## Set Operations

## Objectives:

The main purpose for this lesson is to introduce the following:
$\square$ define the operations of sets and examples.
$\square$ Some concepts of set.
$\square$ Computer Representation of Sets

## The Union

## DEFINITION 1

- Let $A$ and $B$ be sets. The union of the sets $A$ and $B$, denoted by $A \cup B$, is the set that contains
those elements that are either in A orin B, or in both.
- An element $x$ belongs to the union of the sets $A$ and $B$ if and only if $x$ belongs to $A$ or $x$ belongs to $B$.
- This tells us that

$$
A \cup B=\{x \mid x \in A \vee x \in B\}
$$


$A$ E $B$ is shaded.
FIGURE 1 Venn Diagram Representing the Union of $A$ and $B$.

## EXAMPLE 1

The union of the sets $\{1,3,5\}$ and $\{1,2,3\}$ is the set $\{1,2,3,5\}$; that is, $\{1,3,5\} \cup\{1,2,3\}=\{1,2,3,5\}$.

## The Intersection

## DEFINITION 2

Let $A$ and $B$ be sets. The intersection of the sets $A$ and $B$, denoted by $A \cap B$, is the set
containing those elements in both $A$ and $B$.

- An element $x$ belongs to the intersection of the sets $A$ and $B$ if and only if $x$ belongs to $A$ and $x$ belongs to $B$.
- This tells us that

$$
A \cap B=\{x \mid x \in A \wedge x \in B\}
$$



FIGURE 2 Venn Diagram Representing the Intersection of $A$ and $B$.

## EXAMPLE 2

The intersection of the sets $\{1,3,5\}$ and $\{1,2,3\}$ is the set $\{1,3\}$; that is, $\{1,3,5\} \cap\{1,2,3\}=\{1,3\}$.

## Disjoint Sets

## DEFINITION 3

Two sets are called disjoint if their intersection is the empty set.
EXAMPLE 3
Let $A=\{1,3,5,7,9\}$ and $B=\{2,4,6,8,10\}$.
Because $A \cap B=\emptyset, A$ and $B$ are disjoint.

## The Cardinality Of a Union Of Two Finite Sets

Note that I AI + I B I counts each element that is in A but not in B or in B but not in A exactly once, and each element that is in both $A$ and $B$ exactly twice. Thus, if the number of elements that are in both $A$ and $B$ is subtracted from $|A|+|B|$, elements in $A \cap B$ will be counted only once.

Hence, $|\boldsymbol{A} \cup \boldsymbol{B}|=|\boldsymbol{A}|+|\boldsymbol{B}|-|\boldsymbol{A} \cap \boldsymbol{B}|$.

- The generalization of this result to unions of an arbitrary number of sets is called the principle of inclusion-exclusion.


## The Difference Of Two Sets

## DEFINITION 4

- Let $A$ and $B$ be sets. The difference of $A$ and $B$, denoted by $A-B$, is the set containing those elements that are in $A$ but not in $B$.
- The difference of $A$ and $B$ is also called the complement of $B$ with respect to $A$.
- An element $x$ belongs to the difference of $A$ and $B$ if and only if $x \in A$ and $x \notin B$. This tells us that

$$
A-B=\{x \mid x \in A \wedge x \notin B\}
$$

Remark: The difference of sets $A$ and $B$ is sometimes denoted by $A \backslash B$.


FIGURE 3 Venn Diagram for the Difference of $A$ and $B$.

## EXAMPLE 4

The difference of $\{1,3,5\}$ and $\{1,2,3\}$ is the set $\{5\}$; that is, $\{1,3,5\}-\{1,2,3\}=\{5\}$.
Caution!
This is different from the difference of $\{1,2,3\}$ and $\{1,3,5\}$, which is the set $\{2\}$.
$\{1,2,3\}-\{1,3,5\}=\{2\}$.

## The Complement Of a Set

## DEFINITION 5

- Let $U$ be the universal set. The complement of the set $A$, denoted by $\bar{A}$, is the complement of $A$ with respect to $U$.
- In other words, the complement of the set $A$ is
$\overline{\mathrm{A}}=U-A$.
- An element belongs to $\bar{A}$ if and only if $x \notin A$. This tells us that

$$
\overline{\mathrm{A}}=\{\boldsymbol{x} \mid \boldsymbol{x} \notin \boldsymbol{A}\} .
$$



FIGURE 4 Venn Diagram for the Complement of the Set $A$.

## Example 5 (3/136)

Let $A=\{1,2,3,4,5\}$ and $B=\{0,3,6\}$. Find
c) $A-B \quad$ d) $B-A$

Solution:
c) $A-B=$
d) $B-A=$

## Remark:

It is left to the reader to show that we can express the difference of $A$ and $B$ as the intersection of $A$ and the complement of $B$.

That is,

$$
\mathrm{A}-\mathrm{B}=\mathrm{A} \cap \bar{B} .
$$

TABLE 1 Set Identities.

| Saleratity | Name |
| :---: | :---: |
| $\begin{aligned} & A \cup \mathscr{B}=A \\ & A \cap U=A \end{aligned}$ | Identity laws |
| $\begin{aligned} & A \cup U=W \\ & A \cap B=\boldsymbol{B} \end{aligned}$ | Domination laws |
| $\begin{aligned} & A \cup A=A \\ & A \cap A=A \end{aligned}$ | Idempotent laws |
| $\overline{(\bar{A})}=A$ | Complementation law |
| $\begin{aligned} & A \cup B=B \cup A \\ & A \cap B=B \cap A \end{aligned}$ | Commutative laws |
| $\begin{aligned} & A \cup(B \cup C)=(A \cup B) \cup C \\ & A \cap(B \cap C)=(A \cap B) \cap C \end{aligned}$ | Associative laws |
| $\begin{aligned} & A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\ & A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \end{aligned}$ | Distributive laws |
| $\begin{aligned} & \overline{A \cup B}=\bar{A} \cap \bar{B} \\ & \overline{A \cap B}=\bar{A} \cup \bar{B} \end{aligned}$ | De Morgan's laws |
| $\begin{aligned} & A \cup(A \cap B)=A \\ & A \cap(A \cup B)=A \end{aligned}$ | Absorption laws |
| $\begin{aligned} & A \cup \bar{A}=U \\ & A \cap \bar{A}=\varnothing \end{aligned}$ | Complement laws |

Example: Use set builder notation and logical equivalences to establish the first De Morgan law $\overline{A \cap B}=\bar{A} \cup \bar{B}$

Solution: We can prove this identity with the following steps.

$$
\begin{aligned}
\overline{A \cap B} & =\{x \mid x \notin A \cap B\} & & \text { by definition of complement } \\
& =\{x \mid \neg(x \in(A \cap B))\} & & \text { by definition of does not belong symbol } \\
& =\{x \mid \neg(x \in A \wedge x \in B)\} & & \text { by definition of intersection } \\
& =\{x \mid \neg(x \in A) \vee \neg(x \in B)\} & & \text { by the first De Morgan law for logical equivalences } \\
& =\{x \mid x \notin A \vee x \notin B\} & & \text { by definition of does not belong symbol } \\
& =\{x \mid x \in \bar{A} \vee x \in \bar{B}\} & & \text { by definition of complement } \\
& =\{x \mid x \in \bar{A} \cup \bar{B}\} & & \text { by definition of union } \\
& =\bar{A} \cup \bar{B} & & \text { by meaning of set builder notation }
\end{aligned}
$$

## Example:

Let $A, B$, and $C$ be sets. Show that

$$
\overline{A \cup(B \cap C)}=(\bar{C} \cup \bar{B}) \cap \bar{A}
$$

Solution: We have

$$
\begin{aligned}
\overline{A \cup(B \cap C)} & =\bar{A} \cap(\overline{B \cap C}) & & \text { by the first De Morgan law } \\
& =\bar{A} \cap(\bar{B} \cup \bar{C}) & & \text { by the second De Morgan law } \\
& =(\bar{B} \cup \bar{C}) \cap \bar{A} & & \text { by the commutative law for intersections } \\
& =(\bar{C} \cup \bar{B}) \cap \bar{A} & & \text { by the commutative law for unions. }
\end{aligned}
$$

## Generalized Unions and Intersections


(a) $A \cup B \cup C$ is shaded.

(b) $A \cap B \cap C$ is shaded.

FIGURE 5 The Union and Intersection of $A, B$, and $C$.

DEFINITION 6
The union of a collection of sets is the set that contains those elements that are members of at least one set in the collection.

We use the notation

$$
A_{1} \cup A_{2} \cup \cdots \cup A_{n}=\bigcup_{i=1}^{n} A_{i}
$$

to denote the union of the sets $A_{1}, A_{2}, \ldots, A_{n}$.

## DEFINITION 7

The intersection of a collection of sets is the set that contains those elements that are members of all the sets in the collection.

We use the notation

$$
A_{1} \cap A_{2} \cap \cdots \cap A_{n}=\bigcap_{i=1}^{n} A_{i}
$$

to denote the intersection of the sets $A_{1}, A_{2}, \ldots, A_{n}$

## Example:

Let $A=\{0,2,4,6,8\}, B=\{0,1,2,3,4\}$, and $C=\{0,3,6,9\}$. What are $A \cup B \cup C$ and $A \cap B \cap C$ ?

## Computer Representation of Sets

- Assume that the universal set $U$ is finite.
- First, specify an arbitrary ordering of the elements of $U$, for instance $a_{1}, a_{2}, \ldots, a_{n}$.
- Represent a subset $A$ of $U$ with the bit string of length $n$, where the ith bit in this string is 1 if $a_{i}$ belongs to A and is 0 if $a_{i}$ does not belong to $A$.


## Example:

Let $U=\{1,2,3,4,5,6,7,8,9,10\}$,

- Represent the subset of All odd integers
$\{1,3,5,7,9\}$ in U by 1010101010.
- we represent the subset of all even integers in $U$, namely, $\{2,4,6,8,10\}$, by the string
0101010101.
- The set of all integers in $U$ that do not exceed 5 , namely, $\{1,2,3,4,5\}$, is represented by the string 1111100000.


## Notes:

- Using bit strings to represent sets, it is easy to find complements of sets and unions, intersections, and differences of sets. To find the bit string for the complement of a set from the bit string for that set, we simply change each 1 to a 0 and each 0 to 1,(see example 19 in book).


## What about union and intersection ?

## Example:

The bit strings for the sets $\{1,2,3,4,5\}$ and $\{1,3,5,7,9\}$ are 1111100000 and 1010101010 , respectively. Use bit strings to find the union and intersection of these sets.

Solution: The bit string for the union of these sets is

$$
1111100000 \vee 1010101010=1111101010,
$$

which corresponds to the set $\{1,2,3,4,5,7,9\}$. The bit string for the intersection of these sets is

$$
1111100000 \wedge 1010101010=1010100000,
$$

which corresponds to the set $\{1,3,5\}$.

## HomeWorks

Page 136/137

- 3
- 5
- 14
- 19
- 25
- 27
- 29
- 52,53
- 59

