PHYS-454

!L The Quantum Harmonic Oscillator




The simple harmonic motion

The SHM is produced when the particle moves on a straight line
around an equilibrium point and the resultant force on it is

given by:
F =—Dx

Here with x we denote the displacement from the equilibrium
position. D is called restoring constant (unit: N/m).

The force given above is a conservative force. The minus sign
indicates that the force always tends to restore the particle to its
equilibrium position. To this restoring force we associate the
following potential: |

U == Dx?’
2

The two formulae above satisfy the well-known relation:

F=——
dx



Why SHM is important-a?

= Consider a single dimensional potential V(x) with a minimum, or
stable equilibrium point, say at x=0. Following a Taylor expansion
around x=0 we get:

V@j=V«»+V(mx+%Vme%am

s Since x=0 is a minimum we have;
V' 0)=0 V (0)=D>0
s« Then V(x)-V(0)= %sz

= Any potential around a stable equilibrium point can be approximated
by a simple harmonic oscillator



Why SHM is important-b?
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i The guantum mechanical SHO-a

= The quantum mechanical Hamiltonian
of a simple harmonic oscillator gets
the form:

| |
H:p—+—kx2 Ep—+—mwzx2
2m 2 2m 2
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i The guantum mechanical SHO -b

= We can show that the Schrodinger eq. takes the form:

. 2 1
v +h—T[E—Ema)2x2)l/f =0

= By introducing the dimensionless parameters:

[ _2E

= We get ho ho
d2

Y= (&-K)y

&



i The guantum mechanical SHO -c

= Solving the above differential eq. we can get the
eigenfunctions and eigenvalues of the s.h.o.
Hamiltonian:

1/4
ma 1 2 1
= H (E)es? E =|n+- |ho
V. (ﬂh) V2" n! (5)e ' (n Zj

= Where the functions H (§) are the so called Hermite
polynomials. Some of them are given below
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i Hermite polynomials -properties
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Discussion-a
i The shape of the wave functions

= The wave functions are alternatively even
and odd due to the symmetry of the potential.

s The number of nodes of the wavefunctiony
is equal to n.

s The eigenfuctions do not terminate in the
classically allowed region.



Discussion -b
i Behavior for large n

= As n becomes higher the quantum wave function
must reproduce the classical behavior.

m Classically the particle “spends™ more of its time
at regions where the velocity 1s small. That 1s, near
the extreme points of the oscillation.
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Discussion -c
i Penetration in the forbidden region

State | Probability State | Probability
n=0 15.7% n=>5 7.4%
n=1 11.2% n=6 7.0%
n=2 9.5% n=7 6.7%
n=>3 8.5% n=8 6.4%
n=4 7.9% n=9 6.2%




Discussion -c
i Penetration in the forbidden region

= As we expect the probability of
penetration in the forbidden region
becomes smaller and smaller as n gets
larger. The particle behaves more
classically as we go to higher levels.

= The probabilities do not depend on the
mass, Planck’s constant or w.



Discussion-d
i Radiation emitted by a quantum SHQO

s The fact that the energy eigenvalues are
equidistant is a characteristic of the parabolic
potential.

= In a classical SHO the period (and frequency)
does not depend on amplitude. So if the
particle is charged it will irradiate with this
given frequency.

s In a quantum SHO this imposes that the only

transitions that can occur are those for which
An=1.



