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1 Probability axioms

Example 1: Roll a die. Suppose the outcomes 1, . . . , 6, have probabilities
1/4, 1/4, 1/8, 1/8, 1/8, 1/8 respectively. What is the probability of (a) an
even number, (b) a prime number?

Example 2: Same experiment but we are now given the following informa-
tion:

P ({1, 2}) = P ({3, 4}) = P ({5, 6}) = 1/3, P ({1, 2, 3}) = 1/2.

What is (a) P ({3}), (b) P({ 4 }), (c) P({ 6 })?

Example 3: Same experiment but we are now given the following informa-
tion:

P ({1, 2}) = P ({3, 4}) = P ({5, 6}) = 1/2, P ({1}) = 1/4.

What is P ({2})?

Formalise this intuition.

The sample space Ω is an arbitrary set, thought of as the set ofpossible
outcomes. Events are subsets of the sample space, and probabilities are
numbers assigned to events. The collection of events, F , to which we assign
probabilities has a certain structure:

1. Ω ∈ F

2. If A ∈ F , then Ac ∈ F .

3. If An ∈ F for n = 1, 2, 3, ..., then ∪∞

n=1An ∈ F .
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A collection of subsets of Ω having these properties is called a σ-algebra.

Probability axioms: A function P : F → IR is called a probability if

1. 0 ≤ P (A) ≤ 1 for all A ∈ F , and P (Ω) = 1.

2. If A1, A2, . . . are disjoint sets, then P (∪∞

n=1An =
∑

∞

n=1 P (An).

Example 4: A dart is thrown at a circular dartboard of radius 1m and is
equally likely to land anywhere on it. (What does this mean?) How likely
is it to land in (a) the top half, (b) the bull’s eye, which is a central circle of
radius 1cm, (c) the point with co-ordinates (+0.2,−0.3), (d) the horizontal
diameter?

The point of this example is to illustrate why it is not possible to extend
the axioms to uncountable sums.

2 Conditional probability and independence

Example: Let’s go back to the example of rolling a die, where the outcomes
1, . . . , 6, have probabilities 1/4, 1/4, 1/8, 1/8, 1/8, 1/8 respectively. Given
that an even number was rolled, how likely are the events (a) {2}, (b)
{3, 4, 5}?

Definitions: For events A and B, if P (B) > 0, then P (A|B) := P (A ∩
B)/P (B). Note: P (·|B) is a probability.

We say that events A and B are independent of each other if P (A ∩ B) =
P (A)P (B). If P (B) > 0, this is the same as saying that P (A|B) = P (A).

Events A1, . . . , An are mutually independent if

P (∩n
i=1Ai) =

n
∏

i=1

P (Ai). (1)

An infinite sequence of events is said to be mutually independent if every
finite subcollection of them is mutually independent. (Why would it be a
bad idea to define it analogous to (1)?)

Total probability formula and Bayes’ formula: Let A1, A2 . . . , An be
a partition of Ω, i.e., the sets are mutually disjoint and their union is Ω.
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(I mean measurable partition, but I’ll omit the qualifier henceforth on the
grounds that we will only consider measurable sets.) Then, for any event B,

P (B) =
n
∑

i=1

P (Ai ∩ B).

Therefore,
P (Ai|B) =

P (Ai ∩ B)

P (B)
=

P (Ai ∩ B)
∑n

j=1 P (Aj ∩ B)
.

This formula can be used to compute all the P (Ai|B) if we are given all the
P (Ai) and P (B|Ai).

We can define conditional independence just like independence. We say
that A and B are conditionally independent given C if

P (A ∩ B|C ) = P (A|C)P (B|C).

3 Random variables

3

Probability spaces become a little more interesting when we define random variables
on them. A real valued function X defined on Ω is said to be a random variable if
for every Borel set B ⊂ R we have X−1(B) = {ω : X(ω) ∈ B} ∈ F . When we need
to emphasize the σ-field, we will say that X is F-measurable or write X ∈ F . If Ω
is a discrete probability space (see Example 1.1.1), then any function X : Ω → R is a
random variable. A second trivial, but useful, type of example of a random variable
is the indicator function of a set A ∈ F :

1A(ω) =

{
1 ω ∈ A
0 ω 6∈ A

A . Analysts call this
object the characteristic function of A

X- A
X−1(A)

�
�

�

(Ω,F , P ) (R,R) µ = P ◦X−1

X

The notation is supposed to remind us that this function is 1 on
.

.

Figure 3.1: Definition of the distribution of

X



Definition A random variable is a (measurable) function from the sample
space to the real numbers.

Example: Ω = {1, 2, 3, 4, 5, 6}, F = all subsets,

X(ω) =

{

1, if ω ∈ {2, 4, 6},
0, if ω ∈ {1, 3, 5}.

Often, the sample space will be implicit and we’ll just write X instead of
X(ω).

If X is a random variable, then X induces a probability measure on R called its
distribution by setting µ (A) = P (X ∈ A) for Borel sets A. Using the notation
introduced above, the right-hand side can be written as P (X−1(A)). In words, we
pull A ∈ R back to X−1(A) ∈ F and then take P of that set.

To check that µ is a probability measure we observe that if the Ai are disjoint then
using the definition of µ; the fact that X lands in the union if and only if it lands in
one of the Ai; the fact that if the sets Ai ∈ R are disjoint then the events {X ∈ Ai}
are disjoint; and the definition of µ again; we have:

µ (∪iAi) = P (X ∈ ∪iAi) = P (∪i{X ∈ Ai}) =
∑
i

P (X ∈ Ai) =
∑
i

µ(Ai).

X

4

The function f is called the probability density function of X.

We write fX if we need to make clear which random variable we are talking

Definition: A random variable X
non-negative function f such that, for any interval (x, ,    ),

P (X ∈ (x, y)) =

∫ y

x
f(u)du.

4   Discrete and Continuous random variables

about. Observe that

Definition: A random variable X

is said to becontinuous if there is a 

a and

P (X = xn) .

sequencea p1
, p , . . .{x1, x2, . . .},set

2
positive such that

pn=

is said to be discrete if there is a 

y    



In the case of discrete random variables, we were able to specify the proba-
bility of each possible outcome. That isn’t possible for continuous random
variables. What we want is to be able to specify the probability of every
“measurable” subset   of  the  real  numbers.

Observe   P (X ∈ (x, y)) = P (x ∈ [x, y ]) for continuous r.v.s.
How is F related to f?

that
F (x) = P (X ≤ x) has the form

(x) =
∫ x

−∞
f(y) dyF

The distribution of a random variable X is usually described by giving its distri-
bution function , F (x) = P (X ≤ x).

Theorem: Any distribution function F has the following properties:

(i) F is nondecreasing.

(ii) limx→∞ F (x) = 1, limx→−∞ F (x) = 0.

(iii) F is right continuous, i.e. limy↓x F (y) = F (x).

(iv) If F (x−) = limy↑x F (y) then F (x−) = P (X < x).

(v) P (X = x) = F (x)− F (x−).

Theorem: If F satisfies (i), (ii), and (iii) in Theroem 1.2.1, then it is the
distribution function of some random variable.

Distribution 

The  cumulative     distribution   function
of being completely general, and applying to both discrete and continuous
random variables (and mixtures of the two).

functions

(C.D.F)  has the advantage 

Clearly, F must be non-decreasing and right-continuous (why?), and we
must have limx→−∞ F (x) = 0 and limx→∞ F (x) = 1. The function F is
called the distribution function (or cumulative distribution function, cdf) of
the random variable X. We write FX when we want to make it clear which
random variable we are talking about.
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3. Poisson(λ):

P (X = k) =
λk

k!
e−λ, k = 0, 1, 2, . . .

4. Geometric(p): Models the number of coin tosses until seeing the first
head. P (X = k) = (1 − p)k−1p, k = 1, 2, 3, . . .

Where does the Poisson distribution come from? Consider random variables
X1, X2, . . . where Xn is Binomial(n, λ/n). Fix k ≥ 0 and look at P (Xn = k)
as n tends to infinity. We have

P (Xn = k) =

(

n

k

)

(λ

n

)k(

1 − λ

n

)n−k

=
n(n − 1) · · · (n − k + 1)

n · n · · ·n
1

k!
λk
(

1 − λ

n

)n(

1 − λ

n

)

−k

→ 1

k!
λke−λ.

Roughly speaking, the Poisson distribution models the number of occurences
of an event which is individually rare but where there is a large population of
individuals where it could occur. An example is the number of life insurance
policy holders of a given age who die in a given year. (This is a bit of a
simplification, a compound Poisson would be a better model.) Another
example is the number of atoms in a sample undergoing radioactive decay
in a given time period. Poisson apparently arrived at this model by studying
the number of deaths in the Prussian army due to being kicked by horses.

Examples of discrete random variables:

1. Bernoulli(p): Models the outcome of a coin toss.

P (X = 1) = p, P (X = 0) = 1 − p.

2. Binomial(n, p): Models the number of heads in n coin tosses.

P (X = k) =

(

n

k

)

pk(1 − p)n−k, 0 ≤ k ≤ n.

(Is this a valid probability distribution/ probability mass function?)
Note: Can construct X as X = Y1 + . . . + Yn, where the Yi are iid
Bernoulli(p).

Examples

1. Uniform([a, b]), a < b:

f(x) =

{

1
b−a

, a ≤ x ≤ b,
0, otherwise.

, F (x) =







0, x < a,
x−a
b−a

, a ≤ x ≤ b,
1, x > b.

of continuous distributions
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2. Exponential(λ), λ > 0: f(x) = λe−λx1(x ≥ 0),

F (x) =

{

0, x < 0,
1 − e−λx, x ≥ 0.

3. Gamma(α, λ), α, λ > 0:

f(x) =

{

1
Γ(α)λe−λx(λx)α−1, x ≥ 0
0, otherwise,

where Γ(α) :=
∫

∞

0 xα−1e−xdx. Here, α is called the shape parameter
and λ is called the scale parameter.

4. Normal(µ, σ2):

f(x) =
1√

2πσ2
exp

(

−(x − µ)2

2σ2

)

.

The parameters µ and σ2 are in fact the mean and variance of this
distribution (to be defined).

The exponential distribution is used to model the lifetime of things whose
“frailty” doesn’t change with age. What do we mean by this? Let X be an
Exp(λ) random variable denoting the lifetime of a light bulb, say. Condi-
tional on the light bulb having survived up to time t, what is the probability
that it will survive until time t + s? We can calculate this using Bayes’ for-
mula. We have

P (X > t + s|X > t) =
P ({X > t + s} ∩ {X > t})

P (X > t)
=

P (X > t + s)

P (X > t)

=
exp(−λ(t + s))

exp(−λt)
= e−λs = P (X > s). (2)

In other words, the probability that the light bulb will survive for another
s time units is the same no matter how old the light bulb is.

Examples of the exponential distribution in nature include the radioactive
decay of nuclei, where the probability that a nucleus decays in some time
interval (s, t] doesn’t depend on how old the nucleus is at time s. (The
residual lifetime is independent of the age.)

Suppose Y is a Gamma random variable with parameter (α, λ) and α is a
whole number. Then, we can obtain Y as

Y = X1 + X2 + . . . + Xα,
where the Xi are iid Exponential random variables with parameter λ.

The normal distribution is possibly the most famous distribution in all
of probability. It is also known as the Gaussian distribution, after Carl
Friedrich Gauss, who used it to model errors in astronomical observations.
It owes its ubiquity in probability and statistics to the Central Limit Theo-
rem, which we’ll see later.
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1 Expectation and variance

Intuitively, the average of a data set is one way of describing the “centre”
of the data set. It is not the only way; the median is another example. The
average, or mean, is defined for a data set x1, . . . , xn as

x =
1

n

n
∑

i=1

xi.

There is a related quantity defined for random variables, called their expec-
tation.

E[X] =
∑

n∈IN

xnP (X = xn),

If X is discrete and takes values in the set {x1, x2, . . .}, it is defined as

E[X] =

∫ ∞

−∞
xf(x)dx,

If X is continuous

both cases can be combined by defining it as

E[X] =
∫ ∞
−∞ xdF (x).

UUsing the Riemann-Stieltjes

integral,

What is the connection between the mean of a data set and the expectation
of a random variable? If the random variable were defined as a uniform
random sample from the data set, they would be the same.

Alternatively, if we were to generate a large data set by considering repeated,
independent realisations of the random variable, then the mean of this data
set would be close to the expectation of the random variable. This statement
is called the Law of Large Numbers.

Expectation of functions of a random variable: Let X be a random
variable and g a function. Then, Y = g(X) is another random variable (it is

Chapter 2 : Expectation and distribution of
random variables

whever the integral makes sense (integrability).

whever the sum is absolutely convergent. , it is defined as

U
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a function on the sample space defined by Y (ω) = (g ◦X)(ω)). To compute
its expectation as above, we would first have to compute the distribution of
the random variable Y . In fact, it turns out that there is an easier way:

E[Y ] =

∫ ∞

−∞
g(x)dF (x).

This should be intuitively obvious, at least in the discrete case.

Example: Let X be the outcome of the roll of a fair die, and define

Y = g(X) =

{

1, if X is even,
0, if X is odd.

Then, it is clear that P (Y = 1) = 1/2 and P (Y = 0) = 1/2, so E[Y ] = 0.5.
Alternatively, we have

E[Y ] =
6

∑

n=1

g(n)P (X = n) = (0 + 1 + 0 + 1 + 0 + 1)
1

6
=

1

2
.

Properties of the expectation:

1. Expectation is linear: For any two random variables X and Y defined
on the same sample space, and any constants a and b, E[aX + bY ] =
aE[X] + bE[Y ]. This is a very important property of expectations.
Again, it is pretty easy to see in the discrete case. The result extends
in the obvious way to sums of finitely many random variables.

2. The expectation of a constant is equal to that constant. (Think of
a constant as a random variable which takes only one value, with
probability 1).

Variance: Let X be a random variable and let us denote E[X] by µ. The
variance of X is defined as Var(X) = E[(X − µ)2]. Another way to write
this is

Var(X) = E[(X − µ)2] = E[X2 − 2µX + µ2]

= E[X2] − 2µE[X] + µ2

= E[X2] − (E[X])2.

Note that the variance has to be non-negative, because it is the expectation
of a non-negative random variable. Thus, we have shown that E[X2] ≥
(EX)2 for any random variable X. It is also clear from the definition that,
for any real numbers a and b,

Var(aX + b) = a2Var(X),

and that the variance of a constant is zero.
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Computing expected Values

Example If X has an exponential distribution with rate 1 then

EXk =
∫ ∞

0

xke−xdx = k!

So the mean of X is 1 and variance is EX2− (EX)2 = 2−12 = 1. If we let Y = X/λ,
Y exponential density with parameter λ.then Yhas

1/λ and variance 1/λ2.

1

If X has a standard normal distribution,

EX =
∫

x(2π)−1/2 exp(−x2/2) dx = 0 (by symmetry)

var (X) = EX2 =
∫

x2(2π)−1/2 exp(−x2/2) dx = 1

If we let σ > 0, µ ∈ R, and Y = σX+µ, then (b) of Theorem 1.6.1 and (1.6.4), imply
EY = µ and var (Y ) = σ2 Y has density

(2πσ2)−1/2 exp(−(y − µ)2/2σ2)

the normal distribution with mean µ and variance σ2.

.  Actually, the random variable 

.

RecallX has a Bernoulli distribution with parameter p if
P (X = 1) = p and P (X = 0) = 1− p. Clearly,

EX = p · 1 + (1− p) · 0 = p

Since X2 = X, we have EX2 = EX = p and

var (X) = EX2 − (EX)2 = p− p2 = p(1− p)

Recall X has a Poisson distribution with parameter λ if

P (X = k) = e−λλk/k! for k = 0, 1, 2, . . .

To evaluate the moments of the Poisson random variable, we use a little inspiration
to observe that for k ≥ 1

E(X(X − 1) · · · (X − k + 1)) =
∞∑
j=k

j(j − 1) · · · (j − k + 1)e−λ
λj

j!

= λk
∞∑
j=k

e−λ
λj−k

(j − k)!
= λk

where the equalities follow from the facts that (i) j(j − 1) · · · (j − k + 1) = 0 when
j < k, (ii) cancelling part of the factorial, (iii) the fact that Poisson distribution has
total mass 1. Using the last formula, it follows that EX = λ while

var (X) = EX2 − (EX)2 = E(X(X − 1)) + EX − λ2 = λ

.

.

.

Example 2

the We conclude that 

has expectation

Example 3

Example
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2 Joint and marginal distributions

Let us build up our intuition starting with discrete random variables. Roll
two “independent” fair dice. (We haven’t yet defined independence for ran-
dom variables but just use your intuition.) Let X be the number shown on
the first die, Y on the second and Z their sum. (Note that all three random
variables are defined on the same sample space, {1, . . . , 6}×{1, . . . , 6}.) The
joint distribution of (X, Y ) can be specified by writing down the probability
of each of the 36 possible outcomes (i, j), 1 ≤ i, j ≤ 6. Likewise, the joint
distribution of (X, Z) can be specified by specifying probabilities of 36 dif-
ferent events of the form (i, j), 1 ≤ i ≤ 6, i + 1 ≤ j ≤ i + 6. In both cases,
the function (i, j) 7→ p(i, j) is called the probability mass function.

Given the joint pmf for (X, Z), we can compute the “marginal” pmf for
one of them, say Z. For example, suppose we are given the following joint
probabilities:

pX,Z(1, 4) = pX,Z(2, 4) = pX,Z(3, 4) =
1

36
,

pX,Z(4, 4) = pX,Z(5, 4) = pX,Z(6, 4) = 0,

where pX,Z(i, j) denotes P (X = i, Z = j). Then we can compute

pZ(4) := P (Z = 4) =
6

∑

i=1

pX,Z(i, 4) =
3

36
.

Definitions: Let X1, . . . , Xn be random variables defined on the same sam-
ple space. Their joint distribution function (or joint cdf) is defined as

FX1,...,Xn
(x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn)

= P ({ω ∈ Ω : (X1(ω), . . . , Xn(ω)) ∈ (−∞, x1] × · · · × (−∞, xn]}).

(What properties should F satisfy?) Note that the cdf is defined for both
discrete and continuous random variables.

We say that X1, . . . , Xn have joint density f if f is a non-negative function
such that

FX1,...,Xn
(x1, . . . , xn) =

∫ x1

−∞
· · ·

∫ xn

−∞
f(u1, . . . , un)du1 · · · dun.

Likewise, we can find the probability that (X1, . . . , Xn) lie in a (measurable)
subset of IRn by integrating the joint density over this set.
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Covariance: Let X and Y be random variables on the same sample space.
Their covariance is defined as

Cov(X, Y ) = E[(X − EX)(Y − EY )].

Since EX and EY are numbers, (X−EX)(Y −EY ) is a function of (X, Y ),
i.e., it is also a random variable. Its expectation can be computed as

E[(X − EX)(Y − EY )] =

∫ ∞

−∞

∫ ∞

−∞
(x − EX)(y − EY )f(x, y)dxdy,

assuming that (X, Y ) have a joint density f .

The covariance can also be expressed as follows:

Cov(X, Y ) = E[XY − X · (EY ) − Y · (EX) + (EX) · (EY )]

= E[XY ] − E[X · (EY )] − E[Y · (EX)] + E[(EX) · (EY )]

= E[XY ] − (EY ) · (EX)] − (EX) · (EY )] + (EX) · (EY )

= E[XY ] − (EX)(EY ).

The covariance of any two random variables has the following property:

(Cov(X, Y ))2 ≤ Var(X)Var(Y ).

This will follow from the fact that, for any two random variables,

(E[XY ])2 ≤ (E[X2])(E[Y 2]), (1)

for which we now give a proof. Note that

0 ≤ E[(X + aY )2] = E[X2] + 2aE[XY ] + a2E[Y 2] (2)

for all a ∈ IR. The minimum of the RHS is attained at a = −E[XY ]/E[Y 2].
Substituting this for a above, we get

0 ≤ E[X2] − 2
(E[XY ])2

E[Y 2]
+

(E[XY ])2

E[Y 2]
.

Re-arranging this yields (1) provided E[Y 2] 6= 0. If E[Y 2] = 0 but E[X2] 6=
0, the proof still works with X and Y interchanged. If E[X2] and E[Y 2] are
both zero, then (2) tells us that 2aE[XY ] ≥ 0 for all a ∈ IR, which is only
possible if E[XY ] = 0.
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Independence: We discussed earlier what it means for events to be in-
dependent. What does it mean for two or more random variables defined
on the same sample space to be independent? Loosely speaking, random
variables X1, . . . , Xn are mutually independent if any events involving each
of them individually are independent. More precisely, they are mutually
independent if, for any measurable subsets B1, . . . , Bn of IR, we have

P (X1 ∈ B1, . . . , Xn ∈ Bn) =
n

∏

i=1

P (Xi ∈ Bi).

This is not an operationally useful definition (at least for continuous random
variables) because it is not feasible to check this equality for all measurable
subsets!

We have the following alternative characterisation of independence. Random
variables X1, . . . , Xn are mutually independent if, and only if,

FX1,...,Xn
(x1, . . . , xn) = FX1

(x1) · · ·FXn
(xn), ∀x1, . . . , xn ∈ IR.

Here, FXi
the marginal distribution of Xi. (Given the joint distribution,

how do you compute the marginal distribution?) Equivalently, if the random
variables possess a joint density, then they are mutually independent if, and
only if,

fX1,...,Xn
(x1, . . . , xn) = fX1

(x1) · · · fXn
(xn), ∀x1, . . . , xn ∈ IR.

Note that the existence of marginal densities is guaranteed if there is a joint
density. (How do you compute the marginal densities from the joint?)

Examples:

1. Suppose U1 and U2 are uniform on [0, 1], and independent of each
other. Let X1 = min{U1, U2} and X2 = max{U1, U2}. Let us compute
the joint distribution of (X1, X2), denoted F . First, it is clear that
F (x1, x2) is equal to zero if either x1 or x2 is negative, and equal to 1
if both are bigger than 1.

Let us consider the case where both are between 0 and 1. (You might
want to work out the other cases for yourself.) First, if x1 > x2, it is
clear that F (x1, x2) = F (x2, x2), so it suffices to consider x1 ≤ x2. In
that case, we have

P (X1 ≤ x1, X2 ≤ x2) = P (U1 ≤ x1, U2 ≤ x1)

+P (U1 ≤ x1, x1 < U2 ≤ x2) + P (U2 ≤ x1, x1 < U1 ≤ x2)

= x2

1 + 2x1(x2 − x1) = 2x1x2 − x2

1).
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From this, we can calculate the density. On the region 0 ≤ x1 ≤ x2 ≤
1, the density is given by

f(x1, x2) =
∂2F (x, y)

∂x∂y
= 2.

The density is zero outside this region.

2. Let us return to the example of a dart thrown at a circular dartboard
of unit radius, and equally likely to fall anywhere on it. In this case,
it is easy to see that the dart’s position has density

f(x, y) =
1

π
1(x2 + y2 ≤ 1).

Are the co-ordinates X and Y independent? Can you compute the
marginal densities of X and Y ?

3. Multivariate normal distribution: The random variables X1, . . . , Xn

are said to be jointly normally distributed with mean vector µ =
(µ1, . . . , µn) and covariance matrix C if C is a positive definite ma-
trix, and they have the joint density function

f(x) =
1

√

2π|det(C)|
exp

(

−
1

2
(x − µ)T C−1(x − µ)

)

,

where x = (x1, . . . , xn)T .

.
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3 Conditional distributions and conditional expec-

tations

Let us go back to the example of rolling two fair dice. Let X and Y denote
the number showing on the individual dice, and Z their sum. What do
we mean by the conditional distribution of X given Z? Earlier, we defined
conditional probability for events. What it means to specify the above is
to specify the conditional probability of every event involving X given any
event involving Z. How would this work in the above example?

Consider first the event Z = 2. Conditioning on this, we have

P (X = 1|Z = 2) =
P (X = 1, Z = 2)

P (Z = 2)
=

P (X = 1, Y = 1)

P (X = 1, Y = 1)
= 1.
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Also, it is clear that P (X = j|Z = 2) = 0 for all j ∈ {2, . . . , 6}. Likewise,
conditioning on Z = 3, we have P (X = 1|Z = 3) = P (X = 2|Z = 3) = 1/2
and P (X = j|Z = 3) = 0 for j /∈ {1, 2}. Similarly, we can compute
conditional probabilities conditioning on each of the “elementary” events
Z = k. We shall use the notation pX|Z(·|k) to denote the probability mass
function of X conditional on the event Z = k. (Recall that a conditional
probability is also a probability, hence this is a probability mass function.)

To complete the description, we also have to specify probabilities conditional
on events of the form Z ∈ {1, 2}, Z ∈ {2, 3, 5} etc. But this is not necessary,
because we can compute all such conditional probabilities from the marginal
distribution of Z, and the conditional pmf described above, using Bayes’
formula. For example,

P (X = 1|Z ∈ {2, 3}) =
P (X = 1, Z ∈ {2, 3})

P (Z ∈ {2, 3})

=
P (X = 1, Z = 2) + P (X = 1, Z = 3)

P (Z ∈ {2, 3})

=
pZ(2)pX|Z(1|2) + pZ(3)pX|Z(1|3)

pZ(2) + pZ(3)
.

The last quantity above can be computed given the marginal pmf of Z and
the conditional pmf of X conditioned on elementary events for Z.

It is not obvious how to extend this idea to continuous distributions because,
if X and Z are continuous random variables, then P (Z = z) will be zero
for any z. Hence, we can’t compute conditional probabilities conditional on
this event. But let’s do it heuristically anyway. Suppose (X, Z) have a joint
density fX,Z and marginals fX and fZ . Thus, for an infinitesimal dz, the
probability that Z is in (z, z +dz) is f(z)dz. Now, conditional on this, what
is the probability that X lies in (x, x + dx). We can compute this using
Bayes’ formula:

P (X ∈ (x, x + dx)|Z ∈ (z, z + dz)) =

P ((X, Z) ∈ (x, x + dx) × (z, z + dz))

P (Z ∈ (z, z + dz))
=

f(x, z)dxdz

f(z)dz
.

This motivates us to define the conditional density as follows:

fX|Z(x|z) =
fX,Z(x, z)

fZ(z)
.
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Note that, for each fixed z, this defines a density function. We can use it to
define the conditional cdf

FX|Z(x|z) =

∫ x

−∞
fX|Z(u|z)du.

Having defined conditional distributions, we can define the property of con-
ditional independence. We say that random variables X and Y are condi-
tionally independent given Z if

FX,Y |Z(x, y|z) = FX|Z(x|z)FY |Z(y|z) for all x, y, z.

Next, we turn to conditional expectations. Their definition is very similar to
that of conditional distributions. As usual, we start with the discrete space.
Let us go back to the example of the two dice, where X and Y denote the
outcomes on the individual dice, and Z their sum. Say we are interested
in the expectation of X conditional on Z. As in the case of conditional
distributions, it suffices to specify E[X|Z = z] for each possible value of z.
Thus, for example,

E[X|Z = 3] = 1 · P (X = 1|Z = 3) + 2 · P (X = 2|Z = 3) =
1

2
+

2

2
=

3

2
.

In general, in the discrete case,

E[X|Z = z] =
∑

xP (X = x|Z = z) =

∑

xP (X = x, Z = z)

P (Z = z)
.

This is a number, one for each possible value of Z. We can think of these
numbers as describing a function of Z. In other words, E[X|Z] = g(Z),
where g is the function defined by g(z) = E[X|Z = z]. Thus, E[X|Z] is
itself a random variable.

The definition of conditional expectations in the continuous case is anal-
ogous. We shall only be interested in cases where the joint (and hence,
conditional) densities exist. If that is so, we can define

E[X|Y = y] =

∫ ∞

−∞
xfX|Y (x|y)dx =

∫ ∞

−∞
x

fX,Y (x, y)

fY (y)
dx,

and think of E[X|Y ] as a function of Y , whose value at y is specified by the
equation above.
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Conditional expectation satisfies the same linearity property as expectation,
i.e., E[aX + bY |Z] = aE[X]+ bE[Y ]. The analogue of the second property,
namely that the expectation of a constant is constant, is somewhat different.
It is that the expectation of any function of Z, conditional on Z, behaves like
a constant. In particular, it is conditionally independent of every random
variable. In other words,

E[Xh(Z)|Z] = E[X|Z]E[h(Z)|Z] = h(Z)E[X|Z],

for any random variables X and Z, and any measurable function h.

Conditional expectation satisfies one more property, which doesn’t have an
analogue for expectations. Recall that E[X|Z] is itself a random variable.
What is the expected value of this random variable? It turns out that

E[E[X|Z]] = E[X].

This is easy to prove, at least in the discrete case. It can also be extended
in the form of a chain rule, as follows. Observe that E[X|Y, Z] is a function
of (Y, Z) and itself a random variable. If we compute its conditional expec-
tation given Z, then we get another random variable, which is a function of
Z. And we have,

E[E[E[X|Y, Z]|Z]] = E[X].
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1 Transformation of random variables

Example: Consider the probability space Ω = {1, . . . , 6}, F = all subsets
of Ω, with probabilities P (ω) = 1/6 for all ω ∈ Ω.
(a) On this space, define the random variable X(ω) = ω. Then the pmf of
X is {1/6, . . . , 1/6} on the set {1, . . . , 6}. Suppose Y = X2. Then what is
the pmf of Y ?
(b) On the same space, suppose that X is defined instead as X(ω) = ω− 2,
and that again Y = X2. What are the pmfs of X and Y ?

The idea can be extended to continuous random variables, but there is one
subtlety involved.

Example: Suppose X is Uniform([0, 1]) and Y = 2X. What are the cdf
and pdf of Y ? We first compute the cdf. It is obvious that FY (y) = 0 for
y < 0. Also,

P (Y ≤ y) = P (2X ≤ y) = P (X ≤ y/2) = y/2 for y ∈ [0, 2).

Finally, FY (y) = 1 for y ≥ 2. Differentiating the above cdf, we get fY (y) =
1/2 for y ∈ (0, 1) and fY (y) = 0 otherwise.

Could we have guessed this? Intuitively, for an infinitesimal dy,

P (Y ∈ (y, y + dy)) = P (2X ∈ (y, y + dy)) = P
(

X ∈
(y

2
,
y

2
+ dy2

)

,

so that

fY (y)dy = fX

(y

2

)1

2
dy,

which gives the same answer. This intuition can be extended.
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Let X be a random variable, g be a differentiable and strictly monotone
function, and let Y = g(X). Then, by the same reasoning as above,

fY (y)dy = fX(x)dx,

where y = g(x). How are dy and dx related? We want y + dy = g(x+ dx),
so we must have dy = g′(x)dx. We are almost there, except that the sign of
g′(x) doesn’t matter. (It may be the interval (x− dx, x) that gets mapped
to (y, y + dy).) So, we have

fY (y) = fX(g−1(y))
1

|g′(g−1(y)|
, (1)

where the inverse g−1 of the function g is well-defined by the assumption
that g is strictly monotone. (The domain of g−1 is the range of g.)

What if g isn’t monotone? Then the equation y = g(x) may have many
solutions for x, and we have to add up the probability contributions from
all of them. If there are only countably many solutions, then (1) changes to

fY (y) =
∑

x:g(x)=y

fX(x)
1

|g′(x)|
. (2)

The same idea extends to joint distributions. Suppose X1, . . . , Xn are ran-
dom variables on the same sample space and (Y1, . . . , Yn) = g(X1, . . . , Xn)
for some differentiable function g : IRn → IRn. Then, using boldface to
denote vectors,

fY(y) =
∑

x:g(x)=y

fX(x)
1

|det(Jg(x))|
. (3)

Here, det(Jg(x)) denotes the determinant of the Jacobian matrix

Jg(x) =







∂g1

∂x1
(x) · · · ∂gn

∂x1
(x)

...
. . .

...
∂g1

∂xn

(x) · · · ∂gn

∂xn

(x)







2 Sums of independent random variables

Example: Suppose X and Y are the numbers obtained by rolling two dice,
and suppose Z = X + Y . What is P (Z = 4)?
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If you have written that out in full, then you will see that for arbitrary
discrete random variables X and Y taking only integer values, if we define
Z as X + Y , then

P (Z = n) =
∞
∑

k=−∞

P (X = k, Y = n− k).

If, moreover, X and Y are independent, then we can rewrite this as

P (Z = n) =
∞
∑

k=−∞

P (X = k)P (Y = n− k). (4)

If X and Y are continuous random variables, we get an analogous equation
for the density of Z = X + Y :

fZ(z) =

∫

∞

−∞

fX(x)fY (z − x)dx. (5)

The expressions on the RHS of (4) and (5) are called convolutions.

3 Generating functions and characteristic functions

Let X be a discrete random variable. Its generating function GX is defined
as

GX(z) = E[zX ] =
∑

x

zxP (X = x).

If X only takes values in {0, 1, 2, . . . , }, then the above is a power series in z
and always converges for all z (real or complex) such that |z| ≤ 1. The radius
of convergence of a power series is defined as the largest value of r such that
the power series converges whenever |z| ≤ r. Thus, for generating functions,
the radius of convergence is at least 1, and could be bigger (possibly infinite).

Generating functions have the following properties:

1. GX(1) = E[1X ] = 1.

2. If |z| < r, where r is the radius of convergence, thenG′

X(z) = E[XzX−1],
G′′

X(z) = E[X(X − 1)zX−2], and so on. In particular, G′

X(1) = E[X],
G′′

X(1) = E[X(X − 1)] etc., provided that GX is twice differentiable
at 1; this will be the case if the radius of convergence is strictly bigger
than one. If not, we need to take a limit as z increases to 1.

20



3. If X and Y are independent, and Z = X + Y , then

GZ(z) = E[zZ ] = E[zX+Y ] = E[zXzY ] = E[zX ]E[zY ] = GX(z)GY (z).

(Which equality in the chain above uses independence?)

There is a closely related function called the moment generating function
(mgf), which we’ll denote φ. It is defined as

φX(s) = E[esX ].

If X has a density fX , then

φX(s) =

∫

∞

−∞

esxfX(x)dx.

(The integral is well-defined for all real s but could take the value +∞.)

We can obtain the properties of mgfs analogous to those of generating func-
tions. In particular,

1. φX(0) = 1.

2. If φX is finite in a neighbourhood of zero, then

φ
(k)
X (0) = E[Xk].

3. If X and Y are independent and Z = X + Y , then

φZ(s) = φX(s)φY (s).

Finally, characteristic functions are just like generating functions, expect
that they are defined on the imaginary axis instead of the real axis. We’ll
use ψ to denote the characteristic function, defined for a random variable X
as ψX(θ) = E[eiθX ]. If X has a density fX , this implies that

ψX(θ) =

∫

∞

−∞

eiθxfX(x)dx.

You might recognise this as the Fourier transform of fX . It can be inverted
to obtain the density of X:

fX(x) =
1

2π

∫

∞

−∞

e−iθxψX(θ)dθ.
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4 Probability inequalities

Markov’s inequality: SupposeX is a positive random variable, i.e., P (X ≥
0) = 1. Then, for any a > 0,

P (X > a) ≤
E[X]

a
.

This follows from the fact that

X ≥ X · 1(X > a) ≥ a1(X > a),

and so the expectations of these random variables obey the same inequalities.
Here 1(X > a) denotes the random variable which takes the value 1 on {ω ∈
Ω : X(ω) > a} and takes the value 0 on {ω ∈ Ω : X(ω) ≤ a}. It is called
the indicator of the event {X > a}. Note that E[1(X > a)] = P (X > a).
In general, the expectation of the indicator of an event is the probability of
that event.

Chebyshev’s inequality: LetX be any random variable. Take Y to be the
random variable Y = (X−E[X])2. Then Y is positive and E[Y ] = Var(X).
Applying Markov’s inequality to Y (and then restating it in terms of X),
we get

P (|X − E[X]| > a) ≤
Var(X)

a2
.

Chernoff’s inequality: Let X be any random variable and take Y = eθX ,
which is positive for all real θ. Applying Markov’s inequality to Y yields

P (X > a) ≤ e−θaE[eθX ] = e−θaφ(θ) ∀ θ ≥ 0.

Why only for θ ≥ 0 and not all real θ? Can you state a corresponding
inequality for P (X < a)?

5 Laws of large numbers and the central limit the-
orem

Convergence of random variables Let X and X1, X2, . . . be random
variables defined on the same sample space. We say that the sequence Xn

converges to X in probability if

P (|Xn −X| > δ) → 0 ∀δ > 0. (6)
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Go back to thinking of random variables as functions on the sample space.
We say that the functions Xn converge pointwise to X if Xn(ω) converges to
X(ω) for all ω ∈ . Is convergence in probability the same as pointwise
convergence? The answer is no. But there is a notion of convergence which
is closely related to pointwise convergence.

We say that the sequence Xn converges to X almost surely (a.s.) if

P ({ω : Xn(ω) → X(ω)}) = 1. (7)

Almost sure convergence implies convergence in probability but not the other
way round.

Suppose now that the random variables X1, X2, . . . are independent and
identically distributed (iid), and also that they have finite mean µ. Define
Sn = X1 + . . .+Xn. Then,

Sn

n
→ µ in probability (weak law of large numbers)

Sn

n
→ µ almost surely (strong law of large numbers)

We now give a proof of the WLLN under the stronger assumption that the
Xi have finite variance, denoted σ2. First observe that

Var
(Sn

n

)

=
1

n2
(Var(X1) + . . .+ Var(Xn)) =

σ2

n
.

On the other hand, E[Sn/n] = µ. Hence, by Chebyshev’s inequality,

P
(∣

∣

∣

Sb

n
− µ

∣

∣

∣> δ
)

≤
σ2

nδ
,

which tends to zero as n tends to infinity.

Central Limit Theorem: Suppose as before that X1, X2, . . . are iid ran-
dom variables, and assume that they have both finite mean µ and finite vari-
ance σ2. Define Sn as before, and Zn as (Sn−nµ)/σ2. Then the sequence of
random variables Zn converges in distribution to a standard normal random
variable Z.

I haven’t defined convergence in distribution. A formal definition is that,
for all bounded continuous functions g, E[g(Zn)] converges to E[g(Z)]. In
the context of the CLT, it means that for all intervals (a, b), P (Zn ∈ (a, b))
converges to P (Z ∈ (a, b)). (If the limiting distribution was not continuous,
then we’d have to be careful about points of discontinuity of the cdf. The
definition in terms of bounded continuous functions avoids this technicality.)
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If 0 ≤ Xn↑X then EXn ↑ EX.

If Xn → X a.s., |Xn| ≤ Y for all n, and EY <∞, then EXn → EX.

Integration to the Limit

Links between the modes of convergence

h

We have the following diagramm for the modes of convergence:

Xn −→ X ⇒ Xn
P−→ X ⇒ Xn

d−→ X

Xn
L1

−→ X

⇑

Xn
Lp

−→ X, (p > 1)

.

⇒

    
      

A sequence of r.v. (Xn)n≥1 is said to converge to a r.v. X,

(i) in the almost sure sense, and we denote Xn −→ X if

P
(
{ω ∈ Ω , Xn(ω)→ X(ω)}

)
= 1;

(ii) in the probability sense, and we denote Xn
P−→ X if

P
(
|Xn −X| > ε}

)
→ 0, ∀ε > 0;

(iii) in Lp sense (p > 0), and we denote Xn
Lp

−→ X if

E
(
|Xn −X|p

)
→ 0;

(iv) in the law sense or the distribution sense, and we denote Xn
d−→ X if

E h(Xn) → E
(
h(X)

)
,

)(

Theorem : Monotone Convergence Theorem

Theorem 1.6.6. Dominated Convergence Theorem

for each continous bounded function

a.s.

a.s.

a.s.,
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Order statistics

The picture is that there is a very large (theoretically infinite) population. Each
member of the population has some characteristic quantity X. Consider a num-
ber α between zero and one. Then there is supposed to be a number tα such
that the proportion of the population for which the X is less than or equal to
tα is α.

One can think of taking a single random member of the population and
measuring this quantity X1. The assumption is that X1 is a continuous ran-
dom variable. Then the cumulative distribution function F (t) = P [X ≤ t] is
continuous. It follows that there is a tα such that F (tα) = α.

There are several common examples. The most important is the value such
that half the population is above this value and half the population is below
this value. Thus when α = 1/2 the corresponding t 1

2
is called the population

median m.
Similarly, when α = 1/4 the t 1

4
is called the lower population quartile. In

the same way, when α = 3/4 the t 3
4

is called the upper population quartile. In
statistics the function F characterizing the population is unknown. Therefore
all these tα are unknown quantities associated with the population.

Now consider the experiment of taking a random sample of size n and mea-
suring the corresponding quantities X1, . . . , Xn. Thus again we have indepen-
dent random variables all with the same distribution. We are assuming that
the distribution is continuous. Thus the probability is one that for all i 6= j the
quantities Xi 6= Xj are unequal.

The order statistics X(1), . . . , X(n) are the quantities obtained by arranging
the random variables X1, . . . , Xn in increasing order. Thus by definition

X(1) < X(2) < · · · < X(i) < · · · < X(n−1) < X(n).

1 Sample median and population median

Chapter 4 : 

The joint density of X1, . . . , Xn is f(x1) · · · f(xn). This product structure is
equivalence to the independence of the random variables. On the other hand,
the joint density of the order statistics X(1), . . . , X(n) is n!f(x1) · · · f(xn) for
x1 < x2 < · · · < xn and zero otherwise. There is no way to factor this. The
order statistics are far from independent.



Theorem 5.1 Let X1, . . . , Xn be independent random variables with a common
continuous distribution. Let X(1), . . . , X(n) be their order statistics. For each
x, let Nn(x) be the number of i such that Xi ≤ x. Then Nn(x) is a binomial
random variable with parameters n and F (x). Furthermore,

P [X(j) ≤ x] = P [Nn(x) ≥ j].
This result can be stated even more explicitly in terms of the binomial prob-

abilities. In this form it says that if P [Xi ≤ x] = F (x), then

P [X(j) ≤ x] =
n∑

k=j

(
n

k

)
F (x)k(1− F (x))n−k.

This theorem is remarkable, in that it gives a rather complete description of
order statistics for large sample sizes. This is because one can use the central
limit theorem for the corresponding binomial random variables.

Theorem 5.2 Let X1, . . . , Xn be independent random variables with a common
continuous distribution. Let X(1), . . . , X(n) be their order statistics. Fix α and
let F (tα) = α. Let n→∞ and let j →∞ so that

√
n(j/n− α)→ 0. Then the

order statistics X(j) is approximately normally distributed with mean

E[X(j)] ≈ tα
and standard deviation

σX(j) ≈
√
α(1− α)
f(tα)

√
n
.

the population median. Consider sample sizes n that are odd, so that the sample
median Mn = X(n+1

2 ) is defined. Let n → ∞. Then the sample median Mn is
approximately normally distributed with mean

E[Mn] ≈ m (5.11)

and standard deviation
σMn ≈

1
2f(m)

√
n
. (5.12)
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The fundamental theorem on order statistics is the following. It shows that
questions about order statistics reduce to questions about binomial random
variables.

The order statistics are quite useful for estimation. Take α = i/(n + 1).
Then it seems reasonable to use the order statistics X(i) to estimate tα.

Thus, for instance, if n is odd and i = (n + 1)/2 and α = 1/2, then X(i) is
the sample median. This estimates the population median m = t 1

2
.


