Differential Equation of Order One

Dr. Bander Almutairi
King Saud University
3 Feb 2014

(1) Initial-Value Problem

Consider the equation of order one

$$
\begin{equation*}
F\left(x, y, y^{\prime}\right)=0 \tag{1}
\end{equation*}
$$

Consider the equation of order one

$$
\begin{equation*}
F\left(x, y, y^{\prime}\right)=0 \tag{1}
\end{equation*}
$$

We suppose that the equation (1) can be written as the form

$$
\begin{equation*}
y^{\prime}=\frac{d y}{d x}=f(x, y) \tag{2}
\end{equation*}
$$

Consider the equation of order one

$$
\begin{equation*}
F\left(x, y, y^{\prime}\right)=0 \tag{1}
\end{equation*}
$$

We suppose that the equation (1) can be written as the form

$$
\begin{equation*}
y^{\prime}=\frac{d y}{d x}=f(x, y) \tag{2}
\end{equation*}
$$

The equation (2) can be written as follows

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{3}
\end{equation*}
$$

where M and N are two functions of x and y.

We are interested in problems in which we seek a solution $y(x)$ of differential equation which satisfies some conditions imposed on the unknown $y(x)$ or its derivatives. On some interval $/$ containing x_{0}, the problem

$$
\text { Solve: } \quad \frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)
$$

Subject to: $\quad y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}$,
where $y_{0}, y_{1}, \ldots, y_{n-1}$ are arbitrary specified real constants, is clled an initial-values problem (IVP) and its $n-1$ derivatives at a single point x_{0} : $y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}$ are called initial conditions.

We are interested in problems in which we seek a solution $y(x)$ of differential equation which satisfies some conditions imposed on the unknown $y(x)$ or its derivatives. On some interval $/$ containing x_{0}, the problem

$$
\text { Solve: } \quad \frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)
$$

Subject to: $\quad y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}$,
where $y_{0}, y_{1}, \ldots, y_{n-1}$ are arbitrary specified real constants, is clled an initial-values problem (IVP) and its $n-1$ derivatives at a single point x_{0} : $y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}$ are called initial conditions. Special case:

Solve: $\quad \frac{d y}{d x}=f(x, y)$
Subject to: $\quad y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}$.

(1) Solve: $\quad y^{\prime}=y$ Subject to: $\quad y(0)=4$.

(2) Solve: $y^{\prime}+2 x y^{2}=0$

Subject to: $\quad y(0)=-1$.

$$
\begin{aligned}
\text { (3) Solve: } & \frac{d y}{d x}=x y^{\frac{1}{2}} \\
\text { Subject to: } & y(0)=0
\end{aligned}
$$

