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Abstract

This lectures discusses the postulates of quantum mechanics, and the
idea of quantisation of a classical system.
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introduction

In modern physics course and in modern physics lab, we have seen the
clear motivation for using quantum mechanics in place of classical physics
for the fundamental description of nature. Classical physics is merely an
approximation for the real picture of the quantum world .
One of most important lessons learnt from quantum mechanics is the fact
that measurement affects the system, no matter how hard ones tries to avoid
such effect, it shall remain present ( there are exceptions known as weak
measurements). That implies that the order of measuring dynamical quantities
of the system matters, hence non-commutativity is the heart and soul of
quantum mechanics. Max Born tried to make an interpretation for these
observable facts. His interpretation states that the quantum system is non-
deterministic and each outcome of the measurement has its own probability.
Moreover, the system before measurement takes a superposition of all of
its possible states. The experimental motivation for these statements are
assumed to be known by the reader.

the postulates of quantum mechanics

An axiomatic approach for quantum mechanics is followed in these lectures.
The fundamental properties of quantum mechanics are derived from these
postulates, as we shall see for the uncertainty principle for example.This
approach is more modern and provides a deeper understanding of quantum
mechanics. We start by having a classical system , that owns a Hamiltonian
H and described by a phase spaceM. We also can have a Poisson brackets
{·, ·}. In order to make the quantum leap we have to make the following
changes:
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The first postulate

The phase space for the system is changed into a Hilbert space :

M−→ H

The state of the system becomes a ’Ket’|ψ〉 in H instead of a vector in the
phase space as we have seen in lecture (1). This abstract vector is unlike the
state vector for the classical system has no direct physical meaning . As one
can multiply this vector by any complex/real number and get the same state
for physical system . . Hence if |ψ〉 describes the system , then a|ψ for a a In fact, the physical

state is described by a
ray in H, not a one
vector.

complex/real number describes the same state for the physics system, This
however has rare exceptions ( known as Berry phase). Therefore, one can
normalise the state vector. such that it satisfies:

〈ψ|ψ〉 = 1 (1)

In the probabilistic picture, this reads out as:

〈ψ|ψ〉 = ∑
i
|ψi|2 = ∑

i
P(i)

⇔∑
i

P(i) = 1 (2)

Surely the sum of all the probabilities of the possible measurable quantities for
the system is ought to equal one. This postulates implies what Max Born
suggested for the statistical nature of quantum mechanics, or more generally
the superposition principle ( the quantum system takes all of its possible
configurations when not measured ). . Recall Schrödinger’s

cat!

The second postulate

Any dynamical observable for a classical system ω(p, q) is defined to be
a function on the phase space. Upon quantisation, these observables will
be resembled by a linear self-adjoint (hermitian) operators acting on the
Hilbert space Ω̂. Measurement is expressed mathematically by acting the
operator corresponding to the physical observable on the state vector. The
possible values (outcomes) for a measurement is the set of eigenvalues for
that operator. This a direct physical result from the spectral theorem.

The third postulate

Because observables are linked to operators, this inherits non-commutativity
in quantum mechanics. The third postulate of quantum mechanics is known
as the canonical quantisation postulate. We replace the Poisson brackets
with commutators.

[·, ·]←→ ih̄{·, ·} (3)

In particular the for Q̂ and P̂, the configuration space/ position and momen- note that every two
operators would
commute when
h̄ −→ 0

tum operators will satisfy the canonical commutation relation:

[Q̂i, P̂j] = ih̄δi
j Î (4)

We have learnt that if two operators do not commute, then one cannot have a
mutual set of complete eigenbasis to simultaneously diagonalise them . This
physically means that one cannot measure both observables with absolute
accuracy. Leading to the uncertainty principal.

The forth postulate

The fourth postulate discusses the time evolution of a quantum system. The
time evolution of a state is dictated by Schrödinger’s equation.

Ĥ|ψ(t)〉 = ih̄
∂

∂t
(|ψ(t)〉) (5)

2



Note here we have the states being time-dependent, whilst operators are not.
Sometimes the operators themselves are time-dependent not the states. The
first ’picture’ is known as Schrödinger’s picture, and the second is Heisenberg
picture. Both pictures are physically equivalent. The equation of motion for
the operators - in Heisenberg picture- is known as Heisenberg equation. We
have seen in the tutorials, that for an operator Â in Schrödinger’s picture,
we can write it in Heisenberg picture by Hadmard formula:

Â(t)Hesenberg = e
i
h̄ Ĥt ÂSchrödinger e−

i
h̄ Ĥt (6)

Using the correspondence between Poisson brackets, and quantum commu-
tators (3). One can directly arrive to the Heisenberg equation by quantising
Hamilton’s equations:

d
dt

Â(t) =
i
h̄
[Ĥ, Â(t)] + eiHt/h̄

(
∂Â
∂t

)
e−iHt/h̄ (7)

measurement in quantum mechanics

We have used the word ’measurement’ a lot in this lecture, it may be confus-
ing for the reader what is really meant by it within the context of quantum
mechanics. One may picture a ’physicist’ in a lab who intend to measure a
quantum system when thinking of the word measurement. However, mea-
surement may not involve any experiment of actual detectors, rather simply it
is any interaction between the quantum system and a classical object, which
we call the apparatus.

In pure quantum mechanical view, there is no meaning for a path of a

Figure 1: Measurement in quantum mechanics means any interaction be-
tween a quantum system and a classical object

particle, as defining a path requires an absolute knowledge of the momen-
tum and position of that particle simultaneously. Surely this is impossible
by the uncertainty principle. Moreover, there is no meaning for the speed
in quantum mechanics, because - by definition- speed needs knowing the
position of a particle exactly at each moment in time. This has no meaning
in quantum mechanics, because of the measurement problem. Yet, one may
define a velocity in a different perspective.
These reflections into the postulates of quantum mechanics lead us into the
conclusion that in pure quantum mechanical world, there is no meaning for
any dynamics we are familiar with from the classical physics. They appear
in quantum mechanics merely due to measurement. Hence, we don not only
need classical mechanics are the limit of quantum mechanics for macroscopic
systems. Moreover, for the construction of quantum theory itself !
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example : energy states

A bound electron is found to have discrete energies. The state for the electron
is expanded in terms of the Hamiltonian eigen-energy states:

|ψ〉 =
∞

∑
n=1

αn|En〉 (8)

Such that αn is the probability amplitude for the nth energy state and |En〉 Remember that
|αn|2 = P(En)satisfies the eigenvalue problem:

Ĥ|En〉 = En|En〉 (9)

which is -in fact- schrödinger’s equation. We can write the Hamiltonian in
matrix form :

Ĥ =



E1 0 0 . . . 0 . . .
0 E2 0 . . . 0 . . .
0 0 E3 0 0 . . .
0 0 · · · En 0 . . .
...

...
...

...
. . . . . .

0 0 0 0 . . .
...

...
...

...
...

. . .


(10)

If the measurement resulted the particle having the energy state Ej. The state
vector |ψ〉 is then projected into the eigenstate |Ej〉 casing of what-so-called
the wavefunction collapse :

〈Ej|ψ〉 = αj (11)

We may also calculate the expected-value for the energy:

〈E〉 = 〈ψ|Ĥ|ψ〉 (12)

expanding this as we learnt:

〈ψ|Ĥ|ψ〉 =
∞

∑
n=1
|αn|2 En (13)

references

[1] James Binney and David Skinner. The physics of quantum mechanics. Oxford
University Press, 2013.

[2] Vyjayanthi Chari and Andrew N Pressley. A guide to quantum groups.
Cambridge university press, 1995.

[3] Kurt Gottfried and Tung-Mow Yan. Quantum mechanics: fundamentals.
Springer Science & Business Media, 2013.

[4] Lev Davidovich Landau, Evgenii Mikhailovich Lifshitz, JB Sykes,
John Stewart Bell, and ME Rose. Quantum mechanics, non-relativistic
theory. Physics Today, 11:56, 1958.

[5] John Von Neumann. Mathematical foundations of quantum mechanics. Num-
ber 2. Princeton university press, 1955.

[6] Cohen Claude Tannoudji, Diu Bernard, and Laloë Franck. Mécanique
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