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Gradient of a Scalar Function-a 

Assume that a function Φ 
represents a scalar field and 
that Φ is a single valued, 
continuous, and 
differentiable function of 
position. Let dΦ represents a 
change of Φ with a distance 
ds. 
The gradient of the scalar 
function Φ is defined as: 

2 Mathematical Description of Vector Fields

The study of electromagnetic theory requires considerable knowledge of vec-
tor analysis. In this lecture, we will introduce vector operations such as
gradient, divergence and curl that we will need for our study of electromag-
netic theory. As we shall see, these vector operations are very convenient to
determine the properties of electromagnetic field, also considerably simplify
the formulation of electromagnetic theory and allow get a better inside into
electromagnetic phenomena.

2.1 Gradient of a Scalar Function

Let us first define a vector operation: Gradient of a scalar function. Assume
that a function � represents a scalar field and that � is a single valued, con-
tinuous, and di↵erentiable function of position. Let d� represents a change
of � with a distance ds.

Figure 3: Illustration of the
evaluation of gradient of a scalar
function �.

The gradient of the scalar function � is
defined as:

grad � ⌘ r� =
@�

@s
n̂ ,

where n̂ is a unit vector in the direction
the rate @�/@s has its maximum value. In
other words, gradient tells us in which
direction the change in � is maxi-
mal.

For some other direction d ~X, a change of � can
be found by projection of gradient of � on d ~X:

d� = r� · d ~X =
@�

@s
n̂ · d ~X =

@�

@s
cos ✓ dX .

We know from the vector analysis that it is convenient to represent a vec-
tor in a reference (coordinate) frame. Commonly used are the rectangular
(cartesian) coordinates, in which we can easily find that the x component of
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Gradient of a Scalar Function-b	

where n is a unit vector in the direction the rate 
∂Φ/∂s has its maximum value. In other words, 
gradient tells us in which direction the change in 
Φ is maximal. 
•  In Cartesian coordinates the gradient is defined 

as: 
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Gradient of a Scalar Function-c	

•  The function Φ increases most rapidly 
when n is in the direction of      .

•  The function Φ decreases most rapidly 
when n is in the direction of         .

•  Any direction n orthogonal to       is a 
direction of zero change for Φ. 
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Gradient of a Scalar Function-d	
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Divergence of a Vector Function-a	

•  The  divergence  is  the  scalar  function  which 
results from operation of   upon a vector F � in a 
fashion  analogous  to  the  dot  product  of  two 
vectors. The result is a scalar function.

•  In  Cartesian  coordinates  the  divergence  is 
written as follows:  

divF ≡ ∇
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Divergence of a Vector Function-b	
Properties: A positive divergence means that there is a 
source of a vector field, and a negative divergence means 
the presence of a sink of the field. 
When        �       everywhere, the field F � is called solenoidal, 
since no starting points or sources can be assigned to the 
lines describing the field. In other words, it has no sources 
or sinks. 

The following property of the divergence can be shown:	
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The Flux of a Vector Field-a 

•  A vector field propagating in space may cross 
some surfaces not necessary normal to the field 
direction. In this case, we may speak about a flux 
of the field through the surface. The flux is 
measured by the number of field lines crossing 
the surface. 



The Flux of a Vector Field-b 	

	 •  	Suppose a field E 
crossing a surface A of 
area the flux of this field 
through the surface is 
given by:

or by letting surface element 
∆Α being very small

Φ = E ⋅ ΔA∑

Φ = E ⋅dA
A
∫ = E ⋅ndA

A
∫



Gauss’s Divergence Theorem-a 

•  Consider a vector field F � crossing a closed 
surface bounding a volume V , as shown in 
previous slide. Then:

•  The Gauss’s law states that the volume integral 
of the divergence of a vector field over a volume 
V is equal to the closed surface integral of the 
vector over the surface bounding the volume V . 

∇
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Gauss’s Divergence Theorem-b
•  Mathematically, the Gauss’s divergence theorem 

converts a volume integral of the divergence of a 
vector to a closed surface integral of the vector, 
and vice versa. Physically, the Gauss’s 
divergence theorem says that the number of the 
field lines flowing through the surface S is equal 
to the ”strength” of the field source contained 
inside the volume V . 



The Continuity Equation
•  Suppose  we  have  some 

charge  of  density  ρ  in  a 
volume  V  enclosed  by  a 
surface  S.  Let  �v  is  a 
macroscopic  velocity  of  the 
charge.  Then,  the  rate  of 
decrease of the total charge in 
the volume V is equal to the 
rate of transport of the charge 
out  through  the  surface  S. 
This  is  expressed  by  the 
continuity equation:
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Curl (Rotation) Function-a 

•  Curl is the operation of ∇ operator upon a 
vector in a fashion analogous to the cross 
product of two vectors. The result is a vector that 
in Cartesian coordinates is written as: 
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Curl (Rotation) Function-b

•  Properties: Curl is nonzero when the field 
increases (or decreases) in a different direction 
that the field pointed. If the field is pointed in 
the same direction as that in which is increased, 
the curl is zero. So the curl is related to how the 
field changes as you move across the field. 

•  When               everywhere, the field F � is called 
irrotational. 

∇
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Stokes’s Theorem 

•  The Stokes’s theorem 
states that the closed 
line integral of a 
vector field F � along 
the contour bounding 
an open surface S is 
equal to the surface 
integral of the curl of 
the vector field over 
the surface. 
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Successive Application of ∇-a 

The above defines a new scalar operator the so 
called Laplacian:

The Laplacian is applied also to a vector
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Successive Application of ∇-b	

These two properties are very useful in the vector field 
theory, in particular in the electromagnetic theory. 
The first relation shows that an irrotational field can always 
be expressed as gradient of an arbitrary scalar field. 
The second relation shows that any solenoidal field can 
always be expressed as a curl of an arbitrary vector field. 	
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