
PHYS-454
 Τhe Quantum Harmonic Oscillator



The simple harmonic motion

 The SHM is produced when the particle moves on a straight line
around an equilibrium point and the resultant force on it is
given by:

 Here with x we denote the displacement from the equilibrium
position. D is called restoring constant (unit: N/m).

 The force given above is a conservative force. The minus sign
indicates that the force always tends to restore the particle to its
equilibrium position. To this restoring force we associate the
following potential:

 The two formulae above satisfy the well-known relation:
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Why SHM is important-a?
 Consider a single dimensional potential V(x) with a minimum, or

stable equilibrium point, say at  x=0. Following a Taylor expansion
around x=0 we get:

 Since x=0 is a minimum we have:

 Then

 Any potential around a stable equilibrium point can be approximated
by a simple harmonic oscillator
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Why SHM is important-b?



The quantum mechanical SHO-a

 The quantum mechanical Hamiltonian
of a simple harmonic oscillator gets
the form:
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The quantum mechanical SHO -b

 We can show that the Schrödinger eq. takes the form:

 By introducing the dimensionless parameters:

 We get
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The quantum mechanical SHO -c
 Solving the above differential eq. we can get the

eigenfunctions and eigenvalues of the s.h.o.
Hamiltonian:

 Where the functions           are the so called Hermite
polynomials. Some of them are given below
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Hermite polynomials -properties

  

H0 = 1
H1 = 2!

H2 = 4!2 " 2

H3 = 8!3 "12!

H4 = 16!4 " 48!2 +12

H5 = 32!5 "160!3 +120!
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Discussion-a
The shape of the wave functions

 The wave functions are alternatively even
and odd due to the symmetry of the potential.

 The number of nodes of the wavefunction
is equal to n.

 The eigenfuctions do not terminate in the
classically allowed region.
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 Discussion -b
Behavior for large n

 As n becomes higher the quantum wave function
must reproduce the classical behavior.

 Classically the particle “spends” more of its time
at regions where the velocity is small. That is, near
the extreme points of the oscillation.
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Discussion -c
Penetration in the forbidden region
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Discussion -c
Penetration in the forbidden region

 As we expect the probability of
penetration in the forbidden region
becomes smaller and smaller as n gets
larger. The particle behaves more
classically as we go to higher levels.

 The probabilities do not depend on the
mass, Planck’s constant or ω.



Discussion-d
Radiation emitted by a quantum SHO

 The fact that the energy eigenvalues are
equidistant is a characteristic of the parabolic
potential.

 In a classical SHO the period (and frequency)
does not depend on amplitude. So if the
particle is charged it will irradiate with this
given frequency.

 In a quantum SHO this imposes that the only
transitions that can occur are those for which
Δn=1.


