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Abstract

Matrix representation for spin states ( spinors) and the geometric
interpretation of spin . Finally we discuss a spin in a constant magnetic
field.

contents

1 Matrix representation of spin states 1

2 Geometric representation 2

3 Spin in constant magnetic field 3

3.1 Stationary states 4

4 Electron paramagnetic resonance EPR 4

References 4

matrix representation of spin states

In the last lecture, we have introduced the spin operators and their eigen-
states. We discovered the algebra of spin operators, and derived the Pauli
spin matrices. However, we only stated their properties abstractly without
defining a particular representation for them, now we aim to realise the spin
algebra in a simple representation.
Consider the eigenkets |χ−〉 and |χ+〉.They form a basis for a 2-D Hilbert
space of the internal degree of freedom, we have called the ‘ spin’ . It is
natural to introduce a canonical representation for these kets as the column
vectors :

|χ+〉 ≡
(

1
0

)
(1)

|χ−〉 ≡
(

0
1

)
(2)

Now, the action of the spin operators Ŝ1, Ŝ2, Ŝ3 and the ladder spin operators
Ŝ+, Ŝ− on the kets is :

Ŝ1|χ±〉 =
h̄
2
|χ∓〉 Ŝ2|χ±〉 = ±i

h̄
2
|χ∓〉 Ŝ3|χ±〉 = ±

h̄
2
|χ±〉

Ŝ±|χ∓〉 = h̄|χ±〉 Ŝ±|χ±〉 = 0 (3)

We can easily express the operators above as matrices, and with the help of
the identity:

~S =
h̄
2
~σ (4)
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We may write the explicit expression of the Pauli matrices:

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
.

And:

σ+ =

(
0 1
0 0

)
σ− =

(
0 0
1 0

)
We shall only deal with the index-down matrices and drop the ket notion on
the eigenstate, calling them. For convenience and consistency with quantum
mechanics textbooks.
Sometimes, the states χ+, χ− are denoted by α and β, respectively. The
spinor χ is defined as:

χ =

(
χ+

χ−

)
(5)

Moreover, we can define the Hermitian conjegate of the spinor:

χ † =
(
χ∗+ χ∗−

)
(6)

That satisfies:
χ †χ = 1 (7)

We can calculate the expected value for an operator Ω̂ acting on the spin
Hilbert space by:

〈Ω̂〉 = χ †Ω̂ χ (8)

geometric representation

There is another representation for spin, connected to the ‘ spin vector ’
pointing in the 3-D space. In spherical polar coordinates, one may write the
spin states as:

χ+ = ei(δ−ϕ/2) cos
1
2

θ χ+ = ei(δ+ϕ/2) sin
1
2

θ (9)

Where ϕ, θ are the polar and azimuthal angels, respectively and δ is an
arbitrary phase.
In order to see why this representation is correct, we start by evaluating the
probability of detecting the particle spinning up, w.r.t. the z direction:

|χ+|2 = cos2 1
2

θ (10)

Similarly for the down direction:

|χ−|2 = 1− χ+|2 = 1− cos2 1
2

θ = sin2 1
2

θ (11)

It is clear now, what is the rôle of the magnitude of the spin states, in terms
of θ. However, we need to discuss further the rôle that the phase plays.
Lets start by calculating the expected values of the spin operators:

〈Ŝx〉 =
1
2

sin θ cos ϕ

〈Ŝy〉 =
1
2

sin θ sin ϕ (12)

〈Ŝz〉 =
1
2

cos θ
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Figure 1: A spinor transformation can be thought of as a vector on a Möbius
band.

Now, assume we wish to rotate the coordinates by an angle γ around z. We
have the rotation matrix :

R(γ) =
(

eiγ/2 0
0 e−iγ/2

)
(13)

Applied to the spinor χ is equal to:

R(γ)χ =

(
ei(δ− 1

2 (ϕ−γ)) cos 1
2 θ

ei(δ+ 1
2 (ϕ−γ)) sin 1

2 θ

)
(14)

Notice that, in order for the spinor to return to its original state, before
rotation, one needs not to make a 2φ rotation. Rather a rotation by 4π. This
is the main characteristic of spinors, that makes them ‘ very’ different from
vectors, and manifesting itself in terms of the phase factor in the geometrical
representation. Sometimes we denote this characteristic by saying that
the ‘ group’ of spin transformations double covers the ‘group’ of spatial
transformations.
In order to picture this in a deeper way, one can think of the spinor’s internal
space as a Möbius band - illustrated in the figure 1. A vector on the Möbius
band needs to be transported along the band twice, in order to return to its
initial state.

spin in constant magnetic field

A particle with a spin - an electron- for example is put in a constant magnetic
filed, such that the direction of the field is parallel to the z-component of the
spin. The Hamiltonian for such system is given by:

H = −γ~B · ~S (15)

such that γ = e/m, the ratio between the electron’s charge and its mass.And
~B · ~S = BSz.
It is clear that:

[H, Sz] = 0 (16)

Implying that there exist eigenstates for H and S simultaneously. Since we
already know the eigenstates for Sz, and represented by the spinor χ . We
then write :

Hχ = Eχ (17)

or:
− γB Szχ = Eχ. (18)

Since, Szχ = ± 1
2 h̄χ The eigenenergies are:

E± = ∓µBB (19)

The constant µB = eh̄
2me

is Born magneton. It is necessary to add another
constant gs as we have seen earlier to this equation, known as the Landé
g-factor, because the electron precesses in the magnetic field. We then have:

E± = ∓gsµBB (20)
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Figure 2: Energy states of electron in a magnetic field B.

Stationary states

Since we have found the energy spectrum for an electron in magnetic field,
we may now write the time evolution of the state χ, using the equation:

χ(t) = e−iωtχ(0) (21)

We have then, for A and B are normilisation constants:

χ(t) = Ae−iωtχ+ + Beiωtχ− (22)

or:

χ(t) = Aei 1
2 γBt

(
1
0

)
+ Be−i 1

2 γBt
(

0
1

)
=

(
Aei 1

2 γBt

Be−i 1
2 γBt

)
(23)

electron paramagnetic resonance epr

From the above analysis, we have learnt that an electron in a magnetic field
could occupy one of two energy states, depending on ms :

Ems = msgsµBB (24)

A transition from one energy state to another, is obtained by absorption /

Figure 3: EPR absorbtion resonance for ν = 9388.3MHz

emission of photon of energy equal to ∆E = gsµBB :

hνr = gsµBB (25)
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If an ensemble of electrons in the magnetic field is exposed to photons
of frequency ν = nur, then the electrons shall absorb them, otherwise no
absorption will occur -only ellastic scattering-. This peak of absorption is
known as electron paramagnetic resonance or EPR. Moreover, νr is kown
as the resonance frequency.

This phenomena is very important in may areas , like measuring the
value of the g factor, and detecting free radicals in biological systems.
In order to understand the reason for detecting absorption lines rather than
the emission lines in EPR, we turn to calculating the population of electrons
in the upper energy level nupper and the lower level nlower, using Maxwell-
Blotzman statistics, under a thermodynamic termprature T :

nupper

nlower
= exp

(
−

Eupper − Elower

kT

)
= exp

(
−∆E

kT

)
= exp

(
−hνr

kT

)
(26)

Where k is Boltzmann constant .
We observe that at room temperature T ∼ 300K and typical microwave
frequency νr ∼ 9.7GHz the ratio is about nupper/nlower ≈ 0.998. That means
the upper population is slightly less than the lower one, implying transitions
from the lower to upper energy states is more probable than the reverse
transitions.
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