Introduction

Dr. Bander Almutairi

King Saud University

29 Jan 2014
(1) Differential Equation
(2) Classification of Differential Equation
(3) Order of Differential Equation

4 Linear Differential Equation
(5) Origin of Differential Equations Solution
(6) The Elimination of Arbitrary Constant

Definition
A differential equation

Definition
 A differential equation is an equation containing an unknown function and its derivatives.

Definition
 A differential equation is an equation containing an unknown function and its derivatives.

Example (1):

Definition

A differential equation is an equation containing an unknown function and its derivatives.

Example (1):

- $\frac{d y}{d x}=5 x+2$.
- $4 \frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}=a y$.
- $\left(\frac{d^{100} y}{d x^{100}}\right)^{99}+\left(\frac{d y}{d x}\right)^{101}=3$.

Definition

A differential equation is an equation containing an unknown function and its derivatives.

Example (1):

- $\frac{d y}{d x}=5 x+2$.
- $4 \frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}=a y$.
- $\left(\frac{d^{100} y}{d x^{100}}\right)^{99}+\left(\frac{d y}{d x}\right)^{101}=3$.

In the previous examples, y is depentent variable and x is independent variable.

Definition

A differential equation is an equation containing an unknown function and its derivatives.

Example (1):

- $\frac{d y}{d x}=5 x+2$.
- $4 \frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}=a y$.
- $\left(\frac{d^{100} y}{d x^{100}}\right)^{99}+\left(\frac{d y}{d x}\right)^{101}=3$.

In the previous examples, y is depentent variable and x is independent variable. These equations are called ordinary differentail equations (ODE).

Definition

A differential equation is an equation containing an unknown function and its derivatives.

Example (1):

- $\frac{d y}{d x}=5 x+2$.
- $4 \frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}=a y$.
- $\left(\frac{d^{100} y}{d x^{100}}\right)^{99}+\left(\frac{d y}{d x}\right)^{101}=3$.

In the previous examples, y is depentent variable and x is independent variable. These equations are called ordinary differentail equations (ODE).

Example (2):

Example (2):

- $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.

Example (2):

- $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
- $3 \frac{\partial^{4} u}{\partial x^{4}}+4 \frac{\partial^{2} u}{\partial t^{2}}=0$.

Example (2):

- $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
- $3 \frac{\partial^{4} u}{\partial x^{4}}+4 \frac{\partial^{2} u}{\partial t^{2}}=0$.

In the previous example, u is dependent variable and x and y are independent variables.

Example (2):

- $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
- $3 \frac{\partial^{4} u}{\partial x^{4}}+4 \frac{\partial^{2} u}{\partial t^{2}}=0$.

In the previous example, u is dependent variable and x and y are independent variables. These equations are called partial differential equations(PDE).

Definition

We say that an equation is ODE if the unknown function depends only on one variable.

Definition

We say that an equation is ODE if the unknown function depends only on one variable.

Examples:

- $\frac{d y}{d x}=5 x+2$.
- $4 \frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}=a y$.
- $\left(\frac{d^{100} y}{d x^{100}}\right)^{99}+\left(\frac{d y}{d x}\right)^{101}=3$.

Definition

We say that an equation is ODE if the unknown function depends only on one variable.

Examples:

- $\frac{d y}{d x}=5 x+2$.
- $4 \frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}=a y$.
- $\left(\frac{d^{100} y}{d x^{100}}\right)^{99}+\left(\frac{d y}{d x}\right)^{101}=3$.

Definition
We say that an equation is PDE if the unknown function depends on more than one variable.

Definition

We say that an equation is ODE if the unknown function depends only on one variable.

Examples:

- $\frac{d y}{d x}=5 x+2$.
- $4 \frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}=a y$.
- $\left(\frac{d^{100} y}{d x^{100}}\right)^{99}+\left(\frac{d y}{d x}\right)^{101}=3$.

Definition

We say that an equation is PDE if the unknown function depends on more than one variable.

Examples:

- $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
- $3 \frac{\partial^{4} u}{\partial x^{4}}+4 \frac{\partial^{2} u}{\partial t^{2}}=0$.

Definition

(1) The order of the differential equation is order of the highest derivative in the differential equation.

Definition

(1) The order of the differential equation is order of the highest derivative in the differential equation.
(2) The degree of a differential equation is given by the degree of the power of the highest derivative used.

Definition

(1) The order of the differential equation is order of the highest derivative in the differential equation.
(2) The degree of a differential equation is given by the degree of the power of the highest derivative used.

Examples: http://www.mathsmutt.co.uk/files/diffeq.htm.

Definition

An n-th linear differential equation is of the form:
$a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)$, or

$$
f\left(x, y, \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \ldots, \frac{d^{n} y}{d x^{n}}\right)=0
$$

Origin of Differential Equations Solution:

(1) Geometric Origin. Examples

- $y=c_{1} x+c_{2}$, striaght line.
- $y=c e^{x^{2} / 2}$, curve.
(2) Physical Origin. Example: Free falling stone

$$
\frac{d^{2} s}{d t^{2}}=-g
$$

where s is the distance or height and g is acceleration due to gravity.
$\mathbf{Q}(1):$ Prove that $y=e^{2 x}$ is a solution of the eqution $y^{\prime \prime}+y^{\prime}-6 y=0$. $\mathbf{Q}(2):$ Verify that $y=x^{3} e^{x}$ is a solution of the differential equation $x y^{\prime \prime}-2(x+1) y^{\prime}+(x+2) y=0 ; x>0$.
$\mathbf{Q}(3)$: verify that $F(x, y)=x^{2}+y^{2}-4$ satisfyies an implicit solution of the differential equation $\frac{d y}{d x}=-\frac{x}{y}$, on the interval. "We say a relation $F(x, y)=0$ is an implicit solution of an ordinary differential equation on an interval l if the relation definds implicity a function $y=\phi(x)$ satisfy the differential equation.
$\mathbf{Q (1) : ~ E l i m i n a t e ~ t h e ~ a r b i t r a r y ~ c o n s t a n t s ~} c_{1}$ and c_{2} from the relation

$$
y=c_{1} e^{-2 x}+c_{2} e^{3 x} .
$$

$\mathbf{Q (2) : ~ E l i m i n a t e ~ t h e ~ a r b i t r a r y ~ c o n s t a n t ~ a f r o m ~ t h e ~ e q u a t i o n ~}$

$$
(x-a)^{2}+y^{2}=a^{2} .
$$

$\mathbf{Q}(3)$: Eliminate B and α from the relation

$$
x=B \cos (\omega t+\alpha) .
$$

$\mathbf{Q}(4)$: Eliminate the arbitrary constant c from the family of curves

$$
c x y+c^{2} x+4=0
$$

