MATH203 Calculus

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

23/2/14

Power series representations of functions

Consider the power series

$$
\sum_{n=1}^{\infty} x^{n-1}=1+x+x^{2}+\cdots+x^{n-1}+\ldots
$$

It is a geometric series with $a=1$ and $r=x$, if $|x|<1$, then the sum of series $s=\frac{1}{1-x}$, i.e. $1+x+x^{2}+\cdots+x^{n-1}+\cdots=\frac{1}{1-x}$ if $-1<x<1$

Remarks:

(1) We can say that the function $f(x)=\frac{1}{1-x}$ is defined by the power

$$
\text { series } \sum_{n=1}^{\infty} x^{n-1} \text {. }
$$

(2) We can say that $\sum_{n=1}^{\infty} x^{n-1}$ is a power series representation for $f(x)=\frac{1}{1-x}$ if $|x|<1$.
(3) We can say $f(x)=\frac{1}{1-x}$ is representation of function as power series $\sum^{\infty} x^{n-1}$

Theorem

Suppose that a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ has a radius of convergence $R>0$ then the function defined by
$f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\ldots$ is differentiable continuous on $(-R, R)$ and
(3) $f^{\prime}(x)=a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1}+\ldots$. In other words, the series can be differentiated term by term.
(2) $\int_{0}^{x} f(x)=C+a_{0} x+a_{1} \frac{x^{2}}{2}+a_{2} \frac{x^{3}}{3} \cdots+a_{n} \frac{x^{n+1}}{n+1}+\ldots$ In other words, the series can be integrated term by term.

- Note that whether we differentiate or integrate, the radius of convergence is preserved. However, convergence at the endpoints must be investigated every time.

Examples

Find a function representation f of the following power series:
(1): $\sum_{n=0}^{\infty}(-1)^{n} x^{n}$
(2): $\sum_{n=0}^{\infty} x^{n}$
(3): $\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$

Solution:

Examples

Find a power series representation for the following functions:
(1): $f(x)=\frac{1}{1-x^{2}}$
(2): $f(x)=\frac{1}{1-4 x^{2}}$
(3): $f(x)=\frac{2}{(1+2 x)^{2}}$

Solution:

