MATH203 Calculus

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

16/3/14

Triple Integrals

Definition

If f is a continuous function defined over a bounded solid Q, then the triple integral of f over Q is defined as

$$
\begin{equation*}
\iiint_{Q} f(x, y, z) \mathrm{d} V=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}, y_{k}, z_{k}\right) \Delta V_{k} \tag{1}
\end{equation*}
$$

provided the limit exists, where Q_{k} is the k-th subregion of Q, V_{k} is the volume of $Q_{n},\left(x_{k}, y_{k}, z_{k}\right)$ is a point, $\|P\|$ is length of the longest diagonal of all the Q_{k}.

Triple Integrals

Triple Integrals

Application of a triple integral is the volume of the solid region Q is given by

$$
\text { Volume of } \quad Q=\iiint_{Q} \mathrm{~d} V
$$

Example:

Evaluate the iterated integral $\iiint_{Q} \mathrm{~d} z \mathrm{~d} x \mathrm{~d} y$., where
$Q=\{(x, y, z):-1 \leqslant x \leqslant 1,3 \leqslant y \leqslant 4,0 \leqslant z \leqslant 2\}$.

Notes

Note 1:

To evaluate a triple integral in order $d z d y d x$, hold both x and y constant for inner most integral, then hold x constant for the second integration.
Note 2:
The symbol on the right-hand side of the equation is an iterated triple integral.

Note 3:

A triple integral $\iiint_{Q} \mathrm{~d} V$ can be evaluated in six different orders, namely $d V=d z d y d x=d y d x d z=d x d z d y=d z d x d z y=d x d y d z=d y d z d x$.

Triple Integrals

Some important graphs

Triple Integrals

Evaluation theorem:

Triple integrals can be defined over a region more complicated han a rectangular box. Suppose that R is a region in the $x y$-plane that can be divided into R_{x} and R_{y} regions and that Q is the region in three dimensions defined by
$Q=\left\{(x, y, z):(x, y)\right.$ is in $\quad R$ and $\left.k_{1}(x, y) \leqslant z \leqslant k_{2}(x, y)\right\}$, where k_{1} and k_{2} are continuous functions, then triple integral defines as

$$
\begin{equation*}
\iiint_{Q} f(x, y, z) \mathrm{d} V=\iint_{R}\left[\int_{k_{1}(x, y)}^{k_{2}(x, y)} f(x, y, z) d z\right] \mathrm{d} A \tag{2}
\end{equation*}
$$

Triple Integrals

igure 13.39

Triple Integrals

Example 1

Express the iterated integral $\iiint \mathrm{d} V$., if Q is the region in the first Q
octant bounded by the coordinate plane, paraboloid $z=2+x^{2}+\frac{1}{4} y^{2}$ and the cylinder $x^{2}+y^{2}=1$.
(a)

Triple Integrals

Example 2

Find the volume V of the solid that is bounded by cylinder $y=x^{2}$ and by the plane $y+z=4$ and $z=0$.

Triple Integrals

Evaluation theorem:

Let f be a continuous functions on the solid region Q defined by $b \leqslant x \leqslant d, h_{1} \leqslant y \leqslant h_{2}$ and $k_{1} \leqslant z \leqslant k_{2}$, where h_{1}, h_{2}, k_{1} and k_{2} are continuous functions, then

$$
\begin{equation*}
\iiint_{Q} f(x, y, z) \mathrm{d} V=\int_{b}^{d} \int_{h_{1}(x, y)}^{h_{2}(x, y)} \int_{k_{1}(x, y)}^{k_{2}(x, y)} f(x, y, z) d y d z d x \tag{3}
\end{equation*}
$$

Triple Integrals

Figure 13.42

Triple Integrals

Example 3

Find the volume of the region Q bounded by graphs of $z=3 x^{2}$, $z=4-x^{2}, y=0$ and $z+y=6$.

Triple Integrals

Definition of mass

$m=\delta V$, where δ is mass density and V is Volume.

Mass of Solid

$$
m=\iiint_{Q} \delta(x, y, z) \mathrm{d} V
$$

Mass of Lamina

$$
m=\iint_{R} \delta(x, y) \mathrm{d} A
$$

Triple Integrals

Examples

(1) A lamina having area mass density $\delta(x, y)=y^{2}$ and has the shape of the region bounded by the graphs of $y=e^{-x}, x=0, x=1, y=0$. Set up an iterated double integral that can be used to find the mass of the lamina.
(2) A solid having density $\delta(x, y, z)=z+1$ has the shape of the region bounded by the graphs of $z=4-x^{2}-y^{2}, z=0$. set up an iterated triple integral that can be used to find the mass of the solid.
(3) A solid having density $\delta(x, y, z)=x^{2}+y^{2}$ has the shape of the region bounded by the graphs of $x+2 y+z=4, x=0, y=0, z=0$. set up an iterated triple integral that can be used to find the mass of the solid.

Triple Integrals

Examples

(1) Sketch and find the volume of the region Q bounded by graphs of $z=9-x^{2}, z=0, y=-1$ and $y=2$.
(2) Sketch and find the volume of the region Q bounded by graphs of $z=x^{2}, z=x^{3}, y=z^{2}$ and $y=0$.
Sketch 1

Triple Integrals

Sketch 2

Center of mass and Moment of inertia

Definition

Let L be a lamina that has the shape of region R in the $x y$-plane. If the area mass density at (x, y) is $\delta(x, y)$ and if δ is continuous on R, then the mass m, the moments M_{x} and M_{y}, and the center of mass (\bar{x}, \bar{y}) are
(i) $m=\iint_{R} \delta(x, y) \mathrm{d} A$.
(ii) $M_{x}=\iint_{R} y \delta(x, y) \mathrm{d} A, M_{y}=\iint_{R} x \delta(x, y) \mathrm{d} A$

$$
\iint x \delta(x, y) \mathrm{d} A \quad \iint y \delta(x, y) \mathrm{d} A
$$

(iii) $\bar{x}=\frac{M_{y}}{m}=\frac{R}{\iint_{R} \delta(x, y) \mathrm{d} A}, \bar{y}=\frac{M_{x}}{m}=\frac{R}{\iint_{R} \delta(x, y) \mathrm{d} A}$.

Center of mass and Moment of inertia

Note: If L is homogeneous with constant mass density, the center of mass is also called the centroid

Moments of inertia of a Lamina
$I_{x}=\iint_{R} y^{2} \delta(x, y) \mathrm{d} A$ about the x-axis.
$I_{y}=\iint_{R} x^{2} \delta(x, y) \mathrm{d} A$ about the y-axis.
$I_{O}=I_{x}+I_{y}=\iint_{R}\left(x^{2}+y^{2}\right) \delta(x, y) \mathrm{d} A$ about the origin.

Center of mass and Moment of inertia

Moments and Center of mass in $3 D$
(i) $m=\iiint_{Q} \delta(x, y, z) \mathrm{d} V$.
(ii) $M_{x y}=\iiint_{Q} z \delta(x, y, z) \mathrm{d} V, M_{x z}=\iiint_{Q} y \delta(x, y, z) \mathrm{d} V$
$M_{y z}=\iiint_{Q} x \delta(x, y, z) \mathrm{d} V$
$\iiint x \delta(x, y, z) \mathrm{d} V \quad \iiint y \delta(x, y, z) \mathrm{d} V$
(iii) $\bar{x}=\frac{M_{y z}}{m}=\frac{Q}{\iiint_{Q} \delta(x, y, z) \mathrm{d} V}, \bar{y}=\frac{M_{x z}}{m}=\frac{Q}{\iiint_{Q} \delta(x, y, z) \mathrm{d} V}$.
$\bar{z}=\frac{M_{x y}}{m}=\frac{\iiint_{Q} z \delta(x, y, z) \mathrm{d} V}{\iiint_{Q} \delta(x, y, z) \mathrm{d} V}$.

Center of mass and Moment of inertia

Note: If L is homogeneous with constant mass density, the center of mass is also called the centroid

Moments of inertia of solids
$I_{z}=\iiint_{Q}\left(x^{2}+y^{2}\right) \delta(x, y, z) \mathrm{d} V$ moment of inertia about the z-axis.
$I_{x}=\iiint_{Q}\left(y^{2}+z^{2}\right) \delta(x, y, z) \mathrm{d} V$ moment of inertia about the x-axis.
$I_{y}=\iiint_{R}\left(x^{2}+z^{2}\right) \delta(x, y, z) \mathrm{d} V$ moment of inertia about the y-axis.

Center of mass and Moment of inertia

Examples

(1) A lamina having area mass density $\delta(x, y)=k x$ and has the shape of the region R in the $x y$-plane bounded by the parabola $x=y^{2}$ and the line $x=4$. Find the center of mass.
(2) A lamina having area mass density $\delta(x, y)=k y$ and has the semicirclar illustrated in Figure. Find the moment of inertia with respect to the x-axis.

Center of mass and Moment of inertia

Examples

(3) Set up an iterated integral that can be used to find the center of mass of the solid Q bounded by the paraboloid $x=y^{2}+z^{2}$ and the palne $x=4$ and density $\delta(x, y, z)=x^{2}+y^{2}$.
(4) Let Q be the solid in the first octant bounded by the coordinates planes and the graphs of $z=9-x^{2}$ and $2 x+y=6$. Set up iterated integrals that can be used to find the centroid, find the centroid, find the moment of inertia with respect to the z-axis.

