10.4 Connectivity

Objectives:

The main purpose for this lesson is to introduce the following:
\checkmark Define a path and give examples of its.
\checkmark Learn about some of path concepts.
\checkmark Define connected for undirected graph.

Paths

Informally, a path is a sequence of edges that begins at a vertex of a graph and travels from vertex to vertex along edges of the graph.

Definition 1

- Let n be a nonnegative integer and \mathbf{G} an undirected graph. A path of length n from u to $v i n G$ is a sequence of n edges e_{1}, \ldots, e_{n} of G such that e_{1} is associated with $\left\{x_{0}, x_{1}\right\}, e_{2}$ is associated with $\left\{X_{1}, X_{2}\right\}$, and so on, with e_{n} associated with $\left\{x_{n-1}, x_{n}\right\}$, where $X_{0}=u$ and $X_{n}=v$.
- When the graph is simple, we denote this path by its vertex sequence X_{0}, X_{1}, \ldots, Xn (because listing these vertices uniquely determines the path).

The path is a circuit if it begins and ends at the same vertex, that is, if $\mathbf{u}=\mathbf{v}$, and has length greater than zero.

- The path or circuit is said to pass through the vertices $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, X_{n-1}$ or traverse the edges $\mathbf{e}_{1}, \mathbf{e}_{\mathbf{2}}, \ldots, \mathbf{e}_{\mathrm{n}}$.
- A path or circuit is simple if it does not contain the same edge more than once.

Remark:

- in some books, the term walk is used instead of path, where a walk is defined to be an alternating sequence of vertices and edges of a graph, $V_{0}, e_{1}, V_{1}, e_{2}, \ldots, V_{n-1}, e_{n}, V_{n}$, where V_{i-1} and V_{i} are the endpoints of e_{i} for $i=1,2, \ldots, n$.
- When this terminology is used, closed walk is used instead of
circuit to indicate a walk that begins and ends at the same vertex,
- and trail is used to denote a walk that has no repeated edge (replacing the term simple path).

When this terminology is used, the terminology path
is often used for a trail with no repeated vertices.

EXAMPLE 1

- In the simple graph shown in Figure $1, a, d, c, f, e$ is a simple path of length 4 , because $\{a, d\},\{d, c\},\{c, f\}$, and $\{f, e\}$ are all edges.
- However, d, e, c, a is not a path, because $\{e, c\}$ is not an edge.
- Note that b, c, f, e, b is a circuit of length 4 because $\{b, c\}$, $\{c, f\},\{f, e\}$, and $\{e, b\}$ are edges, and this path begins and ends at b.
- The path a, b, e, d, a, b, which is of length 5 , is not simple because it contains the edge $\{a, b\}$ twice.

DEFINITION 2

Let n be a nonnegative integer and G a directed graph.

- A path of length n from u to v in G is a sequence of edges $\mathrm{e}_{1}, \mathrm{e}_{2}, . ., \mathrm{e}_{\mathrm{n}}$ of G such that e_{1} is associated with $\left(x_{0}, x_{1}\right), e_{2}$ is associated with (x_{1}, x_{2}), and so on, with e_{n} associated with (x_{n-1}, x_{n}), where $x_{0}=u$ and $x_{n}=v$.
- When there are no multiple edges in the directed graph, this path is denoted by its vertex sequence $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$.
- A path of length greater than zero that begins and ends at the same vertex is called a circuit or cycle.
- A path or circuit is called simple if it does not contain the same edge more than once.

Connectedness In Undirected Graphs

DEFINITION 3

An undirected graph is called connected if
there is a path between every pair of distinct
vertices of the graph.

EXAMPLE 5

- The graph G_{1} in Figure 2 is connected, because for every pair of distinct vertices there is a path between them.
- However, the graph G_{2} in Figure 2 is not connected.
- For instance, there is no path in G_{2} between vertices a and d.

$$
\begin{aligned}
& \text { FIGETEE } \\
& \text { Fュ- }
\end{aligned}
$$

Homework

Page 689

- $1(a, b, c, d)$
- 3

