PHYS 502 Lecture 10: Wave Laplace and Heat Equations
 Solutions of problems in finite domains-c
 Dr. Vasileios Lempesis

Two dimensional Laplace equation in polar coordinates: The electric field in the interior of a cylindrical capacitor

Boundary Conditions: $\left.u(\rho, \theta)\right|_{\rho=a} ^{0<\theta<\pi}=+V_{0} /\left.2 \quad u(\rho, \theta)\right|_{\rho=a} ^{\pi<\theta<2 \pi}=-V_{0} / 2$

$$
u(\rho, \theta)=\frac{2 V_{0}}{\pi} \sum_{n: \text { odd }}^{\infty} \frac{1}{n}\left(\frac{\rho}{a}\right)^{n} \sin n \theta
$$

Two Dimensional Wave-Equation in Cartesian Coordinates: Vibrations of a square drum

$$
\begin{aligned}
& u(x, y, 0)=f(x, y), \quad \frac{\partial u}{\partial t}(x, y, 0)=g(x, y) \\
& u(x, y)=\sum_{n . m} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi y}{L}\right)\left(A_{n m} \cos \omega_{n m} t+B_{n m} \sin \omega_{n m} t\right) \\
& \omega_{n m}=\frac{c \pi}{L} \sqrt{n^{2}+m^{2}}
\end{aligned}
$$

Solution is given in the lecture

Normal modes of a square drum ($L=1$)

$$
\mathrm{n}=2, \mathrm{~m}=2
$$

Normal modes of a square drum ($L=1$)

$n=1, m=1$

$$
n=2, m=1
$$

$n=1, m=2$

The modes with $n=2, m=1$ and $n=1, m=2$ have the same frequency: This effect is called degeneracy

Normal modes of a square drum

- It is obvious that the eigenfrequencies are not multiples of a fundamental frequency (harmonicity) as in the case of an onedimensional string:
- The harmonic law does not hold for vibrations in two and/or three dimensions!

Two Dimensional Wave-Equation in Polar Coordinates: Vibrations of a circular drum-a

$$
\begin{gathered}
\nabla^{2} u+k^{2} u=0 \\
\left.u(\rho, \theta)\right|_{\rho=a}=u(a, \theta)=0 \\
u(\rho, \theta, 0)=f(\rho, \theta)
\end{gathered}
$$

$$
u(\rho, \theta, t)=\sum_{n=0}^{\infty} \sum_{m=1}^{\infty} J_{n m}\left(x_{n m} \rho / a\right)\left\{A_{n m} \cos n \theta+B_{n m} \sin n \theta\right\} \cos \left(\omega_{n m} t\right)
$$

Solution is given in the lecture

Two Dimensional Wave-Equation in Polar Coordinates: Vibrations of a circular drum-b

$$
\begin{aligned}
& A_{n n}=\left\{\begin{array}{c}
\frac{2}{\pi\left[J_{n+1}\left(x_{n n} \rho / a\right)\right]^{2}} \int_{0}^{1} \int_{0}^{2 \pi} \rho f(\rho, \theta) J_{n}\left(x_{n n} \rho / a\right) \cos (n \theta) d \rho d \theta, \quad n=1,2,3, \ldots \\
\frac{1}{\pi\left[J_{1}\left(x_{0 m} \rho / a\right)\right]^{2}} \int_{0}^{1} \int_{0}^{2 \pi} \rho f(\rho, \theta) J_{0}\left(x_{0 m} \rho / a\right) d \rho d \theta, \quad n=0
\end{array}\right. \\
& B_{n n}=\frac{2}{\pi\left[J_{n+1}\left(x_{n m} \rho / a\right)\right]^{2}} \int_{0}^{1} \int_{0}^{2 \pi} \rho f(\rho, \theta) J_{n}\left(x_{n n} \rho / a\right) \sin (n \theta) d \rho d \theta, \quad n=0,1,2, \ldots
\end{aligned}
$$

Normal modes of a circular membrane-a

Serway, Physics for Scientists and Engineers, 5/e
Figure 18.17

Harcourt, Inc.

Normal modes of a circular membrane-b

Three Dimensional Laplace Equation in spherical coordinates: The electric field in the interior of a spherical capacitor

$$
\begin{aligned}
& \nabla^{2} u(r, \theta)=0 \\
& u(a, \theta)=f(\theta)
\end{aligned}
$$

$$
u(r, \theta)=\sum_{n=0}^{\infty} c_{n} r^{n} P_{n}(\cos \theta)
$$

$$
c_{n}=\frac{2 n+1}{2 a^{n}} \int_{-1}^{1} P_{n}(\xi) f(\xi) d \xi
$$

Solution is given in the lecture

