
Q U A N T U M M E C H A N I C S :
L E C T U R E 7

salwa al saleh

Abstract

This lecture analyses the particle in 1-D box problem.
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description of the problem

We discuss here an application to the mathematical axioms of quantum
mechanics studied earlier to a simple, yet important problem. The quantum
particle in an infinite potential well, or a particle in a box see figure 1. This is

Figure 1: A diagram illustrating the particle in a box problem

an idealisation for a large enough potential compared to the particle’s energy.
This problem is very important example to study discrete spectrum .
We start by a particle trapped in a potential well, of width a. The Schrödinger’s
equation for this particle is written as - in position representation-:

ih̄
∂

∂t
ψ(x, t) = − h̄2

2m
∂2

∂x2 ψ(x, t) + V(x)ψ(x, t) (1)

With :

V(x) =

{
0, for 0 < x < a
∞, otherwise

(2)

Since the above equation is clearly separable, similar to the free particle. It
resembles a stationary state. We then write the eigenvalue problem:

h̄2

2m
∂2

∂x2 u(x; E) + V(x)u(x; E) = Eu(x; E) (3)

The energy eigenfunctions are then equal to ψ(x, t; E) = u(x; E) e−ih̄ωt
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solution to schrödinger’s equation

We now attempt to solve (3) subject to the boundary conditions:

u(x = 0) = u(x = a) = 0 (4)

Because there is a null probability of the particle being outside the box. And
the second condition on the wavefunction :

du(x)
dx
|x=0 =

du(x)
dx
|x=a (5)

This condition comes from naturally from the analysis of the problem. The
first derivative of the wavefunction is proportional to the momentum of
the particle, we expect the particle will ’bump’ with both walls in the same
manner. Although, this violates the Born conditions discussed in lecture 5,
but keep in mind that the infinite well is an unphysical example!
Now, we rewrite Schrödinger’s equation as:

d2u(x)
dx2 + k2u(x) = 0 (6)

with k =
√

2mE h̄; this differential equation is solved by the substitution
u(x) = eRx Resulting:

u(x) = Aeikx + Be−ikx (7)

Where A and B are constants, we use the identity :
We observe that, using the boundary conditions we obtain :

ik
(

Aeika − Be−ika
)
= ik(A− B)

⇒ u(x) = C sin(kx) (8)

u(a) = C sin(ka) = 0

⇒k =
nπ

a
(9)

But since k =
√

2mE h̄, we conclude that energy takes discrete values :

En =
h̄2n2π2

2ma2

=E0 n2 (10)

With E0 = h̄2π2

2ma2 , the ground energy. And n here denotes the quantum
number for the excited states of the particle in the box. Now, we may
write the energy-eigenfunctions, after calculating the normalisation factor

C =
√

2
a eiϕ : we add always an

arbitrary phase factor
eiϕ

ψn(x, t) =

√
2
a

(
sin(

nπx
a

)
)

ei(ωt+φ) (11)

The total wavefunction is written as, by the superposition principle :

ψ(x, t) =

√
2
a

∞

∑
n=1

(
sin(

nπx
a

)
)

ei(ωt+φ) (12)

Which is a Fourier series ( we could have obtained this solution immediately
by Fourier analysis ). The following figure demonstrates the eigenfunctions
for various excitation states, and the probability density function ρ:

momentum eigenfucntions

We now turn into calculation the Fourier transform of u(x) in order to
compute the momentum eigenfucntions φ(p, t):

v(p) =
1√

2πh̄

∫ a

0
dx e

i
h̄ px︸︷︷︸
〈p|x〉

u(x)︸︷︷︸
〈x|u〉

(13)
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Figure 2: First,second, and third lowest-energy eigenfunctions (red) and
associated probability densities (blue) for the infinite square well potential

substituting with u(x) we have:

v(p) =
1√

πah̄

∫ a

0
dx e

i
h̄ px sin(nh̄px) (14)

Evaluation of this integral gives: The following
identity was used :∫

eax sin bx dx =
eax

a2+b2 (a sin bx + b cos bx)v(p) = n
√

aπ

h̄

1− (−1)n e−
i
h̄ pa

n2π2 − a2 p2

h̄2

 (15)

Plotting the momentum probability density function - for various excitations -
: This calculation ends the basic analysis for a particle in a box, what remains

Figure 3: Momentum probability density function for the ground state and
three more excitation states.

is the calculation of the expected values for some dynamical observables,
which is left for tutorials.
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