a_{n}$), where a_{i} belongs to A_{i} for $i=1,2, \ldots, n$.

- In other words
$A_{1} X A_{2} x \cdots x A_{n}$
$=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i}\right.$ for $\left.i=1,2, \ldots, n\right\}$.

EXAMPLE 10:

What is the Cartesian product $\mathrm{A} \times \mathrm{B} \times \mathrm{C}$, where $A=\{0,1\}, B=\{1,2\}$, and $C=\{0,1,2\}$?

Solution:

The Cartesian product $A \times B \times C$ consists of all ordered triples (a , b, c),
where $a \in A, b \in B$, and $c \in C$. Hence, $A \times B \times C$
$=\{(0,1,0),(0,1,1),(0,1,2),(0,2,0),(0,2,1),(0,2,2)$,
$(1,1,0),(1,1,1),(1,1,2),(1,2,0),(1,2,1),(1,2,2)\}$

Note:

- We use the notation A^{2} to denote $A \times A$, the Cartesian product of the set A with itself.
- Similarly, $A^{3}=A \times A \times A$,
$A^{4}=A \times A \times A \times A$, and so on.
More generally,

$$
A^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right), \mid a_{i} \in A \text { for } i=1,2, \ldots, n\right\}
$$

Homework

Page 125/126:

$1(\mathrm{a}, \mathrm{b}) \quad, 2(\mathrm{a}) \quad, 4 \quad, 5,7(\mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{f}), 9,11$,
$12,14,19,21(a, b), \quad 23,27,30,33(a), 34(b)$

