MATH203 Calculus

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

28/1/14

Outline

- Definition of sequences.
- Definition of convergent sequence.
- Definition of divergent sequence.
- Definition of constant sequence.

Definition of sequences

A sequence is a function whose domain is the set of positive integers. It is denoted by $\{a_n\} = a_1, a_2, a_3, \ldots, a_n, \ldots$ (entire seq) and $\{a_n\} = a_1, a_2, a_3, \ldots, a_n$ (finite seq).

Example: Find the first four terms and *n*th term of each:

(a)
$$\{\frac{n}{n+1}\}$$
 (b) $\{2+(0.1)^n\}$ (c) $\{(-1)^{n+1}\frac{n^2}{3n-1}\}$

(d)
$$\{4\}$$
 (e) $a_1 = 3$ and $a_{k+1} = 2a_k$ for $k \ge 1$.

Definition of convergent sequence (c'gt)

A sequence is $\{a_n\}$ has a limit L, or converges to L denoted by either $\lim_{n\to\infty}a_n=L$ or $a_n\to L$ as $n\to\infty$.

Definition of divergent sequence (d'gt)

A sequence $\{a_n\}$ is called if

• $\lim_{n \to \infty} a_n$ does not exist.

•
$$\lim_{n \to \infty} a_n = +\infty$$
 or $\lim_{n \to \infty} a_n = -\infty$.

Definition of constant sequence

A
$$\{a_n\}$$
 is constant if $a_n = c$ for every $n, c \in \mathbb{R}$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c = c$.

Theorem 1

Let $\{a_n\}$ be a sequence and f be a function such that

- $f(n) = a_n$
- f(x) exists for every real number $x \ge 1$

then

• If
$$\lim_{x\to\infty} f(x) = L$$
, then $\lim_{n\to\infty} f(n) = L$
• If $\lim_{x\to\infty} f(x) = \infty$ (or $-\infty$), then $\lim_{n\to\infty} f(n) = \infty$ (or $-\infty$).

Examples:

(1) If $a_n = 1 + (\frac{1}{n})$, determine whether $\{a_n\}$ converges or diverges.

(2) Determine whether $\{a_n\}$ converges or diverges

(a) $\{\frac{1}{4}n^2 - 1\}$ (b) $\{(-1)^{n-1}\}$