

The main purpose for this lesson is to introduce the following:

- define some important concepts of logic gates.
- Basic types of gates and drawings.

- Boolean algebra is used to model the circuitry of electronic devices.
- Each input and each output of such a device can be thought of as a member of the set {0,1}.
- The basic elements of circuits are called *gates*.
- Each type of gate implements a Boolean operation.
- The circuits that we will study in this chapter give output that depends only on the input, and not on the current state of the circuit. Such circuits are called <u>combinational circuits</u> or <u>gating networks</u>.

Gate	Input	Output	Figure
Inverter	A value of <u>one</u> Boolean variable	The <u>complement</u> of the value	$x \longrightarrow \overline{x}$
The OR gate	The values of <u>two or more</u> Boolean variables	The Boolean <u>sum</u> of their values	$x \longrightarrow x + y$
The AND gate	the values of <u>two or more</u> Boolean variables	the Boolean <i>product</i> of their values	

FIGURE 2 Gates with *n* Inputs.

Combinations of Gates

- Combinational circuits can be constructed using a combination of *inverters, OR gates*, and *AND gates*.
- output from a gate may be used as input by one or more other elements
- Both drawings in Figure 3 depict the circuit that produces the output $xy + \bar{x}y$

FIGURE 3 Two Ways to Draw the Same Circuit.

EXAMPLE 1

Construct circuits that produce the following outputs:

(a)
$$(x + y)\overline{x}$$

(b) $\overline{x}(\overline{y + \overline{z}})$
(c) $(x + y + z)(\overline{x}\overline{y}\overline{z})$

۱.

Solution

$(c) (x + y + z)(\bar{x}\bar{y}\bar{z})$

Page 827/828

1
3
5