MATH203 Calculus

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

2/2/14

Outline

- Definition of sequences.
- Definition of convergent sequence.
- Definition of divergent sequence.
- Definition of constant sequence.
- Theorem 1.
- L' Hopital's rule.
- Theorem 2 (Properties of limits of sequences).
- Theorem 3 (Absolute value).

Definition of sequences

A sequence is a function whose domain is the set of positive integers. It is denoted by $\{a_n\} = a_1, a_2, a_3, \ldots, a_n, \ldots$ (entire seq) and $\{a_n\} = a_1, a_2, a_3, \ldots, a_n$ (finite seq).

Example: Find the first four terms and *n*th term of each:

(a)
$$\{\frac{n}{n+1}\}$$
 (b) $\{2+(0.1)^n\}$ (c) $\{(-1)^{n+1}\frac{n^2}{3n-1}\}$

(d)
$$\{4\}$$
 (e) $a_1 = 3$ and $a_{k+1} = 2a_k$ for $k \ge 1$.

Definition of convergent sequence (c'gt)

A sequence is $\{a_n\}$ has a limit L, or converges to L denoted by either $\lim_{n\to\infty}a_n=L$ or $a_n\to L$ as $n\to\infty$.

Definition of divergent sequence (d'gt)

A sequence $\{a_n\}$ is called if

• $\lim_{n \to \infty} a_n$ does not exist.

•
$$\lim_{n \to \infty} a_n = +\infty$$
 or $\lim_{n \to \infty} a_n = -\infty$.

Definition of constant sequence

A
$$\{a_n\}$$
 is constant if $a_n = c$ for every $n, c \in \mathbb{R}$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c = c$.

Theorem 1

Let $\{a_n\}$ be a sequence and f be a function such that

- $f(n) = a_n$
- f(x) exists for every real number $x \ge 1$

then

• If
$$\lim_{x\to\infty} f(x) = L$$
, then $\lim_{n\to\infty} f(n) = L$
• If $\lim_{x\to\infty} f(x) = \infty$ (or $-\infty$), then $\lim_{n\to\infty} f(n) = \infty$ (or $-\infty$).

Examples:

(1) If $a_n = 1 + (\frac{1}{n})$, determine whether $\{a_n\}$ converges or diverges.

(2) Determine whether $\{a_n\}$ converges or diverges

(a) $\{\frac{1}{4}n^2 - 1\}$ (b) $\{(-1)^{n-1}\}$

L' Hopital's rule

It is a method for computing a limit of form $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ if

 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{\infty}{\infty}$, then we can use L' Hopital's rule which is defined as $\lim_{n \to \infty} \frac{f'(n)}{g'(n)}.$

Theorem 2 (properties)

Let
$$\lim_{n \to \infty} a_n = L$$
 and $\lim_{n \to \infty} b_n = K$

•
$$\lim_{n \to \infty} (a_n \pm b_n) = L \pm K.$$

•
$$\lim_{n \to \infty} (a_n . b_n) = L.K.$$

•
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{L}{K}, \ K \neq 0.$$

•
$$\lim_{n \to \infty} Ca_n = CL.$$

Theorem 3 (Absolute value)

For a seq
$$\{a_n\}$$
, $\lim_{n\to\infty} |a_n| = 0 \Leftrightarrow \lim_{n\to\infty} a_n = 0$.

Theorem 4 (Geometric seq)

•
$$\lim_{n \to \infty} r^n = 0$$
 if $|r| < 1$

•
$$\lim_{n \to \infty} r^n = \infty$$
 if $|r| > 1$

Example: Determine whether the following sequences converge or diverge

(1)
$$\{\frac{5n}{e^{2n}}\}$$
, (2) $\{(\frac{-2}{3})^n\}$ (3) $\{(1.01)^n\}$ (4) $\{\frac{2n^2}{5n^2-3}\}$
(5) $\{6(\frac{-5}{6})^n\}$ (6) $\{8-(\frac{7}{8})^n\}$ (7) $\{1000-n\}$ (8) $\{\frac{4n^4+1}{2n^2-1}\}$
(9) $\{\frac{e^n}{4}\}$.

Theorem 5 (Sandwich)

If a_n , b_n and c_n are sequences such that

• $a_n \leqslant b_n \leqslant c_n$ for every n

•
$$\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} b_n$$
, then $\lim_{n \to \infty} c_n = L$.

Theorem 6

A bounded, monotonic sequence has limit.

Notations

$$\bigcirc -1 \leqslant \sin(\theta) \leqslant 1$$

- $\bigcirc \ -1\leqslant\cos(\theta)\leqslant 1$
- $\bigcirc \ 0 \leqslant \cos^2(\theta) \leqslant 1$

S
$$\cos(\pi n) = (-1)^n$$

 \triangleright Determine whether the following sequences converge or diverge, if they converge find its limits.

(1)
$$\{\frac{\ln n}{n}\}$$
 (2) $\{\frac{\tan^{-1} n}{n}\}$ (3) $\{e^{-n}\ln n\}$ (4) $\{\frac{\cos^2 n}{3^n}\}$
(5) $\{(-1)^{n+1}\frac{1}{n}\}$ (6) $\{\frac{\cos n}{n}\}$ (7) $\{\frac{n^2}{2n-1}-\frac{n^2}{2n+1}\}$
(8) $\{(1+\frac{1}{n})^2\}$ (9) $\{n^{1/n}\}$
Solution: