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Determine whether these are valid arguments.

a) If x is a positive real number, then x? is a positive real
number. Therefore, if a2 is positive, where a is a real

number then a is a positive real number.
b) If x2 # 0, where x is a real number, then x # 0. Let

a be a real number with a? # 0; then a # 0.

Which rules of inference are used to establish the
conclusion of Lewis Carroll’s argument described in
Example 26 of Section 1.4?

Which rules of inference are used to establish the
conclusion of Lewis Carroll’s argument described in
Example 27 of Section 1.4?

Identify the error or errors in this argument that sup-
posedly shows that if 3xP(x) A IxQ(x) is true then
Ax(P(x) A Q(x)) is true.

1. 3xP(x) vIxQ(x) Premise

2. AxP(x) Simplification from (1)

3. P(c) Existential instantiation from (2)
4. IxQ(x) Simplification from (1)

5. Q(c) Existential instantiation from (4)
6. P(c) A Q(c) Conjunction from (3) and (5)

7. Ax(P(x) A Q(x)) Existential generalization

Identify the error or errors in this argument that sup-
posedly shows that if Vx(P(x)V Q(x)) is true then
VxP(x) Vv VxQ(x) is true.

1. Vx(P(x) v Q(x)) Premise

2. P(c) Vv Q(c) Universal instantiation from (1)
3. P(c) Simplification from (2)

4. VxP(x) Universal generalization from (3)
5. Q(o) Simplification from (2)

6. VxQ(x) Universal generalization from (5)
7. Vx(P(x) vV Yx Q(x)) Conjunction from (4) and (6)

Justify the rule of universal modus tollens by showing
that the premises Vx(P(x) — Q(x)) and —Q(a) for a
particular element a in the domain, imply — P (a).
Justify the rule of universal transitivity, which states that
if Vx(P(x) — Q(x)) and Vx(Q(x) — R(x)) are true,
then Vx(P(x) — R(x)) is true, where the domains of all
quantifiers are the same.

Use rules of inference to show that if Vx(P(x) —
(Q(x) AS(x))) and Vx(P(x) A R(x)) are true, then
Vx(R(x) A S(x)) is true.

Use rules of inference to show that if Vx(P(x) Vv
QO(x)) and Vx((—P(x) A Q(x)) — R(x)) are true, then
Vx(—=R(x) — P(x)) is also true, where the domains of
all quantifiers are the same.

Introduction to Proofs

29.

30.

31.

32.

33.

*34.

*35.

Use rules of inference to show that if Vx(P(x) vV Q(x)),
Vx(—=Q(x) V S(x)), Vx(R(x) = —S(x)), and Ix—P(x)
are true, then Ix—R(x) is true.

Use resolution to show the hypotheses “Allen is a bad
boy or Hillary is a good girl” and “Allen is a good boy or
David is happy” imply the conclusion “Hillary is a good
girl or David is happy.”

Use resolution to show that the hypotheses “It is not rain-
ing or Yvette has her umbrella,” “Yvette does not have
her umbrella or she does not get wet,” and “It is raining
or Yvette does not get wet” imply that “Yvette does not
get wet.”

Show that the equivalence p A —=p = F can be derived
using resolution together with the fact that a condi-
tional statement with a false hypothesis is true. [Hint: Let
g = r = F in resolution.]

Use resolution to show that the compound propo-
sition (p vV g) A (=pVq) A(pV =g)A(=pV —q)is
not satisfiable.
The Logic Problem, taken from WFF’N PROOF, The
Game of Logic, has these two assumptions:
1. “Logic is difficult or not many students like logic.”
2. “If mathematics is easy, then logic is not difficult.”
By translating these assumptions into statements involv-
ing propositional variables and logical connectives, deter-
mine whether each of the following are valid conclusions
of these assumptions:
a) That mathematics is not easy, if many students like
logic.
b) That not many students like logic, if mathematics is
not easy.
¢) That mathematics is not easy or logic is difficult.
d) That logic is not difficult or mathematics is not easy.
e) That if not many students like logic, then either math-
ematics is not easy or logic is not difficult.
Determine whether this argument, taken from Kalish and
Montague [KaMo64], is valid.
If Superman were able and willing to prevent evil,
he would do so. If Superman were unable to prevent
evil, he would be impotent; if he were unwilling
to prevent evil, he would be malevolent. Superman
does not prevent evil. If Superman exists, he is nei-
ther impotent nor malevolent. Therefore, Superman
does not exist.

Introduction

In this section we introduce the notion of a proof and describe methods for constructing proofs.
A proof is a valid argument that establishes the truth of a mathematical statement. A proof can
use the hypotheses of the theorem, if any, axioms assumed to be true, and previously proven
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theorems. Using these ingredients and rules of inference, the final step of the proof establishes
the truth of the statement being proved.

In our discussion we move from formal proofs of theorems toward more informal proofs.
The arguments we introduced in Section 1.6 to show that statements involving propositions
and quantified statements are true were formal proofs, where all steps were supplied, and the
rules for each step in the argument were given. However, formal proofs of useful theorems can
be extremely long and hard to follow. In practice, the proofs of theorems designed for human
consumption are almost always informal proofs, where more than one rule of inference may
be used in each step, where steps may be skipped, where the axioms being assumed and the
rules of inference used are not explicitly stated. Informal proofs can often explain to humans
why theorems are true, while computers are perfectly happy producing formal proofs using
automated reasoning systems.

The methods of proof discussed in this chapter are important not only because they are used
to prove mathematical theorems, but also for their many applications to computer science. These
applications include verifying that computer programs are correct, establishing that operating
systems are secure, making inferences in artificial intelligence, showing that system specifica-
tions are consistent, and so on. Consequently, understanding the techniques used in proofs is
essential both in mathematics and in computer science.

Some Terminology

Formally, a theorem is a statement that can be shown to be true. In mathematical writing, the
term theorem is usually reserved for a statement that is considered at least somewhat important.
Less important theorems sometimes are called propositions. (Theorems can also be referred to
as facts or results.) A theorem may be the universal quantification of a conditional statement
with one or more premises and a conclusion. However, it may be some other type of logical
statement, as the examples later in this chapter will show. We demonstrate that a theorem is true
with a proof. A proof is a valid argument that establishes the truth of a theorem. The statements
used in a proof can include axioms (or postulates), which are statements we assume to be true
(for example, the axioms for the real numbers, given in Appendix 1, and the axioms of plane
geometry), the premises, if any, of the theorem, and previously proven theorems. Axioms may
be stated using primitive terms that do not require definition, but all other terms used in theorems
and their proofs must be defined. Rules of inference, together with definitions of terms, are used
to draw conclusions from other assertions, tying together the steps of a proof. In practice, the
final step of a proof is usually just the conclusion of the theorem. However, for clarity, we will
often recap the statement of the theorem as the final step of a proof.

A less important theorem that is helpful in the proof of other results is called a lemma
(plural lemmas or lemmata). Complicated proofs are usually easier to understand when they are
proved using a series of lemmas, where each lemma is proved individually. A corollary is a
theorem that can be established directly from a theorem that has been proved. A conjecture is
a statement that is being proposed to be a true statement, usually on the basis of some partial
evidence, a heuristic argument, or the intuition of an expert. When a proof of a conjecture is
found, the conjecture becomes a theorem. Many times conjectures are shown to be false, so they
are not theorems.

Understanding How Theorems Are Stated

Before we introduce methods for proving theorems, we need to understand how many math-
ematical theorems are stated. Many theorems assert that a property holds for all elements in
a domain, such as the integers or the real numbers. Although the precise statement of such
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theorems needs to include a universal quantifier, the standard convention in mathematics is to
omit it. For example, the statement

“If x > y, where x and y are positive real numbers, then x% > y2.”

really means

“For all positive real numbers x and y, if x > y, then x2 > y2»

Furthermore, when theorems of this type are proved, the first step of the proof usually involves
selecting a general element of the domain. Subsequent steps show that this element has the
property in question. Finally, universal generalization implies that the theorem holds for all

members of the domain.

Methods of Proving Theorems

Proving mathematical theorems can be difficult. To construct proofs we need all available am-
munition, including a powerful battery of different proof methods. These methods provide the
overall approach and strategy of proofs. Understanding these methods is a key component of
learning how to read and construct mathematical proofs. One we have chosen a proof method,
we use axioms, definitions of terms, previously proved results, and rules of inference to com-
plete the proof. Note that in this book we will always assume the axioms for real numbers
found in Appendix 1. We will also assume the usual axioms whenever we prove a result about
geometry. When you construct your own proofs, be careful not to use anything but these axioms,
definitions, and previously proved results as facts!

To prove a theorem of the form Vx (P (x) — Q(x)), our goal is to show that P(c) — Q(c)
is true, where c is an arbitrary element of the domain, and then apply universal generalization.
In this proof, we need to show that a conditional statement is true. Because of this, we now focus
on methods that show that conditional statements are true. Recall that p — ¢ is true unless p is
true but ¢ is false. Note that to prove the statement p — ¢, we need only show that ¢ is true if p
is true. The following discussion will give the most common techniques for proving conditional
statements. Later we will discuss methods for proving other types of statements. In this section,
and in Section 1.8, we will develop a large arsenal of proof techniques that can be used to prove
a wide variety of theorems.

When you read proofs, you will often find the words “obviously” or “clearly.” These words
indicate that steps have been omitted that the author expects the reader to be able to fill in.
Unfortunately, this assumption is often not warranted and readers are not at all sure how to fill in
the gaps. We will assiduously try to avoid using these words and try not to omit too many steps.
However, if we included all steps in proofs, our proofs would often be excruciatingly long.

Direct Proofs

A direct proof of a conditional statement p — ¢ is constructed when the first step is the
assumption that p is true; subsequent steps are constructed using rules of inference, with the
final step showing that g must also be true. A direct proof shows that a conditional statement
p — q is true by showing that if p is true, then ¢ must also be true, so that the combination
p true and g false never occurs. In a direct proof, we assume that p is true and use axioms,
definitions, and previously proven theorems, together with rules of inference, to show that ¢
must also be true. You will find that direct proofs of many results are quite straightforward, with a
fairly obvious sequence of steps leading from the hypothesis to the conclusion. However, direct
proofs sometimes require particular insights and can be quite tricky. The first direct proofs we
present here are quite straightforward; later in the text you will see some that are less obvious.

We will provide examples of several different direct proofs. Before we give the first example,
we need to define some terminology.
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The integer n is even if there exists an integer k such that n = 2k, and n is odd if there exists
an integer k such that n = 2k + 1. (Note that every integer is either even or odd, and no
integer is both even and odd.) Two integers have the same parity when both are even or both
are odd; they have opposite parity when one is even and the other is odd.

Give a direct proof of the theorem “If n is an odd integer, then n? is odd.”

Solution: Note that this theorem states Vn P ((n) — Q(n)), where P (n) is “n is an odd integer”
and Q(n) is “n” is odd.” As we have said, we will follow the usual convention in mathematical
proofs by showing that P (n) implies Q(n), and not explicitly using universal instantiation. To
begin a direct proof of this theorem, we assume that the hypothesis of this conditional statement
is true, namely, we assume that n is odd. By the definition of an odd integer, it follows that
n =2k + 1, where k is some integer. We want to show that n? is also odd. We can square
both sides of the equation n = 2k + 1 to obtain a new equation that expresses n>. When we do
this, we find that n> = (2k 4+ 1)> = 4k*> + 4k + 1 = 2(2k* + 2k) + 1. By the definition of an
odd integer, we can conclude that n” is an odd integer (it is one more than twice an integer).
Consequently, we have proved that if n is an odd integer, then n? is an odd integer. <

Give a direct proof that if m and n are both perfect squares, then nm is also a perfect square.
(An integer a is a perfect square if there is an integer b such that a = b?.)

Solution: To produce a direct proof of this theorem, we assume that the hypothesis of this
conditional statement is true, namely, we assume that m and n are both perfect squares. By the
definition of a perfect square, it follows that there are integers s and ¢ such that m = s> and
n = 1. The goal of the proof is to show that mn must also be a perfect square when m and n are;
looking ahead we see how we can show this by substituting s for m and 2 for n into mn. This
tells us that mn = s2t>. Hence, mn = s°t*> = (ss)(tt) = (st)(st) = (st)?, using commutativity
and associativity of multiplication. By the definition of perfect square, it follows that mn is also
a perfect square, because it is the square of sz, which is an integer. We have proved that if m
and n are both perfect squares, then mn is also a perfect square. |

Proof by Contraposition

Direct proofs lead from the premises of a theorem to the conclusion. They begin with the
premises, continue with a sequence of deductions, and end with the conclusion. However, we
will see that attempts at direct proofs often reach dead ends. We need other methods of proving
theorems of the form Vx(P(x) — Q(x)). Proofs of theorems of this type that are not direct
proofs, that is, that do not start with the premises and end with the conclusion, are called
indirect proofs.

An extremely useful type of indirect proof is known as proof by contraposition. Proofs
by contraposition make use of the fact that the conditional statement p — ¢ is equivalent to its
contrapositive, =g — —p. This means that the conditional statement p — ¢ can be proved by
showing that its contrapositive, =g — —p, is true. In a proof by contraposition of p — ¢, we
take —q as a premise, and using axioms, definitions, and previously proven theorems, together
with rules of inference, we show that — p must follow. We will illustrate proof by contraposition
with two examples. These examples show that proof by contraposition can succeed when we
cannot easily find a direct proof.

Prove that if n is an integer and 3n + 2 is odd, then n is odd.

Solution: We first attempt a direct proof. To construct a direct proof, we first assume that 3n + 2
is an odd integer. This means that 3n 4+ 2 = 2k 4 1 for some integer k. Can we use this fact
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to show that n is odd? We see that 3n + 1 = 2k, but there does not seem to be any direct way
to conclude that n is odd. Because our attempt at a direct proof failed, we next try a proof by
contraposition.

The first step in a proof by contraposition is to assume that the conclusion of the conditional
statement “If 3n 4 2 is odd, then n is odd” is false; namely, assume that n is even. Then, by
the definition of an even integer, n = 2k for some integer k. Substituting 2k for n, we find
that 3n +2 = 3(2k) +2 = 6k +2 =23k + 1). This tells us that 3n + 2 is even (because it
is a multiple of 2), and therefore not odd. This is the negation of the premise of the theorem.
Because the negation of the conclusion of the conditional statement implies that the hypothesis
is false, the original conditional statement is true. Our proof by contraposition succeeded; we
have proved the theorem “If 3n 4 2 is odd, then 7 is odd.” <

Prove that if n = ab, where a and b are positive integers, then a < \/n orb < /n.

Solution: Because there is no obvious way of showing that a < /n or b < /n directly from
the equation n = ab, where a and b are positive integers, we attempt a proof by contraposition.

The first step in a proof by contraposition is to assume that the conclusion of the conditional
statement “If n = ab, where a and b are positive integers, thena < y/norb < ﬁ” is false. That
is, we assume that the statement (a < \/n) V (b < /n)is false. Using the meaning of disjunction
together with De Morgan’s law, we see that this implies that botha < /n and b < \/n are false.
This implies that @ > /n and b > /n. We can multiply these inequalities together (using the
fact that if 0 < s <t and 0 < u < v, then su < tv) to obtain ab > /n - \/n = n. This shows
that ab # n, which contradicts the statement n = ab.

Because the negation of the conclusion of the conditional statement implies that the hypoth-
esis is false, the original conditional statement is true. Our proof by contraposition succeeded;
we have proved that if n = ab, where a and b are positive integers, then a < /n or b < /n. 4

VACUOUS AND TRIVIAL PROOFS We can quickly prove that a conditional statement
p — g is true when we know that p is false, because p — ¢ must be true when p is false.
Consequently, if we can show that p is false, then we have a proof, called a vacuous proof, of
the conditional statement p — ¢. Vacuous proofs are often used to establish special cases of
theorems that state that a conditional statement is true for all positive integers [i.e., a theorem
of the kind Vn P(n), where P (n) is a propositional function]. Proof techniques for theorems of
this kind will be discussed in Section 5.1.

Show that the proposition P (0) is true, where P(n) is “If n > 1, then n? > n” and the domain
consists of all integers.

Solution: Note that P(0) is “If 0 > 1, then 0> > 0.” We can show P(0) using a vacuous
proof. Indeed, the hypothesis O > 1 is false. This tells us that P (0) is automatically true. <

Remark: The fact that the conclusion of this conditional statement, 02 > 0, is false is irrelevant
to the truth value of the conditional statement, because a conditional statement with a false
hypothesis is guaranteed to be true.

We can also quickly prove a conditional statement p — ¢ if we know that the conclusion
q is true. By showing that ¢ is true, it follows that p — ¢ must also be true. A proof of p — ¢
that uses the fact that ¢ is true is called a trivial proof. Trivial proofs are often important when
special cases of theorems are proved (see the discussion of proof by cases in Section 1.8) and
in mathematical induction, which is a proof technique discussed in Section 5.1.
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Let P(n) be “If a and b are positive integers with a > b, then a”" > b",” where the domain
consists of all nonnegative integers. Show that P (0) is true.

Solution: The proposition P (0)is “Ifa > b, then a® > b0 Because a’ = b° = 1, the conclusion
of the conditional statement “If a > b, then a® > b°” is true. Hence, this conditional statement,
which is P (0), is true. This is an example of a trivial proof. Note that the hypothesis, which is
the statement “a > b,” was not needed in this proof. |

A LITTLE PROOF STRATEGY We have described two important approaches for proving
theorems of the form Vx(P(x) — Q(x)): direct proof and proof by contraposition. We have
also given examples that show how each is used. However, when you are presented with a
theorem of the form Vx (P (x) — Q(x)), which method should you use to attempt to prove it?
We will provide a few rules of thumb here; in Section 1.8 we will discuss proof strategy at greater
length. When you want to prove a statement of the form Vx(P(x) — Q(x)), first evaluate
whether a direct proof looks promising. Begin by expanding the definitions in the hypotheses.
Start to reason using these hypotheses, together with axioms and available theorems. If a direct
proof does not seem to go anywhere, try the same thing with a proof by contraposition. Recall
that in a proof by contraposition you assume that the conclusion of the conditional statement is
false and use a direct proof to show this implies that the hypothesis must be false. We illustrate
this strategy in Examples 7 and 8. Before we present our next example, we need a definition.

The real number r is rational if there exist integers p and g with ¢ # 0 such that r = p/q.
A real number that is not rational is called irrational.

Prove that the sum of two rational numbers is rational. (Note that if we include the implicit
quantifiers here, the theorem we want to prove is “For every real number » and every real
number s, if 7 and s are rational numbers, then r + s is rational.)

Solution: We first attempt a direct proof. To begin, suppose that r and s are rational numbers. From
the definition of a rational number, it follows that there are integers p and g, with g # 0, such
that r = p/q, and integers ¢ and u, with u # 0, such that s = ¢t /u. Can we use this information
to show that r 4 s is rational? The obvious next step is to add r = p /g and s = t/u, to obtain

t t
r+s:£+_:M‘
q u qu

Because g # 0 and u # 0, it follows that gu # 0. Consequently, we have expressed r + s as
the ratio of two integers, pu + gt and qu, where qu # 0. This means that r + s is rational. We
have proved that the sum of two rational numbers is rational; our attempt to find a direct proof
succeeded. |

Prove that if n is an integer and n? is odd, then n is odd.

Solution: We first attempt a direct proof. Suppose that n is an integer and n? is odd. Then, there
exists an integer k such that n? = 2k + 1. Can we use this information to show that 7 is odd?
There seems to be no obvious approach to show that n is odd because solving for n produces
the equation n = £+/2k 4 1, which is not terribly useful.

Because this attempt to use a direct proof did not bear fruit, we next attempt a proof by
contraposition. We take as our hypothesis the statement that # is not odd. Because every integer
is odd or even, this means that n is even. This implies that there exists an integer k such that
n = 2k. To prove the theorem, we need to show that this hypothesis implies the conclusion
that n? is not odd, that is, that n” is even. Can we use the equation n = 2k to achieve this? By
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squaring both sides of this equation, we obtain n> = 4k? = 2(2k?), which implies that n? is
also even because n> = 2¢, where t = 2k>. We have proved that if  is an integer and n? is odd,
then n is odd. Our attempt to find a proof by contraposition succeeded. |

Proofs by Contradiction

Suppose we want to prove that a statement p is true. Furthermore, suppose that we can find
a contradiction g such that —p — ¢ is true. Because ¢ is false, but =p — ¢ is true, we can
conclude that —p is false, which means that p is true. How can we find a contradiction ¢ that
might help us prove that p is true in this way?

Because the statement » A —r is a contradiction whenever r is a proposition, we can prove
that p is true if we can show that =p — (r A —r) is true for some proposition r. Proofs of this
type are called proofs by contradiction. Because a proof by contradiction does not prove aresult
directly, it is another type of indirect proof. We provide three examples of proof by contradiction.
The first is an example of an application of the pigeonhole principle, a combinatorial technique
that we will cover in depth in Section 6.2.

Show that at least four of any 22 days must fall on the same day of the week.

Solution: Let p be the proposition “At least four of 22 chosen days fall on the same day of the
week.” Suppose that —p is true. This means that at most three of the 22 days fall on the same
day of the week. Because there are seven days of the week, this implies that at most 21 days
could have been chosen, as for each of the days of the week, at most three of the chosen days
could fall on that day. This contradicts the premise that we have 22 days under consideration.
That is, if 7 is the statement that 22 days are chosen, then we have shown that =p — (r A —r).
Consequently, we know that p is true. We have proved that at least four of 22 chosen days fall
on the same day of the week. <

Prove that +/2 is irrational by giving a proof by contradiction.

Solution: Let p be the proposition “y/2 is irrational ” To start a proof by contradiction, we suppose
that —p is true. Note that —p is the statement “It is not the case that V2 is irrational,” which
says that +/2 is rational. We will show that assuming that —p is true leads to a contradiction.

If /2 is rational, there exist integers a and b with V2 =a/b, where b # 0 and a and b
have no common factors (so that the fraction a/b is in lowest terms.) (Here, we are using the
fact that every rational number can be written in lowest terms.) Because «/E = a/b, when both
sides of this equation are squared, it follows that

2
2=2
b2
Hence,
2b° = a?

By the definition of an even integer it follows that a? is even. We next use the fact that if a? is
even, a must also be even, which follows by Exercise 16. Furthermore, because a is even, by
the definition of an even integer, a = 2¢ for some integer c. Thus,

2% = 4c?.
Dividing both sides of this equation by 2 gives
b = 2c%.

By the definition of even, this means that 5 is even. Again using the fact that if the square of an
integer is even, then the integer itself must be even, we conclude that » must be even as well.
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We have now shown that the assumption of —p leads to the equation /2 = a/b, where a
and b have no common factors, but both a and b are even, that is, 2 divides both a and b. Note
that the statement that /2 = a /b, where a and b have no common factors, means, in particular,
that 2 does not divide both a and b. Because our assumption of —p leads to the contradiction
that 2 divides both @ and b and 2 does not divide both @ and b, —p must be false. That is, the
statement p, “ﬁ is irrational,” is true. We have proved that ﬁ 18 irrational. |

Proof by contradiction can be used to prove conditional statements. In such proofs, we first
assume the negation of the conclusion. We then use the premises of the theorem and the negation
of the conclusion to arrive at a contradiction. (The reason that such proofs are valid rests on the
logical equivalence of p — g and (p A —q) — F. To see that these statements are equivalent,
simply note that each is false in exactly one case, namely when p is true and ¢ is false.)

Note that we can rewrite a proof by contraposition of a conditional statement as a proof
by contradiction. In a proof of p — ¢ by contraposition, we assume that —q is true. We then
show that —p must also be true. To rewrite a proof by contraposition of p — ¢ as a proof by
contradiction, we suppose that both p and —g are true. Then, we use the steps from the proof
of =g — —p to show that —p is true. This leads to the contradiction p A —p, completing the
proof. Example 11 illustrates how a proof by contraposition of a conditional statement can be
rewritten as a proof by contradiction.

Give a proof by contradiction of the theorem “If 3n 4- 2 is odd, then n is odd.”

Solution: Let p be “3n 4 2 is odd” and ¢ be “n is odd.” To construct a proof by contradiction,
assume that both p and —¢ are true. That is, assume that 3n + 2 is odd and that # is not odd.
Because n is not odd, we know that it is even. Because n is even, there is an integer k such
that n = 2k. This implies that 3n + 2 = 3(2k) +2 = 6k + 2 = 2(3k + 1). Because 3n + 2 is
2t, where t = 3k + 1, 3n + 2 is even. Note that the statement “3n + 2 is even” is equivalent to
the statement —p, because an integer is even if and only if it is not odd. Because both p and
—p are true, we have a contradiction. This completes the proof by contradiction, proving that if
3n + 2 is odd, then n is odd.

Note that we can also prove by contradiction that p — ¢ is true by assuming that p and
—g are true, and showing that ¢ must be also be true. This implies that =g and g are both
true, a contradiction. This observation tells us that we can turn a direct proof into a proof by
contradiction.

PROOFS OF EQUIVALENCE To prove a theorem that is a biconditional statement, that is,
a statement of the form p < ¢, we show that p — g and ¢ — p are both true. The validity of
this approach is based on the tautology

(p<q) < (p—>q) AN(g— p).

Prove the theorem “If n is an integer, then 7 is odd if and only if n? is odd.”
Solution: This theorem has the form “p if and only if ¢,” where p is “n is odd” and ¢ is “n?
is odd.” (As usual, we do not explicitly deal with the universal quantification.) To prove this
theorem, we need to show that p — ¢ and ¢ — p are true.

We have already shown (in Example 1) that p — ¢ is true and (in Example 8) thatg — p
is true.

Because we have shown that both p — ¢ and ¢ — p are true, we have shown that the
theorem is true. |
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Sometimes a theorem states that several propositions are equivalent. Such a theorem states
that propositions p1, p2, p3, ..., py are equivalent. This can be written as

Pl <> p2 <> - <> Dn,

which states that all n propositions have the same truth values, and consequently, that for all i
and j withl <i <nandl < j < n, p; and p; are equivalent. One way to prove these mutually
equivalent is to use the tautology

Pl pr< < Py < (pr—> p2)A(Pp2—> p3) A AN(pa — P1).

This shows that if the n conditional statements p; — p2, po — p3, ..., pn — p1 canbe shown
to be true, then the propositions p1, pa, ..., p, are all equivalent.

This is much more efficient than proving that p; — p; foralli # j with 1 <i <n and
1 < j < n. (Note that there are n? — n such conditional statements.)

When we prove that a group of statements are equivalent, we can establish any chain of
conditional statements we choose as long as it is possible to work through the chain to go from
any one of these statements to any other statement. For example, we can show that p;, p, and
p3 are equivalent by showing that p; — p3, p3 — p2, and p» — pi.

EXAMPLE 13  Show that these statements about the integer n are equivalent:

p1. niseven.

p2. n— lisodd.

p3: n?iseven.

Solution: We will show that these three statements are equivalent by showing that the conditional
statements p; — po, p2 — p3,and p3 —> pj are true.

We use a direct proof to show that p; — p;. Suppose that n is even. Then n = 2k for some
integer k. Consequently,n — 1 = 2k — 1 = 2(k — 1) + 1. This means thatn — 1 is odd because
it is of the form 2m + 1, where m is the integer k — 1.

We also use a direct proof to show that po — p3. Now suppose n — 1 is odd. Then n —
1 = 2k + 1 for some integer k. Hence, n = 2k + 2 so that n?=Qk+2>2=4k>+8k +4 =
2(2k? + 4k + 2). This means that n2 is twice the integer 2k% 4 4k + 2, and hence is even.

To prove p3 — pi1, we use a proof by contraposition. That is, we prove that if n is not even,
then n2 is not even. This is the same as proving that if z is odd, then n? is odd, which we have
already done in Example 1. This completes the proof. <

COUNTEREXAMPLES In Section 1.4 we stated that to show that a statement of the form
Vx P(x) is false, we need only find a counterexample, that is, an example x for which P (x)
is false. When presented with a statement of the form Vx P (x), which we believe to be false or
which has resisted all proof attempts, we look for a counterexample. We illustrate the use of
counterexamples in Example 14.

EXAMPLE 14 Show that the statement “Every positive integer is the sum of the squares of two integers” is
false.

Solution: To show that this statement is false, we look for a counterexample, which is a particular

Extra >N integer that is not the sum of the squares of two integers. It does not take long to find a counterex-
Examples ample, because 3 cannot be written as the sum of the squares of two integers. To show this is the
case, note that the only perfect squares not exceeding 3 are 0> = 0 and 1% = 1. Furthermore,

there is no way to get 3 as the sum of two terms each of which is O or 1. Consequently, we have

shown that “Every positive integer is the sum of the squares of two integers” is false. <
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Mistakes in Proofs

There are many common errors made in constructing mathematical proofs. We will briefly
describe some of these here. Among the most common errors are mistakes in arithmetic and basic
algebra. Even professional mathematicians make such errors, especially when working with
complicated formulae. Whenever you use such computations you should check them as carefully
as possible. (You should also review any troublesome aspects of basic algebra, especially before
you study Section 5.1.)

Each step of a mathematical proof needs to be correct and the conclusion needs to follow
logically from the steps that precede it. Many mistakes result from the introduction of steps that
do not logically follow from those that precede it. This is illustrated in Examples 15-17.

What is wrong with this famous supposed “proof” that 1 = 2?

“Proof:” We use these steps, where a and b are two equal positive integers.

Step Reason

l.a=>b Given

2. a®> = ab Multiply both sides of (1) by a

3. a®> —b* =ab —b? Subtract 5% from both sides of (2)

4. (a — b)(a +b) = b(a — b) Factor both sides of (3)

S.a+b=b> Divide both sides of (4) by a — b

6. 2b=0>b Replace a by b in (5) because a = b
and simplify

7.2=1 Divide both sides of (6) by b

Solution: Every step is valid except for one, step 5 where we divided both sides by a — b. The
error is that a — b equals zero; division of both sides of an equation by the same quantity is
valid as long as this quantity is not zero.

What is wrong with this “proof?”

“Theorem:” If n? is positive, then n is positive.

“Proof:” Suppose that n? is positive. Because the conditional statement “If n is positive, then
n? is positive” is true, we can conclude that n is positive.

Solution: Let P(n) be “n is positive” and Q (n) be “n? is positive.” Then our hypothesis is Q(n).

The statement “If n is positive, then n? is positive” is the statement Vi (P (n) — Q(n)). From
the hypothesis Q(n) and the statement Vn (P (n) — Q(n)) we cannot conclude P (n), because
we are not using a valid rule of inference. Instead, this is an example of the fallacy of affirming
the conclusion. A counterexample is supplied by n = —1 for which n? = 1 is positive, but n is
negative. <

EXAMPLE 17 What is wrong with this “proof?”

“Theorem:” If n is not positive, then n? is not positive. (This is the contrapositive of the
“theorem” in Example 16.)
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EXAMPLE 18

“Proof:” Suppose that n is not positive. Because the conditional statement “If n is positive, then
n? is positive” is true, we can conclude that n? is not positive.

Solution: Let P(n) and Q(n) be as in the solution of Example 16. Then our hypothesis is =P (n)
and the statement “If n is positive, then n? is positive” is the statement Vn(P(n) — Q(n)).
From the hypothesis — P (n) and the statement Vn(P (n) — Q(n)) we cannot conclude —=Q (n),
because we are not using a valid rule of inference. Instead, this is an example of the fallacy of
denying the hypothesis. A counterexample is supplied by n = —1, as in Example 16. <

Finally, we briefly discuss a particularly nasty type of error. Many incorrect arguments are
based on a fallacy called begging the question. This fallacy occurs when one or more steps of
a proof are based on the truth of the statement being proved. In other words, this fallacy arises
when a statement is proved using itself, or a statement equivalent to it. That is why this fallacy
is also called circular reasoning.

Is the following argument correct? It supposedly shows that z is an even integer whenever n? is

an even integer.

Suppose that n? is even. Then n> = 2k for some integer k. Let n = 2/ for some integer /.
This shows that n is even.

Solution: This argument is incorrect. The statement “let n = 2/ for some integer [ occurs in
the proof. No argument has been given to show that n can be written as 2/ for some integer /.
This is circular reasoning because this statement is equivalent to the statement being proved,
namely, “n is even.” Of course, the result itself is correct; only the method of proof is wrong. <

Making mistakes in proofs is part of the learning process. When you make a mistake that
someone else finds, you should carefully analyze where you went wrong and make sure that
you do not make the same mistake again. Even professional mathematicians make mistakes in
proofs. More than a few incorrect proofs of important results have fooled people for many years
before subtle errors in them were found.

Just a Beginning

We have now developed a basic arsenal of proof methods. In the next section we will introduce
other important proof methods. We will also introduce several important proof techniques in
Chapter 5, including mathematical induction, which can be used to prove results that hold for
all positive integers. In Chapter 6 we will introduce the notion of combinatorial proofs.

In this section we introduced several methods for proving theorems of the form Vx (P (x) —
Q(x)), including direct proofs and proofs by contraposition. There are many theorems of this
type whose proofs are easy to construct by directly working through the hypotheses and def-
initions of the terms of the theorem. However, it is often difficult to prove a theorem without
resorting to a clever use of a proof by contraposition or a proof by contradiction, or some
other proof technique. In Section 1.8 we will address proof strategy. We will describe various
approaches that can be used to find proofs when straightforward approaches do not work. Con-
structing proofs is an art that can be learned only through experience, including writing proofs,
having your proofs critiqued, and reading and analyzing other proofs.
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10.

11.

12.

13.
14.
15.

=57 16.

17.

18.

19.

20.

21.

22.

. Use adirect proof to show that the sum of two odd integers

is even.

. Use a direct proof to show that the sum of two even inte-

gers is even.

. Show that the square of an even number is an even number

using a direct proof.

. Show that the additive inverse, or negative, of an even

number is an even number using a direct proof.

. Prove that if m + n and n + p are even integers, where

m, n, and p are integers, then m + p is even. What kind
of proof did you use?

. Use a direct proof to show that the product of two odd

numbers is odd.

. Use a direct proof to show that every odd integer is the

difference of two squares.

. Prove that if n is a perfect square, then n + 2 is not a

perfect square.

. Use a proof by contradiction to prove that the sum of an

irrational number and a rational number is irrational.
Use a direct proof to show that the product of two rational
numbers is rational.

Prove or disprove that the product of two irrational num-
bers is irrational.

Prove or disprove that the product of a nonzero rational
number and an irrational number is irrational.

Prove that if x is irrational, then 1/x is irrational.
Prove that if x is rational and x # 0, then 1/x is rational.

Use a proof by contraposition to show that if x + y > 2,
where x and y are real numbers, then x > 1 ory > 1.
Prove that if m and n are integers and mn is even, then m
is even or n is even.

Show that if n is an integer and n> + 5 is odd, then 7 is
even using

a) a proof by contraposition.

b) a proof by contradiction.

Prove that if n is an integer and 3n + 2 is even, then n is
even using

a) a proof by contraposition.

b) a proof by contradiction.

Prove the proposition P(0), where P (n) is the proposi-
tion “If n is a positive integer greater than 1, thenn? > n.”
What kind of proof did you use?

Prove the proposition P (1), where P (n) is the proposi-
tion “If n is a positive integer, then n? > n” What kind
of proof did you use?

Let P(n) be the proposition “If a and b are positive real
numbers, then (a + b)" > a" + b".” Prove that P(1) is
true. What kind of proof did you use?

Show that if you pick three socks from a drawer contain-
ing just blue socks and black socks, you must get either
a pair of blue socks or a pair of black socks.

23.

24,

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

Show that at least ten of any 64 days chosen must fall on
the same day of the week.

Show that at least three of any 25 days chosen must fall
in the same month of the year.

Use a proof by contradiction to show that there is no ratio-
nal number r for which 73 + r + 1 = 0. [Hinz: Assume
thatr = a/b is aroot, where a and b are integers and a /b
is in lowest terms. Obtain an equation involving integers
by multiplying by 3. Then look at whether a and b are
each odd or even.]

Prove that if n is a positive integer, then #n is even if and
only if 7n + 4 is even.

Prove that if n is a positive integer, then n is odd if and
only if 57 + 6 is odd.

Prove that m?> = n? if and only if m = n or m = —n.
Prove or disprove that if m and n are integers such that
mn =1, theneitherm =1 andn =1, or else m = —1
andn = —1.

Show that these three statements are equivalent, where a
and b are real numbers: (i) a is less than b, (ii) the average
of a and b is greater than a, and (iii) the average of a and
b is less than b.

Show that these statements about the integer x are equiv-
alent: (i) 3x + 2 is even, (ii) x + 5 is odd, (iif) x2 is even.
Show that these statements about the real number x are
equivalent: (i) x is rational, (i7) x /2 is rational, (iii) 3x — 1
is rational.

Show that these statements about the real number x are
equivalent: (i) x is irrational, (if) 3x + 2 is irrational,
(iii) x /2 is irrational.

Is this reasoning for finding the solutions of the equa-
tion +/2x% — 1 = x correct? (1) +/2x2 — 1 = x is given;
(2)2x2% — 1 = x2, obtained by squaring both sides of (1);
(3) x2 — 1 = 0, obtained by subtracting x2 from both
sides of (2); (4) (x — 1)(x + 1) = 0, obtained by factor-
ing the left-hand side of x2—1; G)x=1lorx=-1,
which follows because ab = 0 implies that ¢ =0 or
b=0.

Are these steps for finding the solutions of +/x + 3 =
3 —xcorrect? (I)/x +3 =3 —xisgiven; 2)x + 3 =
x2 — 6x 4 9, obtained by squaring both sides of (1); (3)
0 = x2 —7x + 6, obtained by subtracting x + 3 from
both sides of (2); (4) 0 = (x — 1)(x — 6), obtained by
factoring the right-hand side of (3); 5) x =1l orx =6,
which follows from (4) because ab = 0 implies that
a=0o0rb=0.

Show that the propositions p1, p2, p3, and ps can be
shown to be equivalent by showing that p; <> p4, p2 <
p3.and p| < p3.

Show that the propositions p1, p2, p3, psa, and ps can
be shown to be equivalent by proving that the conditional
statements p; — p4, p3 — p1, pa —> p2, P2 —> ps5,and
p5 — p3 are true.



