10.2 Graph Terminology and Special Types of Graphs

Objectives:

The main purpose for this lesson is to introduce the following:
$>$ We define Basic Terminology.
$>$ Define the neighborhood and degree of vertex.
$>$ THE HANDSHAKING THEOREM.
$>$ In-degree \& Out-degree (directed graph).
>Some Special Simple Graphs.
>Bipartite Graphs.

Basic Terminology

DEFINITION 1

- Two vertices u and v in an undirected graph G are called adjacent (or neighbors) in G if u and v are endpoints of an edge of G .
- If e is associated with $\{\mathrm{u}, \mathrm{v}\}$, the edge e is called incident with the vertices u and v.
- The edge e is also said to connect u and v.
- The vertices u and v are called endpoints of an edge associated with $\{u, v\}$.

DEFINITION 2

- The set of all neighbors of a vertex v of $G=(V, E)$, denoted by $N(v)$, is called the neighborhood of v. If A is a subset of V, we denote by $N(A)$ the set of all vertices in G that are adjacent to at least one vertex in A. So, $N(A)=\sum_{v \in A} N(v)$.

The degree of a vertex

DEFINITION 3

- The degree of a vertex in an undirected graph is the number of edges incident with it, except
that a loop at a vertex contributes twice to the degree of that vertex.
- The degree of the vertex v is denoted by $\operatorname{deg}(\mathrm{v})$.
- A vertex of degree zero is called isolated.
- A vertex is pendant if and only if it has degree one.

Example 1:

What are the degrees of the vertices in the graphs G and H displayed in Figure 1?

FIGURE 1 The Undirected Graphs \boldsymbol{G} and \boldsymbol{H}.
Solution:
In G:
$\operatorname{deg}(a)=2, \operatorname{deg}(b)=\operatorname{deg}(c)=\operatorname{deg}(f)=4, \operatorname{deg}(d)=$ $1, \operatorname{deg}(\mathrm{e})=3$, and $\operatorname{deg}(\mathrm{g})=0$.

- The neighborhoods of these vertices are $N(a)=\{b, f\}, N(b)=\{a, c, e, f\}, N(c)=\{b, d, e, f\}$, $N(d)=\{c\}, N(e)=\{b, c, f\}, N(f)=\{a, b, c, e\}$, and $N(\mathrm{~g})=\varnothing$.
In H:
$\operatorname{deg}(a)=4, \operatorname{deg}(b)=\operatorname{deg}(e)=6, \operatorname{deg}(c)=1$, and $\operatorname{deg}(d)=5$.
The neighborhoods of these vertices are $N(a)=\{b$, $d, e\}, N(b)=\{a, b, c, d, e\}, N(c)=\{b\}, N(d)=\{a, b, e\}$, and $N(e)=\{a, b, d\}$.
- A vertex of degree zero is called isolated.
- It follows that an isolated vertex is not adjacent to any vertex.
- Vertex g in graph G in Example 1 is isolated.
- A vertex is pendant if and only if it has degree one.
- Consequently, a pendant vertex is adjacent to exactly one other vertex.
- Vertex din graph G in Example 1 is pendant.

THE HANDSHAKING THEOREM

THEOREM 1

Let $G=(V, E)$ be an undirected graph with e

$$
\text { edges. Then } 2 e=\sum_{v \in V} \operatorname{deg}(v)
$$

(Note that this applies even if multiple edges and loops are present.)

EXAMPLE 3

How many edges are there in a graph with 10

vertices each of degree 6?

Solution:

Because the sum of the degrees of the vertices is $6 \cdot$

$$
10 \times 6=60
$$

it follows that $2 \mathrm{e}=60$.
Therefore, $\mathrm{e}=30$.

THEOREM 2

An undirected graph has an even number of vertices of odd degree.

DEFINITION 4

- When (u, v) is an edge of the graph G with directed edges, u is said to be adjacent to v and v is said to be adjacent from u.
- The vertex u is called the initial vertex of (u, v), and v is called the terminal or end vertex of (u, v).
- The initial vertex and terminal vertex of a loop are the same.

In-degree \& Out-degree (directed graph)

DEFINITION 4

- In a graph with directed edges the in-degree of a vertex v, denoted by $\operatorname{deg}^{-}(v)$, is the number of edges with v as their terminal vertex.
- The out-degree of v, denoted by $\operatorname{deg}^{+}(v)$, is the number of edges with v as their initial vertex.
- (Note that a loop at a vertex contributes 1 to both the indegree and the out-degree of this vertex.)

EXAMPLE 4

Find the in-degree and out-degree of each vertex in the graph G with directed edges shown in Figure 2.

Solution:
FIGURE 2 The Directed Graph G.
The in-degrees in G are $\mathrm{deg}^{-}(\mathrm{a})=2, \mathrm{deg}^{-}(\mathrm{b})=2, \mathrm{deg}^{-}(\mathrm{c})=3$, $\operatorname{deg}^{-}(d)=2, \operatorname{deg}^{-}(e)=3$, and $\operatorname{deg}^{-}(f)=0$.

The out-degrees are $\operatorname{deg}^{+}(a)=4, \operatorname{deg}^{+}(b)=1, \operatorname{deg}^{+}(c)=2, \operatorname{deg}^{+}(d)=2$, $\operatorname{deg}^{+}(e)=3$, and $\operatorname{deg}^{+}(f)=0$.

THEOREM 3

Let $G=(V, E) b$ e a graph with directed edges.

Then:
$\sum_{\mathrm{v} \in \mathrm{V}} \operatorname{deg}^{-}(\mathrm{v})=\sum_{\mathrm{v} \in \mathrm{V}} \operatorname{deg}^{+}(\mathrm{v})=|\mathrm{E}|$.

Some Special Simple Graphs

EXAMPLE 5

Complete Graphs The complete graph on n vertices, denoted by K_{n}, is the simple graph
that contains exactly one edge between each pair of distinct vertices.

The graphs K_{n}, for $n=1,2,3,4,5,6$, are displayed in
Figure 3.

A simple graph for which there is at least one pair of distinct vertex not connected by an edge is called noncomplete

FIGURE 3 The Graphs K_{n} for $\mathbf{1} \leq \boldsymbol{n} \leq 6$.

EXAMPLE 6

Cycles The cycle $C_{n} \geq 3$, consists of n vertices V_{1},

$$
\begin{aligned}
& V_{2}, \ldots, V_{n} \text { and edges }\left\{V_{1}, V_{2}\right\},\left\{V_{2}, V_{3}\right\}, \ldots, \\
& \left\{V_{n-1}, V_{n}\right\} \text {, and }\left\{V_{n}, V_{1}\right\} .
\end{aligned}
$$

The cycles $\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}$, and C_{6} are displayed in
Figure 4.

FIGURE 4 The Cycles C_{3}, C_{4}, C_{5}, and C_{6}.

EXAMPLE 7

Wheels We obtain the wheel W_{n} when we add an additional vertex to the cycle C_{n}, for $n \geq 3$, and connect this new vertex to each of the n vertices in C_{n}, by new edges.

The wheels W_{3}, W_{4}, W_{5}, and W_{6} are displayed in Figure 5.

FIGURE 5 The Wheels W_{3}, W_{4}, W_{5}, and W_{6}.

How many vertices \& edges in each

 type?| Type of the Simple
 Graph | Number of Vertices | Number of Edges |
| :---: | :---: | :---: |
| $\mathbf{K}_{\mathbf{n}}$ | \mathbf{n} | $\frac{\mathbf{n}(\boldsymbol{n}-\mathbf{1})}{2}$ |
| $\mathbf{C}_{\mathbf{n}}$ | \mathbf{n} | \mathbf{n} |
| $\mathbf{W}_{\mathbf{n}}$ | $\mathbf{n + 1}$ | $\mathbf{2 n}$ |

Bipartite Graphs

DEFINITION 6

A simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint sets V_{1} and V_{2} such that every edge in the graph connects a vertex in V_{1} and a vertex in V_{2}.
(so that no edge in G connects either two vertices in V_{1} or two vertices in V_{2}). When this condition holds, we call the pair $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$ a bipartition of the vertex set V of G .

EXAMPLE 11

Are the graphs G and H displayed in Figure 8

bipartite?

FIGURE 8 The Undirected Graphs \boldsymbol{G} and \boldsymbol{H}.

Solution:

- Graph G is bipartite because its vertex set is the union of two disjoint sets, $\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$ and $\{\mathrm{c}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$, and each edge connects a vertex in one of these subsets to a vertex in the other subset.
(Note that for G to be bipartite it is not necessary that every vertex in $\{a, b, d\}$ be adjacent to every vertex in \{c,e,f, g\}. For instance, b and g are not adjacent.)
- Graph H is not bipartite because its vertex set cannot be partitioned into two subsets so that edges do not connect two vertices from the same subset. verify this by (consider the vertices a, b, and f.)

Homework

Page 665/666/667

- 1
- 2
- 3
- 7
- 8
- 9
- 10
- 29(a,b,c)
- 37(a,b,d,e,f).

