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Abstract

This lecture discusses the quantum harmonic oscillator by the Ladder
operator method
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1 quantization of the sho hamiltonian

From lecture (1) we have the classical Hamiltonian for the simple harmonic
oscillator (SHO) :

H(p, x) =
1

2m
p2 +

1
2

mω2x2 (1)

Using the postulates of quantum mechanics discussed before, we obtain-
upon quantization - the Hamiltonian operator :

Ĥ =
1

2m
P̂2 +

1
2

mω2X̂2 (2)

The Hilbert space of which X̂ and P̂ act on is

L2(−∞,+∞; dx)

We now introduce the dimensionless Hamiltonian :

Ĥ′ =
1

2mh̄ω
P̂2 +

1
2

mω

h̄
X̂2 (3)

This operator can be factorised and written in terms of ’creation’ and ’inhala-
tion ’operators; a† and a respectively :

Ĥ′ = a†a +
1
2

I (4)

with:

a =

√
mω

2h̄
X̂ + i

√
1

2mωh̄
P̂ (5a)

a† =

√
mω

2h̄
X̂− i

√
1

2mωh̄
P̂ (5b)

These operators, along with Ĥ′, satisfy a well-known commutation relations.
The operators a, a†

and H′ along with
the commutator
operation [·, ·] satisfy
the su(1, 1) algebra.

[a, a†] = I (6a)

[a, H′] = a (6b)

[a†, H′] = −a† (6c)
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We also define the number operator N ≡ a†a that acts on the eigenstates |n〉
resulting an eigenvalue of n :

N|n〉 = n|n〉

as a result we may conclude that :

a|0〉 = 0 (7)

acting on the ’ground state’by the inhalation operator, kills it . Moreover :

a|n〉 =
√

n|n− 1〉 (8)

a†|n〉 =
√
(n + 1)|n + 1〉 (9)

Hence, The Hamiltonian acting on these states will result ( the energy
eigenvalue) :

Ĥ|n〉 = h̄ω(n +
1
2
)|n〉 (10)

Implying that the ’number states’ are the excitation states for the quantum
harmonic oscillator. The creation and inhalation operators excite or deceit it,
and it has a descrete energy spectrum of :

En = h̄ω

(
n +

1
2

)
(11)

Even in the ground state, the quantum harmonic oscillator has a non-
vanishing energy. This is a direct result for the uncertainty principle in
time and energy.

Figure 1: Energy-levels and wavefunctions of the quantum harmonic oscilla-
tor

2 the eigenfunctions

Since we introduced the eigenstates for the Hamiltonian ( or the number
operator equivalently). |n〉. We can use the ladder operator method to solve
Scrödinger’s equation in the position representation and find ψn(x) = 〈x|n〉.
we start from (7):

aψ0(x) = 0 (12)

resulting the differential equation :(
x +

h̄
mω

d
dx

)
ψ0(x) = 0 (13)

having the solution:
ψ0(x) = Ae−

mω
2h̄ x2

(14)
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We can find the normalisation factor by:∫ +∞

−∞
e−

mω
2h̄ x2

dx =
1
|A|2 . (15)

Which is a typical Gaussian, hence A is found to be:

A =
(mω

πh̄

)1/4
(16)

Now, in order to find the nth wavefunction ψn(x), we first need to prove the
following identity:

|n〉 = (a†)n
√

n!
|0〉 (17)

Proof:

a†
√

n
| n− 1〉 = (a†)2√

n(n− 1)
| n− 2〉 = · · · = (a†)n

√
n!
|0〉.

Thereby,

ψn(x) =
(a†)n
√

n!
ψ0x (18)

Writing the expression explicitly , we obtain :

ψn(x) ≡ 〈x | n〉 = 1√
2nn!

π−1/4 exp(−x2/2)Hn(x) (19)

Where Hn(x) is the nth Hermite polynomial, that having the generating
formula ( Rodrigues’s formula)

Hn(x) = (−1)nex2 dn

dxn e−x2
(20)

They are one of the classical orthogonal polynomials.
Note that this result can be obtained by solving immediately the Schrödinger’s
equation ( using serier solution, or Sturm-Liouville theorem ).

3 coherent states

Coherent states are a very important topic in quantum mechanics. Coherent
states are quantum states that display an oscillatory behaviour similar to the
one displayed in the simple harmonic oscillator. Formally, a coherent state is
a state that has a minimum uncertainty, and takes the form ( where a here is
the inhalation operator) :

a|α〉 = α|α〉 (21)

The ground state |0〉 is a coherent state. Since it has the minimum ucertainty
:

〈∆X〉0〈∆P〉0 =
h̄
2

(22)

This is not however the case for the stationary states |n〉, as we can show
that:

〈∆X〉n〈∆P〉n =
h̄
2
(2n + 1) (23)

Hence the states α〉, the coherent states of the Harmonic oscillator are not
stationary states. Their time evlution is important in the classical limit, as
it leads to Ernfest theorem, and one can obtain from them the Classical
equations of motion for the Harmonic oscillator. Hence the classical harminic
oscilator is the limit for the coherent states |α〉, not the states |n〉. However
the detailed mathematical argument is beyond the scope of this course, the
interested reader might want to refer to any Textbook in the references for
details.
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