MATH203 Calculus

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

30/1/14

Outline

- Definition of sequences.
- Definition of convergent sequence.
- Definition of divergent sequence.
- Definition of constant sequence.
- Theorem 1.
- L' Hopital's rule.
- Theorem 2 (Properties of limits of sequences).
- Theorem 3 (Absolute value).

Definition of sequences

A sequence is a function whose domain is the set of positive integers. It is denoted by $\{a_n\} = a_1, a_2, a_3, \dots, a_n, \dots$ (entire seq) and $\{a_n\} = a_1, a_2, a_3, \dots, a_n$ (finite seq).

Example: Find the first four terms and *n*th term of each:

(a)
$$\left\{\frac{n}{n+1}\right\}$$

(b)
$$\{2 + (0.1)^n\}$$

(a)
$$\left\{\frac{n}{n+1}\right\}$$
 (b) $\left\{2+(0.1)^n\right\}$ (c) $\left\{(-1)^{n+1}\frac{n^2}{3n-1}\right\}$

(d)
$$\{4\}$$
 (e) $a_1 = 3$ and $a_{k+1} = 2a_k$ for $k \geqslant 1$.

Definition of convergent sequence (c'gt)

A sequence is $\{a_n\}$ has a limit L, or converges to L denoted by either $\lim_{n\to\infty}a_n=L$ or $a_n\to L$ as $n\to\infty$.

Definition of divergent sequence (d'gt)

A sequence $\{a_n\}$ is called if

- $\lim_{n\to\infty} a_n$ does not exist.
- $\lim_{n\to\infty} a_n = +\infty$ or $\lim_{n\to\infty} a_n = -\infty$.

Definition of constant sequence

A
$$\{a_n\}$$
 is constant if $a_n=c$ for every $n, c\in\mathbb{R}$ and $\lim_{n\to\infty}a_n=\lim_{n\to\infty}c=c.$

Theorem 1

Let $\{a_n\}$ be a sequence and f be a function such that

- $f(n) = a_n$
- f(x) exists for every real number $x \ge 1$

then

- If $\lim_{x \to \infty} f(x) = L$, then $\lim_{n \to \infty} f(n) = L$

Examples:

- (1) If $a_n = 1 + (\frac{1}{n})$, determine whether $\{a_n\}$ converges or diverges.
- (2) Determine whether $\{a_n\}$ converges or diverges
- (a) $\{\frac{1}{4}n^2 1\}$ (b) $\{(-1)^{n-1}\}$

L' Hopital's rule

It is a method for computing a limit of form $\lim_{n\to\infty}\frac{f(n)}{g(n)}$ if

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}\frac{f(n)}{g(n)}=\frac{\infty}{\infty}, \text{ then we can use L' Hopital's rule which is defined as }\lim_{n\to\infty}\frac{f'(n)}{g'(n)}.$$

Theorem 2 (properties)

Let $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} b_n = K$

- $\bullet \lim_{n \to \infty} (a_n \pm b_n) = L \pm K.$
- $\bullet \lim_{n\to\infty} (a_n.b_n) = L.K.$
- $\bullet \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{L}{K}, \ K \neq 0.$
- $\bullet \lim_{n \to \infty} Ca_n = CL.$

Theorem 3 (Absolute value)

For a seq $\{a_n\}$, $\lim_{n\to 0} |a_n| = 0 \Leftrightarrow \lim_{n\to \infty} a_n = 0$.

Theorem 4 (Geometric seq)

- $\bullet \lim_{n \to \infty} r^n = 0 \text{ if } |r| < 1$
- $\bullet \lim_{n \to \infty} r^n = \infty \text{ if } |r| > 1$

Example: Determine whether the following sequences converge or diverge

(1)
$$\left\{\frac{5n}{e^{2n}}\right\}$$
, (2) $\left\{\left(\frac{-2}{3}\right)^n\right\}$ (3) $\left\{(1.01)^n\right\}$ (4) $\left\{\frac{2n^2}{5n^2-3}\right\}$

(5)
$$\{6(\frac{-5}{6})^n\}$$
 (6) $\{8-(\frac{7}{8})^n\}$ (7) $\{1000-n\}$ (8) $\{\frac{4n^4+1}{2n^2-1}\}$

(9) $\{\frac{e^n}{4}\}.$