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Abstract

An extended review for the Hydrogen atom in the light of quantum
theory
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the classical two-body problem : a review

In classical mechanics, the Hamiltonian H for two bodies interacting via a -
time independent- potential is given by :

(H =
2

∑
i=1

(pi)
2

2µ
+ V(r) (1)

Where, µ = M+m
Mm is the reduced mass, and r is the radial separation between

the bodies. pi is the canonical momentum, that we may decompose into two
parts :

pr =linear momentum pt =
L
r

angular momentum (2)

Hence, we may write (1) as :

H =
p2

2µ
+

L2

2µr2 + V(r) (3)

since we know that the moment of inertia I = µr2 we can therefore write: recall that L = Iω

H =
p2

2µ
+

L2

2I
+ V(r) (4)

The potential for the Hydrogen atom is the Coulomb potential, given by the
formula:

V(r) = − ke2

r
(5)

Hence we write the Hamiltonian function as :

H(p, r) =
p2

2µ
+

L2

2µr2 −
ke2

r
(6)
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canonical quantisation of the h-atom hamiltonian

We have the state |Ψ〉 of the H-atom. We the define the Hamiltonian operator
Ĥ from quantising the Hamiltonian function in (6) that is :

Ĥ =
p̂2

2µ
+

L̂2

2µr̂2 −
ke2

r̂
(7)

Due to the spherical symmetry, it is logical to project the state |Ψ〉 into the
configuration space in spherical polar coordinates, hereby the the Hilbert
space is :

H : (L, dµ)

where dµ = dr d2dφ sin φ2dθ , the volume element in the spherical polar
coordinates and the wavefunction:

ψ(r, φ, θ) = 〈r, φ, θ|ψ〉

The H-atom is surely a stationary state Ψ(r, φ, θ; t) = ψ(r, φ, θ)e−iωt.Hence
the time-independent Schrödinger’s equation is written as :

− h̄2

2µ
∇2ψ(r, φ, θ)− ke2

r
ψ(r, φ, θ) = Eψ(r, φ, θ) (8)

It was found -mathematically- that the wavefunction can be separated into
three parts:

ψ(r, φ, θ) = R(r)P(φ)F(θ) (9)

Where R(r) is the radial function, and P(φ)F(θ) make up the spherical
Harmonics Y(φ, θ).

quantum numbers

Each of the functions above is an eigenfunction for some observable about
the hydrogen atom with an associated quantum number:

R(r) −→ n = 1, 2, 3 . . . Principle quantum number

F(θ) −→ ` = 0, 1, 2 . . . , n− 1 orbital quantum number

P(φ) −→ m` = −`,−`+ 1, . . . ,+` megnatic quantum number

solution of the tise for the hydrogen

In fact, the H-atom is the only physical problem in quantum mechanics that
can be solved exactly without using perturbation theory or other approx-
imation methods. The TISE (8) can written as three differential equations:

1
R(r)

d
dr

(
r2 dR(r)

dr

)
+

2µ

h̄2

(
Er2 + ke2

)
= `(`+ 1) (10a)

sin θ

F(θ)
d
dθ

(
sin θ

dF(θ)
dθ

)
+ Cr sin2 θ = −Cφ (10b)

1
P(φ)

d2P(φ)
dφ2 = Cφ (10c)

Solving the above equations to obtain the full expression for the wavefunc-
tion:

ψn,`,me ll(r, φ, θ) = Ar` e−r/a0r r`Ln`(
r
a0
) ·Y`

m(φ, θ) (11)

Where:

• Ar` , a normalisation constant.
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• a0, Bohr radius and it is equal to ≈ 0.53Å.

• Ln`(
r
a0
), the associated Laguerre polynomial.

• Y`
m(φ, θ), the associated spherical harmonics, the eigenfunction for the

operators L̂ and L̂z.

We can find the energy spectrum for the Hydrogen atom from 11 :

En = −
(

µ e2

8ε2
o h̄2

)
1
n2 = −13.6 eV

n2 (12)

With εo the vacuum permittivity.
As expected, the spectrum is discrete, but the spacing between the energy
levels gets smaller and smaller as the principle quantum umber increases,
figure 4

If we wish to find the ionisation energy for hydrogen atom ( i.e. the energy

Figure 1: Energy levels of the idealised H-atom and the well-known spectral
series associated with electron transitions

required to free the electron from the atom) we let n→ ∞ we obtain:

E∞ = 13.606 eV = Ry

it is equal to the Rydberg energy . For generality we can approximate the
energy spectrum for any atom having Z electrons and µ reduced mass by:

E ∼ −Z2 µ

me
Ry (13)

We ought to emphasise this is merely a hand-waving approximation ! The
true energy spectrum for atoms ( even the H-atom) is far more complicated,
as we shall see later when we study the Real Hydrogen atom.

degeneracies in the ideal h-atom

Since (11) depends on three quantum numbers , ` and m`, but the energy
spectrum only depends on n, we have degenerate states in the idealised H-atom.
Where we can have multiple wavefunctions having the same energy. For
example, in the first excited state n = 2 we have the following wavefunctions:

ψ2,0,0 ψ2,1,0 ψ2,1,−1 ψ2,1,1,

and so on . However, the number of electrons that can occupy each energy
level is determined by Pauli exclusion principle: stating that no two elec-
trons in the atom can wave an overlapping wavefunctions. In other words
each wavefunction can describe one electron only. Meaning no electrons in
the atom can have all of their quantum numbers identical.
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spin quantum number

In addition to the quantum numbers (n, `, m`) there is a forth quantum
number of the electron, corresponding to its spin, which is an internal
degree of freedom electrons are found to possess. The spin quantum number
ms can take one of two values ± 1

2 of multiples of h̄. So far, this new quantum
number does not seem to affect the energy spectrum. However, we shall see
later that it player a röle in an interaction inside the H-atom affecting the
energy spectrum.
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