10.4 Connectivity

١

<u>Objectives:</u>

The main purpose for this lesson is to introduce the following:

- ✓ Define a path and give examples of its.
- ✓ Learn about some of path concepts.
- ✓ Define connected for undirected graph.

<u>Paths</u>

Informally, <u>a path</u> is a <u>sequence of edges</u> that begins at a vertex of a graph and travels from vertex to vertex along edges of the graph.

Definition 1

- Let n be a nonnegative integer and G an undirected graph. <u>A path of length n</u> from u to v in G is a sequence of n edges e₁, ..., e_n of G such that e₁ is associated with {x₀, x₁}, e₂ is associated with {X₁, X₂}, and so on, with e_n associated with {x_{n-1}, x_n}, where X₀= u and X_n=v.
- When the graph is simple, we denote this path by its vertex sequence X₀, X₁,...,
 Xn (because listing these vertices uniquely determines the path).
- The path is a *circuit* if it begins and ends at the same vertex, that is, if u = v, and has length greater than zero.
- The path or circuit is said to *pass through the vertices* X₁, X₂,..., X_{n-1} or <u>traverse the edges</u> e₁, e₂,..., e_n.
- <u>A path or circuit is simple</u> if it does not contain the same edge more than once.

<u>Remark:</u>

- in some books, the term <u>walk</u> is used instead of <u>path</u>, where a <u>walk</u> is defined to be an alternating sequence of vertices and edges of a graph, V₀, e₁,V₁, e₂,..., V_{n-1}, e_n, V_n, where V_{i-1}and V_i are the endpoints of e_i for i=1,2,...,n.
- When this terminology is used, <u>closed walk</u> is used instead of <u>circuit</u> to indicate a walk that begins and ends at the same vertex,
- and <u>trail</u> is used to denote a walk that has no repeated

edge (replacing the term *simple path*).

When this terminology is used, the terminology path is often used for a trail with no repeated vertices.

EXAMPLE 1

- In the simple graph shown in Figure 1, a,d,c,f,e is a simple path of length 4, because {a,d}, {d,c} , {c,f}, and {f,e} are all edges.
- However, d,e,c,a is not a path, because {e,c} is not an edge.
- Note that b, c, f, e, b is a <u>circuit of length 4</u> because {b, c}, {c,f}, {f, e}, and {e, b} are edges, and this path begins and ends at b.
- The path **a**, **b**, **e**, **d**, **a**, **b**, which <u>is of length 5</u>, is <u>not simple</u> because it contains the edge {a,b} twice.

FIGURE 1 A Simple Graph.

DEFINITION 2

Let n be a nonnegative integer and G a **<u>directed graph</u>**.

- <u>A path of length n from u to v</u> in G is a sequence of edges $e_1, e_2, ..., e_n$ of G such that e_1 is associated with (x_0, x_1) , e_2 is associated with (x_1, x_2) , and so on, with e_n associated with (x_{n-1}, x_n) , where $x_0 = u$ and $x_n = v$.
- When there are no multiple edges in the directed graph, this path is denoted by its vertex sequence x₀, x₁, x₂, ..., x_n.
- A path of length greater than zero that begins and ends at the same vertex is called <u>a circuit or cycle</u>.
- A path or circuit is called <u>simple</u> if it does not contain the same edge more than once.

Connectedness In Undirected Graphs

DEFINITION 3

An **undirected graph** is called *connected* if

there is a path between every pair of distinct vertices of the graph.

EXAMPLE 5

- The graph G_1 in Figure 2 is <u>connected</u>, because for every pair of distinct vertices there is a path between them.
- However, the graph G₂ in Figure 2 is <u>not connected</u>.
- For instance, there is no path in G₂ between vertices a and d.

 G_1 G_2

FIGURE 2 The Graphs G_1 and G_2 .

- 1(a,b,c,d)
 - 3