QUANTUM MECHANICS:
 LECTURE 10

SALWA AL SALEH

Abstract

This lecture discusses the angular momentum in quantum mechanics

CONTENTS

References 4

THE CLASSICAL ANGULAR MOMENTUM

Recall that the angular momentum for a system is given by :

$$
\begin{equation*}
\vec{L}=\sum_{i} \vec{r}_{i} \wedge \vec{p}_{i} \tag{1}
\end{equation*}
$$

With \wedge being the cross (wedge) product between the position \vec{r}_{i} and linear momentum \vec{p}_{i} of the i th degree of freedom in the system. For a single particle in 3 D we give a precise definition for the angular momentum :

$$
\vec{L}=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \tag{2}\\
x & y & z \\
p_{x} & p_{y} & p_{z}
\end{array}\right|
$$

Figure 1: Illustration for the angular momentum of a classical rotating particle

One can apply the canonical quantisation for the angular momentum observable and turn in into a vector operator, since it is defined -classically- by the coordinates and linear momenta :

$$
\begin{equation*}
\left[x^{i}, p_{j}\right]=i \hbar \delta_{j}^{i} \quad\left[x^{i}, x^{j}\right]=0 \quad\left[p_{i}, p_{j}\right]=0 \tag{3}
\end{equation*}
$$

Hence the angular momentum operators are (dropping the hat) :

$$
\begin{align*}
L_{x} & =-i \hbar\left(y \partial_{z}-z \partial_{y}\right) \\
L_{y} & =-i \hbar\left(z \partial_{x}-x \partial_{z}\right) \tag{4}\\
L_{z} & =-i \hbar\left(x \partial_{y}-y \partial_{x}\right)
\end{align*}
$$

Or we may write them in the spherical coordinates (r, φ, θ) :

$$
\begin{align*}
L_{x} & =i \hbar\left(\sin \varphi \partial_{\theta}+\cot \theta \cos \varphi \partial_{\varphi}\right) \\
L_{y} & =i \hbar\left(-\cos \varphi \partial_{\theta}+\cot \theta \sin \varphi \partial_{\varphi}\right) \tag{5}\\
L_{z} & =-i \hbar \partial_{\varphi}
\end{align*}
$$

We also define the operator :

$$
\begin{equation*}
L^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2} \tag{6}
\end{equation*}
$$

It is a formidable, yet straightforward task to prove the following commutation relations:

$$
\begin{array}{rlrl}
{\left[L_{x}, L y\right]} & =i \hbar L_{z} & {\left[L_{y}, L_{z}\right]=i \hbar L_{x}} & {\left[L_{z}, L_{x}\right]=i \hbar L_{y}} \\
{\left[L^{2}, L_{i}\right]} & =0 & \text { For all } i=x, y, z
\end{array}
$$

We can also define the (rising and lowering) operators:

$$
\begin{equation*}
L_{ \pm}=L_{x} \pm i L_{y} \tag{8}
\end{equation*}
$$

Along with $L_{z}=L_{3}$ they satisfy a well-known commutation relations, known as the $s u(2)$ algebra:

$$
\begin{gather*}
{\left[L_{+}, L_{-}\right]=2 \hbar L_{3}} \tag{9a}\\
{\left[L_{ \pm}, L_{3}\right]=\mp \hbar L_{ \pm}} \tag{9b}
\end{gather*}
$$

The rising and lowering operators are expressed in the coordinate representation as :

$$
\begin{equation*}
L_{ \pm}= \pm e^{ \pm i \varphi}\left(\partial_{\theta} \pm i \cot \theta \partial_{\varphi}\right) \tag{10}
\end{equation*}
$$

THE SPHERICAL HARMONICS

As we maintain in the coordinate representation, we wonder about the eigenfunction for the operator L_{3} and their properties. The operator L_{3} has a special importance over the other two angular momentum operators, as the latter ones compose the ladder(rising and lowering) operators. We start by assuming such wavefunction :

$$
\begin{equation*}
L_{3} Y_{\ell}^{m}(\theta, \varphi)=m Y_{\ell}^{m}(\theta, \varphi) \tag{11}
\end{equation*}
$$

With m and ℓ are eigenvalues, and m takes an integer values between ℓ and $-\ell$, this shall be made clear in the next lecture. However, at the meantime, we just accept these as given facts.
Therefore, we conclude that:

$$
\begin{equation*}
Y_{\ell}^{m}(\theta, \varphi)=e^{i m \varphi} y_{\ell m} \tag{12}
\end{equation*}
$$

Moreover, the fact that $L_{ \pm} y_{\ell \pm \ell}=0$ gives us the differential equation:

$$
\begin{equation*}
\left(\partial_{\theta}-\ell \cot \theta\right) y_{\ell \pm \ell}=0 \tag{13}
\end{equation*}
$$

Whose complete solution gives us the explicit expression of the functions Y_{m}^{ℓ}, which are known as the Spherical Harmonics

$$
\begin{equation*}
Y_{\ell}^{m}=(-1)^{m} \sqrt{\frac{2 \ell+1}{4 \pi} \frac{(\ell+m)!}{(\ell-m)!}} e^{i m \varphi} P_{m}^{\ell}(\theta) \tag{14}
\end{equation*}
$$

With $P_{m}^{\ell}(\theta)$ is the associated Legendre Polynomial.
The spherical harmonics form a complete orthonormal basis for the Hilbert space :

$$
\mathcal{H}=\mathcal{L}^{2}\left(S^{2}, d \Omega\right)
$$

With S^{2} being the unit sphere, and $d \Omega=d \phi \sin \theta d \theta$, the solid angle element of the unit sphere.

PROPERTIES OF THE SPHERICAL HARMONICS

- Eigenvalue for L^{2} :

$$
\begin{equation*}
L^{2} Y_{\ell}^{m}(\theta, \varphi)=\ell(\ell+1) Y_{\ell}^{m}(\theta, \varphi) \tag{15}
\end{equation*}
$$

- Orthonormality :

$$
\begin{equation*}
\int_{\text {angles }} Y_{\ell_{1}}^{m_{1}}(\theta, \varphi) Y_{\ell_{2}}^{* m_{2}}(\theta, \varphi) d \Omega=\delta_{m_{1}, m_{2}} \delta_{\ell_{1}, \ell_{2}} \tag{16}
\end{equation*}
$$

- Since the spherical harmonics form an orthonormal basis, the product of two of them is again expressed in terms of spherical harmonics. Take the product $Y_{\ell_{1}}^{m_{1}}(\theta, \varphi) \cdot Y_{\ell_{2}}^{m_{2}}(\theta, \varphi)$, we can directly conclude that the resultant product is a multiple of the spherical harmonics having $M=m_{1}+m_{2}$ since the term containing m is only an exponential, moreover, L taking the range $\left|\ell_{1}-\ell_{2}\right| \leq L \leq\left|\left|\ell_{1}+\ell_{2}\right|\right.$. The general rule for multiplication is given by Wigner $3 j$-symbols (or ClebshGordon coefficients) $C\left(\ell_{1}, m_{1} ; \ell_{2}, m_{2} ; L, M\right)$ that shall be studied later in the addition of angular momenta.

$$
\begin{align*}
Y_{\ell_{1}}^{m_{1}}(\theta, \varphi) \cdot Y_{\ell_{2}}^{m_{2}}(\theta, \varphi)=\sum_{M, L} & \sqrt{\frac{\left(2 \ell_{1}+1\right)\left(2 \ell_{2}+1\right)(2 L+1)}{4 \pi}} \\
& \times\left(\begin{array}{ccc}
\ell_{1} & \ell_{2} & L \\
m_{1} & m_{2} & M
\end{array}\right) Y_{L}^{* M}(\theta, \varphi)\left(\begin{array}{ccc}
\ell_{1} & \ell_{2} & L \\
0 & 0 & 0
\end{array}\right) \tag{17}
\end{align*}
$$

Where the Racah symbol is expressed in terms of $3 j$ symbol

$$
\left(\begin{array}{ccc}
\ell_{1} & \ell_{2} & L \tag{18}\\
m_{1} & m_{2} & M
\end{array}\right)=(-1)^{\ell_{1}-\ell_{2}-M} \frac{1}{\sqrt{2 L+1}} C\left(\ell_{1}, m_{1} ; \ell_{2}, m_{2} ; L,-M\right)
$$

These relations will prove useful as we discuss the addition of angular momenta.

- The Herglotz generating function If the quantum mechanical convention is adopted for the Y_{ℓ}^{m}, then,

$$
\begin{equation*}
e^{v \mathbf{a} \cdot \mathbf{r}}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \sqrt{\frac{4 \pi}{2 \ell+1}} \frac{r^{\ell} v^{\ell} \lambda^{m}}{\sqrt{(\ell+m)!(\ell-m)!}} Y_{\ell}^{m} \tag{19}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathbf{a}=\hat{\mathbf{z}}-\frac{\lambda}{2}(\hat{\mathbf{x}}+i \hat{\mathbf{y}})+\frac{1}{2 \lambda}(\hat{\mathbf{x}}-i \hat{\mathbf{y}}) \tag{20}
\end{equation*}
$$

λ here is a real parameter

More properties are found in the textbooks. We list here some of the spherical harmonics and their graphical representation:

$$
\begin{align*}
& Y_{0}^{0}(\theta, \varphi)=\frac{1}{2} \sqrt{\frac{1}{\pi}} \tag{21}\\
& Y_{1}^{-1}(\theta, \varphi)=\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot e^{-i \varphi} \cdot \sin \theta=\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot \frac{(x-i y)}{r} \tag{22}\\
& Y_{1}^{0}(\theta, \varphi)=\frac{1}{2} \sqrt{\frac{3}{\pi}} \cdot \cos \theta \quad=\frac{1}{2} \sqrt{\frac{3}{\pi}} \cdot \frac{z}{r} \tag{23}\\
& Y_{1}^{1}(\theta, \varphi)=-\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot e^{i \varphi} \cdot \sin \theta=-\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot \frac{(x+i y)}{r} \tag{24}\\
& y=\frac{\sqrt{2 x^{3}\left(4+2 x^{2}-e^{x^{2}}\right)^{3}}}{2 x^{2} \sin 3 x} \tag{25}
\end{align*}
$$

Figure 2: Graphical representation for some of the spherical harmonics, the colour coding represents the probability density calculated via $\left|Y_{m}^{\ell}(\theta, \varphi)\right|^{2}$

REFERENCES

[1] James Binney and David Skinner. The physics of quantum mechanics. Oxford University Press, 2013.
[2] Alan Robert Edmonds. Angular momentum in quantum mechanics. Princeton University Press, 1996.
[3] Kurt Gottfried and Tung-Mow Yan. Quantum mechanics: fundamentals. Springer Science \& Business Media, 2013.
[4] Lev Davidovich Landau, Evgenii Mikhailovich Lifshitz, JB Sykes, John Stewart Bell, and ME Rose. Quantum mechanics, non-relativistic theory. Physics Today, 11:56, 1958.
[5] John Von Neumann. Mathematical foundations of quantum mechanics. Number 2. Princeton university press, 1955.
[6] Cohen Claude Tannoudji, Diu Bernard, and Laloë Franck. Mécanique quantique. tome i. 1973.

