10.2 Graph Terminology and Special Types of Graphs

<u>Objectives:</u>

The main purpose for this lesson is to introduce the following:

- ➢ We define Basic Terminology.
- Define the neighborhood and degree of vertex.
- >THE HANDSHAKING THEOREM.
- In-degree & Out-degree (directed graph).
- Some Special Simple Graphs.
- ➢ Bipartite Graphs.

- Two <u>vertices</u> u and v in an undirected graph G are called <u>adjacent</u> (or <u>neighbors</u>) in G if u and v are endpoints of an edge of G.
- If e is associated with {u,v}, the <u>edge</u> e is called <u>incident</u>
 with the vertices u and v.
- The <u>edge</u> e is also said to <u>connect</u> u and v.
- The <u>vertices</u> u and v are called <u>endpoints</u> of an edge associated with { u , v}.

• The set of all neighbors of a vertex v of G = (V, E), denoted by N(v), is called the *neighborhood* of v. If A is a subset of V, we denote by N(A) the set of all vertices in G that are adjacent to at least one vertex in A. So, $N(A) = \sum_{v \in A} N(v)$.

• The degree of a vertex in an <u>undirected</u> graph is the number of edges incident with it<u>, except</u>

that a loop at a vertex contributes twice to the degree of that vertex.

- The degree of the vertex v is denoted by deg(v).
- A vertex of <u>degree zero</u> is called <u>isolated</u>.
- A vertex is *pendant* if and only if it has degree one.

Example 1:

What are the degrees of the vertices in the graphs G and H displayed in Figure 1?

FIGURE 1 The Undirected Graphs G and H.

Solution:

In G:

deg(a) = 2, deg(b) = deg(c) = deg(f) = 4, deg(d) = 1, deg(e) = 3, and deg(g) = 0.

The neighborhoods of these vertices are

 $N(a) = \{b, f\}, N(b) = \{a, c, e, f\}, N(c) = \{b, d, e, f\}, N(d) = \{c\}, N(e) = \{b, c, f\}, N(f) = \{a, b, c, e\}, and N(g) = \emptyset.$

In H:

deg(a) = 4, deg(b) = deg(e) = 6, deg(c) = 1, and deg(d) = 5.

The neighborhoods of these vertices are N(a) = {b, d, e}, N(b) = {a, b, c, d, e}, N(c) = {b}, N(d) = {a, b, e}, and N(e) = {a, b, d}.

- A vertex of degree zero is called *isolated*.
- It follows that an isolated vertex is not adjacent to any vertex.
- Vertex g in graph G in Example 1 is isolated.
- A vertex is *pendant* if and only if it has degree one.
- Consequently, a pendant vertex is adjacent to exactly one other vertex.
- Vertex d in graph G in Example 1 is pendant.

THE HANDSHAKING THEOREM

THEOREM 1

Let G = (V, E) be an <u>undirected graph</u> with e

edges. Then $2e = \sum_{v \in V} deg(v)$.

(Note that this applies even if multiple edges and

loops are present.)

EXAMPLE 3

How many edges are there in a graph with 10 vertices each of degree 6?

Solution:

Because the sum of the degrees of the vertices is $6 \cdot 10x6 = 60$,

it follows that 2e = 60.

Therefore, e = 30.

An undirected graph has an even number of

vertices of odd degree.

- When (u,v) is an edge of the graph G with <u>directed edges</u>, u is said to be <u>adjacent to</u> v and v is said to be adjacent from u.
- The vertex u is called <u>the initial vertex</u> of (u,v), and v is called <u>the terminal or end vertex</u> of (u,v).
- The initial vertex and terminal vertex of a loop are the same.

In-degree & Out-degree (directed graph)

DEFINITION 4

- In a graph with <u>directed edges</u> the <u>in-degree</u> of a vertex v, denoted by <u>deg</u>⁻(v), is the number of edges with v as their <u>terminal vertex</u>.
- The <u>out-degree</u> of v, denoted by deg⁺(v), is the number of edges with v as <u>their initial vertex</u>.
- (Note that a loop at a vertex contributes 1 to <u>both the in-</u>
 <u>degree and the out-degree</u> of this vertex.)

EXAMPLE 4

Find the in-degree and out-degree of each vertex in the graph G with directed edges shown in Figure 2.

Solution:

FIGURE 2 The Directed Graph G.

<u>The in-degrees in G</u> are deg⁻(a)=2, deg⁻(b)=2, deg⁻(c)=3, deg⁻(d)=2, deg⁻(e)=3, and deg⁻(f)=0.

<u>The out-degrees</u> are deg⁺(a)=4, deg⁺(b)=1, deg⁺(c)=2, deg⁺(d)=2, deg⁺(e)=3, and deg⁺(f) =0.

THEOREM 3

Let G = (V,E) b e a graph with <u>directed edges</u>. Then:

 $\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|.$

EXAMPLE 5

Complete Graphs The complete graph on n vertices,

denoted by K_n, is the simple graph

that contains exactly one edge between each pair of distinct vertices.

The graphs K_n, for n=1,2,3,4,5,6, are displayed in Figure 3.

A simple graph for which there is at least one pair of distinct vertex not connected by an edge is called **noncomplete**

FIGURE 3 The Graphs K_n for $1 \le n \le 6$.

EXAMPLE 6

<u>**Cycles</u>** The cycle $C_n \ge 3$, consists of n vertices V_1 ,</u>

 V_2 , . . . , V_n and edges { V_1 , V_2 } , { V_2 , V_3 } , . . . , { V_{n-1} , V_n } , and { V_n , V_1 } .

The cycles C_3 , C_4 , C_5 , and C_6 are displayed in

Figure 4.

FIGURE 4 The Cycles C_3 , C_4 , C_5 , and C_6 .

Wheels We obtain the wheel W_n when we add an additional vertex to the cycle C_n , for $n \ge 3$, and connect this new vertex to each of the n vertices in C_n , by new edges. The wheels W_3 , W_4 , W_5 , and W_6 are displayed in Figure 5.

 W_3

FIGURE 5 The Wheels W_3 , W_4 , W_5 , and W_6 .

 W_5

 W_6

 W_A

How many vertices & edges in each

type?

Type of the Simple Graph	Number of Vertices	Number of Edges
K _n	n	$\frac{n(n-1)}{2}$
C _n	n	n
W _n	n+1	2n

A <u>simple graph</u> G is called <u>bipartite</u> if its vertex set V can be partitioned into two disjoint sets V₁ and V₂ such that every edge in the graph connects a vertex in V₁ and a vertex in V₂.
(so that no edge in G connects either two vertices in V₁ or two vertices in V₂). When this condition holds, we call the pair (V₁,V₂) a <u>bipartition</u> of the vertex set V of G.

Are the graphs G and H displayed in Figure 8

bipartite?

FIGURE 8 The Undirected Graphs G and H.

Solution:

 Graph G is bipartite because its vertex set is the union of two disjoint sets, {a ,b,d} and {c, e,f, g}, and each edge connects a vertex in one of these subsets to a vertex in the other subset.

(Note that for G to be bipartite it is not necessary that every vertex in {a ,b,d} be adjacent to every vertex in {c,e,f, g}. For instance, b and g are not adjacent.)

 Graph H is not bipartite because its vertex set cannot be partitioned into two subsets so that edges do not connect two vertices from the same subset. verify this by (consider the vertices a , b, and f.)

Page 665/666/667

- 1
 2
 3
 7
- 8 • 9
- 10
- 29(a,b,c)
- 37(a,b,d,e,f).