MATH203 Calculus

Dr. Bandar AI-Mohsin

School of Mathematics, KSU

$$
18 / 2 / 14
$$

Power Series

Definition

If x is a variable, then an intinite series of the form
$\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{2} x+\cdots+a_{n} x^{n}+\ldots ; a_{i} \in \mathbb{R}$ is called a power series
in x or. $\sum^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{2}(x-c)+\cdots+a_{n}(x-c)^{n}+\ldots ; c \in \mathbb{R}$ $n=0$
is called a power series in $(x-c)$

Remarks:

(3) We can check the convergence or divergence of a power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n} \text { for different values of } x
$$

(2) Every power series in x converges if $x=0$.
(3) To find all other values of x for which $\sum_{n=0}^{\infty} a_{n} x^{n}$ is convergent, we often use the absolute ratio test.

Interval of convergence

After finding values of x which are convergent in the interval, say (a, b), this is called the interval of convergence for the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$.

Radius of convergence

Half of the length of interval of convergence is called the radius of convergence of the the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$.

Theorem

Every power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ satisfies one of the following:
(1) The series converges only when $x=0$ and this convergence is absolute.
(2) The series converges for all x, and this convergence is absolute.
(There is a number $R>$ such that the series converges absolutely when $x<R$ and diverges when $x>R$. Note that the series may converge or diverge depending on the particular series.

Examples

Find the interval of convergence and radius of convergence of the following series:
(9) $\sum_{i=1}^{n} n^{n}$

(4): $\sum_{n=0}^{\infty}(2 x)^{n} \frac{1}{n}$
(5): $\sum_{n=0}^{\infty} x^{n} \frac{1}{\sqrt{n}}$
(6): $\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n+1}(x-3)^{n}$

Solution:

