MATH203 Calculus

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

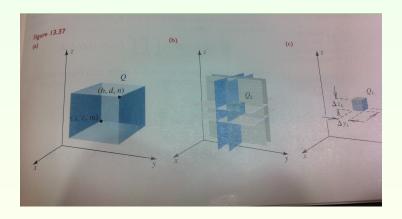
16/3/14

Definition

If f is a continuous function defined over a bounded solid Q, then the **triple integral of** f **over** Q is defined as

$$\iiint\limits_{Q} f(x, y, z) dV = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(x_k, y_k, z_k) \Delta V_k$$
 (1)

provided the limit exists, where Q_k is the k-th subregion of Q, V_k is the volume of Q_n , (x_k,y_k,z_k) is a point, $\|P\|$ is length of the longest diagonal of all the Q_k .



Application of a triple integral is the volume of the solid region Q is given by

Volume of
$$Q = \iiint_Q dV$$

Example:

Evaluate the iterated integral $\iiint\limits_{Q}\mathrm{d}z\mathrm{d}x\mathrm{d}y.$, where $Q=\{(x,y,z):-1\leqslant x\leqslant 1, 3\leqslant y\leqslant 4, 0\leqslant z\leqslant 2\}.$

$$Q = \{(x, y, z) : -1 \leqslant x \leqslant 1, 3 \leqslant y \leqslant 4, 0 \leqslant z \leqslant 2\}.$$

Notes

Note 1:

To evaluate a triple integral in order dzdydx, hold both x and y constant for inner most integral, then hold x constant for the second integration.

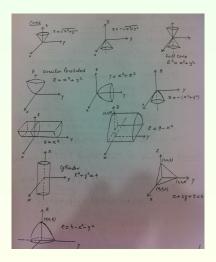
Note 2:

The symbol on the right-hand side of the equation is an iterated triple integral.

Note 3:

A triple integral $\iiint\limits_{Q}\mathrm{d}V$ can be evaluated in six different orders, namely dV=dzdydx=dydxdz=dxdzdy=dzdxdzy=dxdydz=dydzdx.

Some important graphs

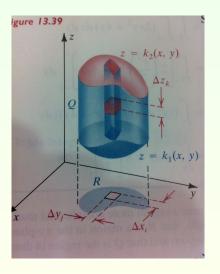


Evaluation theorem:

Triple integrals can be defined over a region more complicated han a rectangular box. Suppose that R is a region in the xy-plane that can be divided into R_x and R_y regions and that Q is the region in three dimensions defined by

 $Q = \{(x,y,z) : (x,y) \text{is in} \quad R \quad \text{and} \quad k_1(x,y) \leqslant z \leqslant k_2(x,y) \}$, where k_1 and k_2 are continuous functions, then triple integral defines as

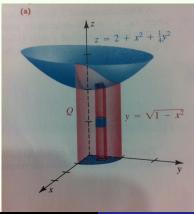
$$\iiint\limits_{Q} f(x,y,z) dV = \iint\limits_{R} \left[\int_{k_{1}(x,y)}^{k_{2}(x,y)} f(x,y,z) dz \right] dA$$
 (2)



Example 1

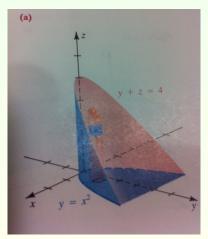
Express the iterated integral $\iiint\limits_{Q}\mathrm{d}V$, if Q is the region in the first

octant bounded by the coordinate plane, paraboloid $z=2+x^2+\frac{1}{4}y^2$ and the cylinder $x^2+y^2=1$.



Example 2

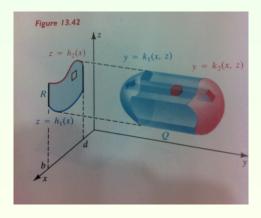
Find the volume V of the solid that is bounded by cylinder $y=x^2$ and by the plane y+z=4 and z=0.



Evaluation theorem:

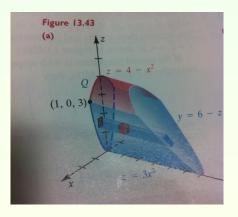
Let f be a continuous functions on the solid region Q defined by $b\leqslant x\leqslant d,\ h_1\leqslant y\leqslant h_2$ and $k_1\leqslant z\leqslant k_2$, where h_1,h_2,k_1 and k_2 are continuous functions, then

$$\iiint\limits_{Q} f(x,y,z) dV = \int_{b}^{d} \int_{h_{1}(x,y)}^{h_{2}(x,y)} \int_{k_{1}(x,y)}^{k_{2}(x,y)} f(x,y,z) dy dz dx$$
 (3)



Example 3

Find the volume of the region Q bounded by graphs of $z=3x^2$, $z=4-x^2, y=0$ and z+y=6.



Definition of mass

 $m=\delta V$, where δ is mass density and V is Volume.

Mass of Solid

$$m = \iiint\limits_{Q} \delta(x, y, z) \mathrm{d}V.$$

Mass of Lamina

$$m = \iint\limits_R \delta(x, y) \mathrm{d}A.$$

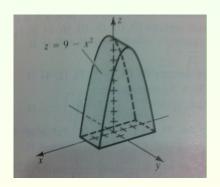
Examples

- (1) A lamina having area mass density $\delta(x,y)=y^2$ and has the shape of the region bounded by the graphs of $y=e^{-x}, x=0, x=1, y=0$. Set up an iterated double integral that can be used to find the mass of the lamina.
- (2) A solid having density $\delta(x,y,z)=z+1$ has the shape of the region bounded by the graphs of $z=4-x^2-y^2$, z=0. set up an iterated triple integral that can be used to find the mass of the solid.
- (3) A solid having density $\delta(x,y,z)=x^2+y^2$ has the shape of the region bounded by the graphs of x+2y+z=4, x=0, y=0, z=0. set up an iterated triple integral that can be used to find the mass of the solid.

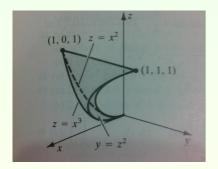
Examples

- (1) Sketch and find the volume of the region Q bounded by graphs of $z=9-x^2$, z=0,y=-1 and y=2.
- (2) Sketch and find the volume of the region Q bounded by graphs of $z=x^2$, $z=x^3, y=z^2$ and y=0.

Sketch 1



Sketch 2



Definition

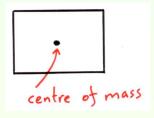
Let L be a lamina that has the shape of region R in the xy-plane. If the area mass density at (x,y) is $\delta(x,y)$ and if δ is continuous on R, then the mass m, the moments M_x and M_y , and the center of mass $(\overline{x}, \overline{y})$ are

(i)
$$m = \iint_R \delta(x, y) dA$$
.

(ii)
$$M_x = \iint_R y \delta(x, y) dA$$
, $M_y = \iint_R x \delta(x, y) dA$

(ii)
$$M_x = \iint_R y \delta(x, y) dA$$
, $M_y = \iint_R x \delta(x, y) dA$
(iii) $\overline{x} = \frac{M_y}{m} = \frac{\iint_R x \delta(x, y) dA}{\iint_R \delta(x, y) dA}$, $\overline{y} = \frac{M_x}{m} = \frac{\iint_R y \delta(x, y) dA}{\iint_R \delta(x, y) dA}$.

Note: If L is homogeneous with constant mass density, the center of mass is also called the centroid



Moments of inertia of a Lamina

$$I_x = \iint\limits_{R} y^2 \delta(x,y) \mathrm{d}A$$
 about the $x-\mathrm{axis}.$

$$I_y = \iint\limits_R x^2 \delta(x,y) \mathrm{d}A$$
 about the $y-$ axis.

$$I_O = I_x + I_y = \iint_R (x^2 + y^2) \delta(x, y) dA$$
 about the origin.

Moments and Center of mass in 3D

$$\begin{aligned} &\text{(i)} \ m = \iiint\limits_{Q} \delta(x,y,z) \mathrm{d}V. \\ &\text{(ii)} \ M_{xy} = \iiint\limits_{Q} z \delta(x,y,z) \mathrm{d}V, \ M_{xz} = \iiint\limits_{Q} y \delta(x,y,z) \mathrm{d}V \\ &M_{yz} = \iiint\limits_{Q} x \delta(x,y,z) \mathrm{d}V \\ &\text{(iii)} \ \overline{x} = \frac{M_{yz}}{m} = \frac{\iiint\limits_{Q} x \delta(x,y,z) \mathrm{d}V}{\iint\limits_{Q} \delta(x,y,z) \mathrm{d}V}, \ \overline{y} = \frac{M_{xz}}{m} = \frac{\iiint\limits_{Q} y \delta(x,y,z) \mathrm{d}V}{\iint\limits_{Q} \delta(x,y,z) \mathrm{d}V}. \\ &\overline{z} = \frac{M_{xy}}{m} = \frac{\iint\limits_{Q} z \delta(x,y,z) \mathrm{d}V}{\iint\limits_{Q} \delta(x,y,z) \mathrm{d}V}. \end{aligned}$$

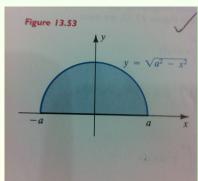
Note: If L is homogeneous with constant mass density, the center of mass is also called the centroid

Moments of inertia of solids

$$\begin{split} I_z &= \iiint\limits_Q (x^2+y^2) \delta(x,y,z) \mathrm{d}V \text{ moment of inertia about the } z - \mathrm{axis.} \\ I_x &= \iiint\limits_Q (y^2+z^2) \delta(x,y,z) \mathrm{d}V \text{ moment of inertia about the } x - \mathrm{axis.} \\ I_y &= \iiint\limits_R (x^2+z^2) \delta(x,y,z) \mathrm{d}V \text{ moment of inertia about the } y - \mathrm{axis.} \end{split}$$

Examples

- (1) A lamina having area mass density $\delta(x,y)=kx$ and has the shape of the region R in the xy-plane bounded by the parabola $x=y^2$ and the line x=4. Find the center of mass.
- (2) A lamina having area mass density $\delta(x,y)=ky$ and has the semicirclar illustrated in Figure. Find the moment of inertia with respect to the x-axis.



Examples

- (3) Set up an iterated integral that can be used to find the center of mass of the solid Q bounded by the paraboloid $x=y^2+z^2$ and the palne x=4 and density $\delta(x,y,z)=x^2+y^2$.
- (4) Let Q be the solid in the first octant bounded by the coordinates planes and the graphs of $z=9-x^2$ and 2x+y=6. Set up iterated integrals that can be used to find the centroid, find the centroid, find the moment of inertia with respect to the z-axis.