Lecture 1.
Course Introduction

JANUARY 2016
This course
Information

• Credits: 2(1,1,2)
• Prerequisites: GE104
• Number of Sections: 10
• Given By: 10 Professors
• Your Instructor: Dr. Ahmed M. El-Sherbeeny

Meetings
• Lecture : Sundays 8:00-8:50 am
• Tutorial : Sundays 1:00-1:50 pm
• Studio : Sundays 2:00-2:50 pm,
 : Tuesdays 8:00-8:50 am

SUGGESTED BOOK
EXPLORING ENGINEERING:
AN INTRODUCTION TO ENGINEERING AND DESIGN (FOURTH EDITION)

By:
PHILIP KOSKY, ROBERT T. BALMER, WILLIAM D. KEAT, GEORGE WISE
Lecturing Styles Used

- **Lecture**: “Normal” Classes

- **Studios**: Design project classroom activities practicing various skills intensive discussions group dynamics

- **Tutorials**: Help with homework assignments and exams Solving problems
Sources of Assistance

• Your Instructor
 • Office number 2A128/1
 • Office hours posted
 • Email: aelsherbeeny@ksu.edu.sa

• Your Teaching Assistant

• Lectures slides

• Studios slides

• Course materials on LMS, website (http://fac.ksu.edu.sa/aelsherbeeny)

• Your Textbook

• Prince Salman Library

• Internet

• Get registered to LMS (Blackboard)
• Check your emails/ LMS regularly
Relation to Other Courses

Engineering Specializations requiring GE105:

- Mechanical Engineering
- Electrical Engineering
- Petroleum and Gas Engineering
- Civil Engineering
- Chemical Engineering
- Industrial Engineering (currently under consideration)

GE105 provides the basics for the final year project and gives the necessary skills for an engineering student.
Course Objectives

• Formally Expose students to the engineering field

• Grasp the values of professionalism, ethics, safety, intellectual property, environment, and human factors.

• Introduce the design process, problem-solving skills, and practices dealing with open-ended problems

• Enforce the skills in teamwork, group dynamics, critical thinking, planning, scheduling, and written/oral communications through the design project
Course Outline (Topics)

• An Overview of Engineering Design
• The Engineering Profession
• Engineering Need Analysis
• Problem Formulation
• Creativity in Design: Thinking Outside the box
• Concept Generation and Evaluation
• Human Factors Engineering
• Intellectual Property – Legal Factors
• Engineering Ethics
Learning Outcomes (Knowledge)

• Ability to use the engineering **design process** to carry out a project.

• Ability to prepare a **need-assessment**, define and formulate the problem, consider the problem constraints, and specify a deliverable for a project.

• Ability to solve open-ended design problems, cope with decision making and satisfy **competing objectives**.

• Ability to synthesize gathered information to solve open-ended problems.

• Ability to conceptualize alternative concepts, evaluate and select preferred alternative, and implement the preferred design using engineering tools.

• Understand the importance of professional and ethical responsibility.

• Understand ethics, environmental and legal issues.
Learning Outcomes (Cognitive Skills)

• Ability to apply design heuristic of recognition of the problem, problem definition, design criteria, and design constraints

• Ability to apply creative techniques to generate alternative solutions (concepts)

• Ability to apply procedures to evaluate the solutions and select the "best" solution, decide on a course of action and implement the selected solution

• Ability to synthesize and critically judge the relevant gathered information to solve open-ended problems

• Ability to exercise professional and ethical responsibility in carrying out the design project

• Ability to consider human factors and legal factors in the design problems
Learning Outcomes (Interpersonal Skills)

• Ability to take the **responsibility** to solve given assignments on your own and submit the solution on time.

• Ability to engage and work effectively in teams with full group interaction during the work on the design project, exercise full responsibility in holding team meetings, distributing tasks, leadership and team dynamics.

• Ability to manage the time between self study, solving assignments, carrying out the design project activities, and submitting project reports.

• Ability to find out the proper action when confronted with engineering ethical problems.
Grading

- Classwork: 15%
- Tutorial: 10%
- Design Project: 35%
 - Presentation 15%
 - Report 10%
 - Poster 5%
 - Logbook 5%
- Final Exam: 40%
- Total 100%

Required From Students

- Attendance ON TIME!!!
- Assignments submitted on time
- Contributing to all open classroom discussions
- Quizzes
- Design Project
 - Studios
 - Teamwork
 - Meeting Logs Retention (logbook)
 - Project Report
 - Joint Presentation
- Final Exam

Work Hard and Enjoy the Course

Produce Results Not Excuses!