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Abstract

This lecture discusses the quantum harmonic oscillator by the Ladder
operator method
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quantization of the sho hamiltonian

From lecture (1) we have the classical Hamiltonian for the simple harmonic
oscillator (SHO) :

H(p, x) =
1

2m
p2 +

1
2

mω2x2 (1)

Using the postulates of quantum mechanics discussed before, we obtain-
upon quantization - the Hamiltonian operator :

Ĥ =
1

2m
P̂2 +

1
2

mω2X̂2 (2)

with:

[X̂, P̂] = ih̄I (3)

The Hilbert space of which X̂ and P̂ act on is

H(0,+∞; dx)

We now introduce the dimensionless Hamiltonian :

Ĥ′ =
1

2mh̄ω
P̂2 +

1
2

mω

h̄
X̂2 (4)

This operator can be factorised and written in terms of ’creation’ and ’inhala-
tion ’operators; a† and a respectively :

Ĥ′ = a†a +
1
2

I (5)

with:

a =

√
mω

2h̄
X̂ + i

√
1

2mωh̄
P̂2 (6a)

a† =

√
mω

2h̄
X̂− i

√
1

2mωh̄
P̂2 (6b)

These operators, along with Ĥ′, satisfy a well-known commutation relations.
The operators a, a†

and H′ along with
the commutator
operation [·, ·] satisfy
the su(1, 1) algebra.

[a, a†] = I (7a)

[a, H′] = a (7b)

[a†, H′] = −a† (7c)
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We also define the number operator N ≡ a†a that acts on the eigenstates |n〉
resulting an eigenvalue of n :

N|n〉 = n|n〉

as a result we may conclude that :

a|0〉 = 0 (8)

acting on the ’ground state’by the inhalation operator, kills it . Moreover :

a|n〉 =
√

n|n− 1〉 (9)

a†|n〉 =
√
(n + 1)|n + 1〉 (10)

Hence, The Hamiltonian acting on these states will result ( the energy
eigenvalue) :

Ĥ|n〉 = h̄ω(n +
1
2
)|n〉 (11)

Implying that the ’number states’ are the excitation states for the quantum
harmonic oscillator. The creation and inhalation operators excite or deceit it,
and it has a descrete energy spectrum of :

En = h̄ω

(
n +

1
2

)
(12)

Even in the ground state, the quantum harmonic oscillator has a non-
vanishing energy. This is a direct result for the uncertainty principle in
time and energy.

Figure 1: Energy-levels and wavefunctions of the quantum harmonic oscilla-
tor
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