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Abstract

This lecture discusses the formal solution of Schrödinger’s equation
for a free particle. Including the separation of variables in stationary
states, the various representations of the state vector.

contents

1 Position representation and the wavefunction 1

2 Separation of variables in Schrödinger’s equation 2

3 The free-particle solution 2

4 Probability flux and density 3

5 The Born conditions 4

References 5

position representation and the wavefunction

We start naturally from the postulates of quantum mechanics, having the state
ket |ψ(t)〉 ( in Schrödinger’s picture) that evolves in time by Schrödinger’s
equation:

Ĥ|ψ(t)〉 = ih̄
∂

∂t
|ψ(t)〉 (1)

What we are interested in knowing for a free particle is its position, we there-
fore project the state ket into the position space , and get the wavefunction:

ψ(x, t) = 〈x|ψ(t)〉 (2)

The Hilbert space is therefore : H def
= L2( ]−∞,+∞[ ; dx ) The position This Hilbert space

implies that the
particle could be
anywhere in the
universe until
measured; but the
propability
vanishes at infinity
points

operator is simply a multiplicative operator :

X̂ψ(x, t) = xψ(x, t) (3)

It has a continuous spectrum of eigenvalues being the position(s) of the
quantum particle in the 1-dimensional space. Generalisation to 3-D space is
straightforward - see homework- . The task now is to find the momentum
operator in the position representation, this can be done from investigating
the canonical commutation relation [X̂, p̂x] = ih̄ Î, as following:

[X̂, p̂x]ψ(x, t) =ih̄ψ(x, t)

xp̂xψ(x, t)− p̂x(xψ(x, t)) =ih̄ψ(x, t) (4)

Rearranging the above equation :

p̂x(xψ(x, t)) = −ih̄ψ(x, t) + xp̂xψ(x, t)

⇔ p̂x(xψ(x, t)) =
h̄
i

∂

∂x
(xψ(x, t)) (5)

Hence we conclude that the momentum operator in the postion representa-
tion is given by :

p̂x
def
=

h̄
i

∂

∂x
(6)
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separation of variables in schrödinger’s equation

Now, we attempt to quantise the free particle system. This is done first by
defining the wavefunction and the Hilbert space. Now what is left is to
quantise the Hamiltonian; recall that the Hamiltonian for the free particle is
given by:

H(p) =
p2

2m
(7)

The Hamiltonian operator that acts on the free-particle Hilbert space is

Ĥ =
p̂2

2m
, since we have the position representation for the momentum

operator p̂. We have the Hamiltonian operator:

Ĥ def
= − h̄2

2m
∂2

∂x2 (8)

Plunging it in the Schrödinger’s equation; to obtain: observe the
similarity between
Schrödinger’s
equation and the
classical wave
equation

− h̄2

2m
∂2ψ(x, t)

∂x2 = ih̄
∂ψ(x, t)

∂t
(9)

This equation is familiar from the previous modern physics course. Never-
theless, this time we have derived it from axiomatic point of view.
In order to solve (9) we need to use a mathematical trick known as the
separation of variables. Assume that we can write the wavefunction as the
product of two functions:

ψ(x, t) = ϕ(x)h(t) (10)

Substituting in (9), and rearranging, we obtain:

− h̄2

2m
1

ϕ(x)
d2 ϕ(x)

dx2 = ih̄
1

h(t)
dh(t)

dt
(11)

Each side of the equation (11) depends only on one variable, and since they
equal each other. This implies :

− h̄2

2m
1

ϕ(x)
d2 ϕ(x)

dx2 = Const. (12a)

ih̄
1

h(t)
dh(t)

dt
= Const. (12b)

Evidently, the ’constant’ is indeed the eigen-energy of the particle E. We start
by solving the second equation (12b), the solution yields, what-so-called the
stationary states time evolution:

h(t) = e−iωt. (13)

with ω = E
h̄ Observe this result can be obtained directly from the Heisenberg Recall this from the

quantisation of
energy in modern
physics

picture ( Show how !) All systems of which we can separate their time
dependence in this way is called stationary states. They shall be the main
focus in our course.

the free-particle solution

We now turn to the spacial part of Schrödinger’s equation:

− h̄2

2m
d2 ϕ(x)

dx2 = Eϕ(x) (14)

This has a particular solution of the form:

u(x) = Ceikx (15)
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With k2 = 2mE
h̄2 , having the dimension of inverse length; we recognise k being

the wavenumber. The solution (15) can be written in terms of the momentum
- by the relation p = h̄j.-:

u(x) = Ce
i
h̄ px (16)

This solution is known as the plane wave solution. It represents a wave
propagating in the +x direction. This solution can be used to find ϕ(x)
by the superposition principle; the ’constant’ of integration is not constant
in fact. Rather, it is a function of p . In order to see this, recall that the

eigen-energy of the free particle E = p2

2m = (h̄k)2

2m putting this in (9) we shall
have a continuous spectrum of eigen-energies. Then use the spectral theorem
we shall have therefore :

ϕ(x) =
1√

2π h̄

∫ +∞

−∞
ϕ̃(p)e

i
h̄ pxdp (17)

Which is simply the Fourier transform of the momentum wavefunctions
ϕ̃(p) = 〈p|ϕ〉 . We then identify the plane-wave solution as 〈x|p〉 = e

i
h̄ px

. We can use the wavefunctions to calculate the probability of finding the
particle as a given position x′, |ϕ(x′)|2 or momentum p′ , |ϕ̃(p′)|2 .
Since momentum cannot be determined with absolute certainty; it then takes
a Gaussian wavefunction. Of which its Fourier transform is a Gaussian
function itself. The figure 3 is generated by a code we have made showing
the time evolution of the wavefunction ψ(x, t), given an initial width for
the momentum wavefunction Gaussian : Observe how the wavefunction -

Figure 1: Simulated time evolution of a Gaussian wavefunction for the free
particle, observe the dispersion of the wave as time progresses

indicating our certainty of the particle’s position- gets wider and wider as
time progresses. The equation (17) indicates that the position wavefunction is
composed of infinite number of momentum wavefunctions. The movement
of the wuantum particle is therefore expressed in terms of a wavepacket
resulting from infinite number of waves interfering; we have run a computer
code representing the wavepacket as seen in figure 3 :

probability flux and density

Since |ψ(x, t)|2 gives the probability of finding the particle at any point in
space, at a given time. It defines a positive real-valued function of space. It
is known as the pprobability density function:

ρ(x, t) = ψ∗(x, t)ψ(x, t) (18)

We also define the probability current density

j(x, t) =
h̄

2mi

(
−∂ψ∗(x, t)

∂x
ψ(x, t) + ψ∗(x, t)

∂ψ(x, t)
∂x

)
(19)
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Figure 2: The wavepacket of the free quantum particle ψ(x, t)

let’s now look at
∂j(x, t)

∂x
:

∂j(x, t)
∂x

=
d

dx

[
h̄

2mi

(
−∂ψ∗(x, t)

∂x
ψ(x, t) + ψ∗(x, t)

∂ψ(x, t)
∂x

)]
=

h̄
2mi

(
−∂2ψ∗(x, t)

∂x2 ψ(x, t)− ∂ψ∗(x, t)
∂x

∂ψ(x, t)
∂x

+

ψ∗(x, t)
∂2ψ(x, t)

∂x2 +
∂ψ∗(x, t)

∂x
∂ψ(x, t)

∂x

)
=

h̄
2mi

(
−∂2ψ∗(x, t)

∂x2 ψ(x, t) + ψ∗(x, t)
∂2ψ(x, t)

∂x2

)
(20)

We can also calculate ρ̇(x, t):

ρ̇(x, t) =
∂

∂t
(ψ∗(x, t)ψ(x, t))

=
∂ψ∗(x, t)

∂t
ψ(x, t) + ψ∗(x, t)

∂ψ(x, t)
∂t

(21)

But from Schrödinger’s equation, we have
∂ψ(x, t)

∂t
= −h̄

2mi

(
∂2ψ(x, t)

∂x2

)
.

Hence we incur:

ρ̇(x, t) =
h̄

2mi

(
∂2ψ∗(x, t)

∂x2 ψ(x, t)− ψ∗(x, t)
∂2ψ(x, t)

∂x2

)
(22)

⇔ ∂j(x, t)
∂x

+ ρ̇(x, t) = 0 (23)

This is the continuity equation in quantum mechanics , implying proba-
bility is conserved .

the born conditions

Max Borns best known contribution to quantum mechanics was his proposal
that the wave function, or rather its square modulus, should be interpreted
as the probability density for finding the system in a given state at a given
time. However, he also proposed four conditions on the wave function which
are used in finding many solutions of the Schrödinger equation. As always,
its useful to take another look at the Schrödinger equation (in one dimension
(14)) so we can see how Born’s conditions fit in.
Borns conditions to be imposed on the wave function ψ(x, t) are:
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1. he wave function must be single valued. This means that for any given
values ofx and ψ(x, t) must have a unique value. This is a way of
guaranteeing that there is only a single value for the probability of the
system being in a given state.

2. The wave function must be square-integrable. In other words, the
integral of |ψ|2 over all space must be finite. This is another way of
saying that it must be possible to use |ψ|2 as a probability density,
since any probability density must integrate over all space to give a
value of 1, which is clearly not possible if the integral of |ψ|2 is infinite.
One consequence of this proposal is that ψ must tend to 0 for infinite
distances.

3. The wave function must be continuous everywhere. That is, there are
no sudden jumps in the probability density when moving through
space. If a function has a discontinuity such as a sharp step upwards or
downwards, this can be seen as a limiting case of a very rapid change
in the function. Such a rapid change would mean that the derivative
of the function was very large (either a very large positive or negative
number). In the limit of a step function, this would imply an infinite
derivative. Since the momentum of the system is found using the
momentum operator, which is a first order derivative, this would imply
an infinite momentum, which is not possible in a physically realistic
system. Such an infinite derivative would also violate condition 4.

4. All first-order derivatives of the wave function must be continuous.
Following the same reasoning as in condition 3, a discontinuous first
derivative would imply an infinite second derivative, and since the
energy of the system is found using the second derivative, a discontin-
uous first derivative would imply an infinite energy, which again is not
physically realistic.

For further reading on these conditions, please refer to :http://www.physicspages.
com/2011/01/25/wave-function-borns-conditions/
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