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Introduction-a
• First. The variety of partial differential equations that

appear in the physical problems is not infinite. On the
contrary is very limited. The majority of physical
problems could be described (either exactly or
approximately) by the following three partial
differential equations:
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Introduction-b
Second. For all the above three equations the exact solution
method (whenever this is possible) is the method of
separating variables.



The physical origin of the heat
equation-a

It can be shown that the heat equation is the result of two
physical laws:

a) The heat equation:
        m: the mass of a body      c: the specific heat capacity
        ΔT: the change in the temperature
       ΔQ: the heat added to or subtracted from the body

 !Q = mc!T



The physical origin of the heat
equation-b

b) The so-called Fick’s law:
        which describes the heat transportation from warmer

to colder regions.
       j: the heat flux vector (heat per unit area and time)
       κ: the coefficient of thermal conductivity
       T(r, t): the temperature “field” inside the body

  j = !"#T

  ut ! "uxx = 0

Proof is given
in the lecture



The physical origin of the wave
equation

• The wave equation is a result of the
application of second Newton’s law to a
segment of a vibrating string.
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Proof is given in the lecture. Wave
equation is a hyperbolic PDE.



The physical origin of the Laplace’s
equation

   a) If we study problems of temperature
distribution then after a sufficiently long time
the system will be in a temperature equilibrium.
In this case the heat equation is reduced into a
Laplace equation.

    b) When we study problems in electrostatics
Laplace equation is a result of the application of
Gauss’s law in combination with Gauss’s
theorem:

  !2u = 0Proof is given in the lecture.
Laplace equation is an elliptic
PDE.



The physical origin of the Heat equation-II
Diffusion effects

• Diffusion effects may be described by the heat equation if we
combine Fick’s law with Gauss’s theorem.
• The fact that the equations which describe the diffusion effects and
the heat transportation are identical is not incidental. Heat is
transported from regions of high temperatures to regions of lower
temperatures. Similarly the diffused substance is transported from
regions of high concentration to regions of lower concentrations.
• Moreover in both cases the transports are subject to a common
conservation law: The amount of heat in the first case and the amount
of diffused mass in the second case.

  
D!2c = "c

"tProof is given in the lecture.
Diffusion equation is a
parabolic PDE.



Well defined problems:
(Initial and boundary conditions that lead to a unique solution)

In PDE the required additional conditions which
lead us to a unique solution are of two
different types:

(a) Initial conditions: These concern the state of a
physical system at a given instant.

(b) Boundary conditions: These concern the
values of a physical quantity at the boundary
of the physical region of our problem.



Τypes of boundary conditions

• Dirichlet: The value of a function specified on
the boundary.

• Neumann: The normal derivative (normal
gradient) of a function specified on the
boundary (e.g. In the electrostatic case this
would be the normal component of the electric
field and, thus, the surface charge density).

• Cauchy: The value of a function and normal
derivative specified on the boundary (e.g. In the
electrostatic case this would be the potential and
the normal component of the electric field).



Type of partial differential equation 
Boundary 
conditions 
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Boundary conditions in a vibrating string

  y = f (x)

Initial Condition:   u(x,0) = f (x)

Boundary Conditions:   u(0,t) = u(L,t) = 0

  x = 0  x = L

A string could start a vibration if it is given an initial deformation
or an initial “kick” at all its points   u(x,0) = f (x)

  ut(x,0) = !u(x,t)!t
t=0 = g(x)



Conditions in a wall cooled by a heat bath

x

0 L

  u 0,t( ) = 0   u L,t( ) = 0

  u x,0( )

Heat bath
at zero temperature



Boundary conditions in electrostatic problems

    Laplace equation does not contain time
derivatives. Thus, the necessary conditions are
only the boundary ones.
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= 0
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= V
 

S2 S1

u2=V u1=0



An important remark…
• When we impose the initial/boundary

conditions in the solution of a PDE?
• Contrary to what is happening in an ordinary

differential equation where we first find the
general solution and then we impose the initial
conditions, in solving a PDE we seek ab initio the
solution which satisfies the given conditions.

• The reason for this is that the set of solutions of a
PDE is huge so either the specific solution is
difficult to be found or we cannot apply easily
the conditions.



On the validity of the separating
variables method -a

• The method of separating variables is very successful for
the solution of a PDE. But there is a question: Is it always
applicable for the solution of a PDE?

• It can be shown that any PDE of the form

    where                linear differential operators which act on
the corresponding variables. the method of separating
variables is always applicable.

• We can also prove that the method of separating
variables in PDEs of the above form leads to three
eigenvalue equations for the relevant operators. The
algebraic sum of the eigenvalues is zero.

Lx + Ly + Lt( )u x, y,t( ) = 0

Lx ,  Ly ,  Lt



On the validity of the separating
variables method-b

• It can be shown that the method of separating variables
is also possible in problems which have symmetries
other than cartesian, for example cylindrical or spherical.

• The method of separating variables depends crucially on
the type of boundary conditions: They must be linear and
homogeneous. For example like the ones that follow for a
closed interval [a, b]:

  

c1ux a,t( ) + d1u a,t( ) = 0
c2ux b,t( ) + d2u b,t( ) = 0



On boundary conditions-a
• By applying the method of separating variables

in a PDE we are led in an ODE of the general
form: Ly=λy, where L is (in the set of problems
we are going to deal with) a second order linear
differential operator. But there is a question:

What are the more general linear and
homogeneous boundary conditions that can
be imposed to a second order DE in order to
give us a well defined eigenvalue problem?



On boundary conditions-b

• These conditions are given by:

• The above conditions can be separated in
two classes: the pure and the mixed

  

a11y a( ) + a12 y' a( ) + b11y b( ) + b12 y' b( ) = 0
a21y a( ) + a22 y' a( ) + b21y b( ) + b22 y' b( ) = 0



On boundary conditions-c
The pure conditions

• Pure conditions are those in which the two
limits of interval are not mixed:

  

a11y a( ) + a12 y' a( ) = 0        (b11 = b12 = 0)
b21y b( ) + b22 y' b( ) = 0        (a21 = a22 = 0)

Pure boundary conditions
are involved in the
majority of physical
problems



On boundary conditions-d
The mixed conditions

• On the contrary, from the class of mixed
conditions, the only ones that appear in
the physical problems are the so called
periodic boundary conditions:

  y a( ) = y b( ) ,        y' a( ) = y' b( )
In some problems of theoretical physics we may encounter
the so called anti-periodic conditions:

  y a( ) = !y b( ) ,        y' a( ) = !y' b( )



Sturm-Liouiville Theory
Basic points

We present here briefly some points from the so called
Sturm-Liouiville theory which describes the problem of
eigenvalues.
• The problem of eigenvalues of an operator, in
combination with homogeneous boundary conditions has a
solution only if the eigenvalue has a discrete set of values
(quantization of eigenvalues).
•The set of solutions is called “spectrum”



Sturm-Liouiville Theory
An important theorem-a

• Assume the following problem:

   where L is the differential operator

     with the following preconditions:
   a) there is no singular point for the operator L in the closed interval

[a, b] at the ends of which we impose the homegeneous boundary
conditions of the problem.

   b) The homogeneous boundary conditions are of the following two
types

     I. The function or its derivative is zero at the ends of the interval.

Ly = y +  homogeneous boundary conditions

  

a) y(a) = 0, y(b) = 0
b) y(a) = 0, y'(b) = 0
c) y'(a) = 0, y(b) = 0
d) y'(a) = 0, y'(b) = 0

L = a(x)d 2 / dx2 + b(x)d / dx + c(x)



Sturm-Liouiville Theory
An important theorem-b

II. The boundary conditions are of periodic character

Theorem: Any eigenvalue problem with the above conditions has
always real eigenvalues and a complete system of orthogonal
eigenfunctions.

  y(a) = y(b), y'(a) = y'(b)



Sturm-Liouiville Theory
The concept of orthogonality

• Two functions f(x) and g(x) in an interval
[a, b], are said to be orthogonal if their
scalar product is zero, i.e.

• Where w(x) is a “weight function” given
by

  
f , g( ) = w(x) f *(x)g(x)dx = 0

a

b

!

  
w(x) = ±

1
a(x)

e
b(x)/a(x)( )dx!

Where the sign of w(x) is chosen such that w(x)>0 in the domain of our problem.



Sturm-Liouiville Theory
The linear combination of eigenfunctions

  
f (x) = cn yn(x)

n=0

!

" ,            cn =
yn , f( )
yn , yn( )


