MATH203 Calculus

Dr. Bandar AI-Mohsin

School of Mathematics, KSU

28/1/14

Outline

- Definition of sequences.
- Definition of convergent sequence.
- Definition of divergent sequence.
- Definition of constant sequence.

Definition of sequences

A sequence is a function whose domain is the set of positive integers. It is denoted by $\left\{a_{n}\right\}=a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ (entire seq) and $\left\{a_{n}\right\}=a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ (finite seq).

Example: Find the first four terms and nth term of each:
(a) $\left\{\frac{n}{n+1}\right\}$
(b) $\left\{2+(0.1)^{n}\right\}$
(c) $\left\{(-1)^{n+1} \frac{n^{2}}{3 n-1}\right\}$
(d) $\{4\}$
(e) $a_{1}=3$ and $a_{k+1}=2 a_{k}$ for $k \geqslant 1$.

Definition of convergent sequence ($c^{\prime} \mathrm{gt}$)

A sequence is $\left\{a_{n}\right\}$ has a limit L, or converges to L denoted by either $\lim _{n \rightarrow \infty} a_{n}=L$ or $a_{n} \rightarrow L$ as $n \rightarrow \infty$.

Definition of divergent sequence ($\mathrm{d}^{\prime} g t$)

A sequence $\left\{a_{n}\right\}$ is called if

- $\lim _{n \rightarrow \infty} a_{n}$ does not exist.
- $\lim _{n \rightarrow \infty} a_{n}=+\infty$ or $\lim _{n \rightarrow \infty} a_{n}=-\infty$.

Definition of constant sequence

A $\left\{a_{n}\right\}$ is constant if $a_{n}=c$ for every $n, c \in \mathbb{R}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c=c$.

Theorem 1

Let $\left\{a_{n}\right\}$ be a sequence and f be a function such that

- $f(n)=a_{n}$
- $f(x)$ exists for every real number $x \geqslant 1$
then
(1) If $\lim _{x \rightarrow \infty} f(x)=L$, then $\lim _{n \rightarrow \infty} f(n)=L$
(2) If $\lim _{x \rightarrow \infty} f(x)=\infty$ (or $-\infty$), then $\lim _{n \rightarrow \infty} f(n)=\infty$ (or $-\infty$).

Examples:

(1) If $a_{n}=1+\left(\frac{1}{n}\right)$, determine whether $\left\{a_{n}\right\}$ converges or diverges.
(2) Determine whether $\left\{a_{n}\right\}$ converges or diverges
(a) $\left\{\frac{1}{4} n^{2}-1\right\}$
(b) $\left\{(-1)^{n-1}\right\}$

