MATH107 Vectors and Matrices

Dr. Bandar AI-Mohsin
School of Mathematics, KSU

$$
9-12 / 10 / 16
$$

Determinant of a Matrix

1- Determinant of a Matrix: Determinant of matrix A is denoted by

$\operatorname{Det}(A)=\operatorname{det}\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}$
$-a_{31} a_{22} a_{13}-a_{32} a_{23} a_{11}-a_{33} a_{21} a_{12}$
The determinant of a 4×4 Matrix or higher order does not work with this method.

Determinant of a Matrix

1- Determinant of a Matrix: Determinant of matrix A is denoted by $|A|$ or $\operatorname{det}(A)$.
2- Evaluating determinant by direct multiplication

$\operatorname{Det}(A)=\operatorname{det}\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=a_{11} a_{22}-a_{21} a_{12}$
The determinant of a 3×3 Matrix $A=\left[\begin{array}{lll}a_{21} & a_{22} & a_{23}\end{array}\right.$ is

Determinant of a Matrix

1- Determinant of a Matrix: Determinant of matrix A is denoted by $|A|$ or $\operatorname{det}(A)$.
2- Evaluating determinant by direct multiplication

Determinant of a Matrix

1- Determinant of a Matrix: Determinant of matrix A is denoted by $|A|$ or $\operatorname{det}(A)$.
2- Evaluating determinant by direct multiplication
The determinant of a 2×2 Matrix $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ is
$\operatorname{Det}(A)=\operatorname{det}\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=a_{11} a_{22}-a_{21} a_{12}$

Determinant of a Matrix

1- Determinant of a Matrix: Determinant of matrix A is denoted by $|A|$ or $\operatorname{det}(A)$.
2- Evaluating determinant by direct multiplication
The determinant of a 2×2 Matrix $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ is
$\operatorname{Det}(A)=\operatorname{det}\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=a_{11} a_{22}-a_{21} a_{12}$
The determinant of a 3×3 Matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ is
$\operatorname{Det}(A)=\operatorname{det}\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}$
$-a_{31} a_{22} a_{13}-a_{32} a_{23} a_{11}-a_{33} a_{21} a_{12}$
The determinant of a 4×4 Matrix or higher order does not work with
this method.

Determinant of a Matrix

1- Determinant of a Matrix: Determinant of matrix A is denoted by $|A|$ or $\operatorname{det}(A)$.
2- Evaluating determinant by direct multiplication
The determinant of a 2×2 Matrix $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ is
$\operatorname{Det}(A)=\operatorname{det}\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=a_{11} a_{22}-a_{21} a_{12}$
The determinant of a 3×3 Matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ is
$\operatorname{Det}(A)=\operatorname{det}\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}$
$-a_{31} a_{22} a_{13}-a_{32} a_{23} a_{11}-a_{33} a_{21} a_{12}$
The determinant of a 4×4 Matrix or higher order does not work with this method.

Example 1: Find determinant of matrices

$$
\begin{gathered}
A=\left[\begin{array}{ll}
2 & 1 \\
7 & 6
\end{array}\right] \\
B=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 2 \\
4 & 3 & 1
\end{array}\right]
\end{gathered}
$$

Example 1: Find determinant of matrices

$$
\begin{gathered}
A=\left[\begin{array}{ll}
2 & 1 \\
7 & 6
\end{array}\right] \\
B=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 2 \\
4 & 3 & 1
\end{array}\right]
\end{gathered}
$$

3- Finding determinant by method of co-factors

Minor: The minor of an element $a_{i j}$ of a matrix A denoted by $M_{i j}$ is

 determinant of the matrix obtained by deleting the row and column containing $a_{i j}$. For example $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] M_{23}$ is the determinant of 2×2 matrix $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{31} & a_{32}\end{array}\right]$. Thus $M_{23}=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{31} & a_{32}\end{array}\right|=a_{11} a_{32}-a_{31} a_{12}$
Cofactor:

Cofactor of an element $a_{i j}$ of a matrix A denoted by $C_{i j}$ is defined as

$$
C_{i j}=(-1)^{i+i} M_{i j}
$$

of cofactor.
$\operatorname{Det}(A)=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13}$ or

3- Finding determinant by method of co-factors

Minor:

determinant of the matrix obtained by deleting the row and column

$M_{23}={ }^{a_{11}} \quad a_{12}=a_{11} a_{32}-a_{31} a_{12}$

Cofactor:

3- Finding determinant by method of co-factors
Minor: The minor of an element $a_{i j}$ of a matrix A denoted by $M_{i j}$ is determinant of the matrix obtained by deleting the row and column
containing $a_{i j}$. For example $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] \quad M_{23}$ is the
determinant of 2×2 matrix $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{31} & a_{32}\end{array}\right]$. Thus
$M_{23}=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{31} & a_{32}\end{array}\right|=a_{11} a_{32}-a_{31} a_{12}$
Cofactor:
Cofactor of an element $a_{i j}$ of a matrix A denoted by $C_{i j}$ is defined as For example, determinant the matrix $A=$

of cofactor

3- Finding determinant by method of co-factors
Minor: The minor of an element $a_{i j}$ of a matrix A denoted by $M_{i j}$ is determinant of the matrix obtained by deleting the row and column
containing $a_{i j}$. For example $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] \quad M_{23}$ is the
determinant of 2×2 matrix $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{31} & a_{32}\end{array}\right]$. Thus
$M_{23}=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{31} & a_{32}\end{array}\right|=a_{11} a_{32}-a_{31} a_{12}$
Cofactor:
Cofactor of an element $a_{i j}$ of a matrix A denoted by $C_{i j}$ is defined as For example, determinant the matrix $A=$

of cofactor

3- Finding determinant by method of co-factors

Minor: The minor of an element $a_{i j}$ of a matrix A denoted by $M_{i j}$ is determinant of the matrix obtained by deleting the row and column
containing $a_{i j}$. For example $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] M_{23}$ is the
determinant of 2×2 matrix $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{31} & a_{32}\end{array}\right]$. Thus
$M_{23}=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{31} & a_{32}\end{array}\right|=a_{11} a_{32}-a_{31} a_{12}$

Cofactor:

Cofactor of an element $a_{i j}$ of a matrix A denoted by $C_{i j}$ is defined as

$$
C_{i j}=(-1)^{i+j} M_{i j}
$$

For example, determinant the matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ by method of cofactor.
$\operatorname{Det}(A)=a_{11} C_{11}+a_{12} C_{12+a_{13} C_{13}}$ or
$\operatorname{Det}(A)=a_{21} C_{21}+a_{22} C_{22+a_{23} C_{23}}$ or $\operatorname{Det}(A)=a_{31} C_{31}+a_{32} C_{32+a_{33} C_{33}}$

Example 2: Find determinant of matrix using method of co-factor

$A=\left[\begin{array}{cccc}0 & 1 & 2 & 5 \\ 2 & -1 & 2 & 3 \\ 3 & 2 & 1 & 5 \\ 1 & 0 & 4 & 0\end{array}\right]$

Example 3: Find all values of λ for which $\operatorname{det}(A)=0$

Example 2: Find determinant of matrix using method of co-factor

$$
A=\left[\begin{array}{cccc}
0 & 1 & 2 & 5 \\
2 & -1 & 2 & 3 \\
3 & 2 & 1 & 5 \\
1 & 0 & 4 & 0
\end{array}\right]
$$

Example 3:

Example 2: Find determinant of matrix using method of co-factor

$$
A=\left[\begin{array}{cccc}
0 & 1 & 2 & 5 \\
2 & -1 & 2 & 3 \\
3 & 2 & 1 & 5 \\
1 & 0 & 4 & 0
\end{array}\right]
$$

Example 3: Find all values of λ for which $\operatorname{det}(A)=0$

$$
A=\left[\begin{array}{ccc}
\lambda-4 & 0 & 0 \\
0 & \lambda & 2 \\
0 & 3 & \lambda-1
\end{array}\right]
$$

3- Evaluating determinant by row operations

(3) If matrix A_{1} is obtained from matrix A by the interchange of two rows, then $\operatorname{det}\left(\mathbf{A}_{1}\right)=-\operatorname{det}(\mathbf{A})$.
(3) If matrix A_{2} is obtained from matrix A by the multiplication of a row, then $\operatorname{det}\left(\mathbf{A}_{2}\right)=k \operatorname{det}(\mathbf{A})$
(3) If matrix A_{3} is obtained from matrix A by the addition of a multiple of one row to another, then $\operatorname{det}\left(\mathbf{A}_{\mathbf{3}}\right)=\operatorname{det}(\mathbf{A})$

Example 1:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
2 & 4 & 8
\end{array}\right]
$$

Find determinant of (i)

$$
A_{1}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 8 \\
0 & 1 & 2
\end{array}\right]
$$

$$
A_{2}=\left[\begin{array}{lll}
1 & 2 & 3 \tag{ii}\\
0 & 1 & 2 \\
1 & 2 & 4
\end{array}\right]
$$

$$
A_{3}=\left[\begin{array}{lll}
1 & 2 & 3 \tag{iii}\\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right]
$$

Example 1: Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
2 & 4 & 8
\end{array}\right]
$$

Find determinant of (i)

$$
A_{1}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 8 \\
0 & 1 & 2
\end{array}\right]
$$

(ii)

$$
A_{2}=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
1 & 2 & 4
\end{array}\right]
$$

(iii)

$$
A_{3}=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right]
$$

Note:
(1) If matrix A is any square matrix that contains a row of zeros,, then $\operatorname{det}(\mathbf{A})=0$.

Q If a square matrix has two proportional rows, then $\operatorname{det}(\mathrm{A})=0$.

- In case of upper or lower triangular matrix, determinant is the product of the diagonal elements

Note:

(1) If matrix A is any square matrix that contains a row of zeros,, then $\operatorname{det}(A)=0$.
(2) If a square matrix has two proportional rows, then $\operatorname{det}(\mathbf{A})=\mathbf{0}$.
(3) In case of upper or lower triangular matrix, determinant is the product of the diagonal elements

Example 1:

Find determinant (i)

(iii)

(v)

Example 1: Let

$$
A=\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=6
$$

Find determinant (i)

$$
A_{1}=\left|\begin{array}{lll}
d & e & f \\
g & h & i \\
a & b & c
\end{array}\right|
$$

(ii)

$$
A_{2}=\left|\begin{array}{ccc}
3 a & 3 b & 3 c \\
-d & -e & -f \\
4 g & 4 h & 4 i
\end{array}\right|
$$

(iii)

$$
A_{3}=\left|\begin{array}{ccc}
a+g & b+h & c+i \\
d & e & f \\
g & h & i
\end{array}\right|
$$

(v)

$$
A_{4}=\left|\begin{array}{ccc}
-3 a & -3 b & -3 c \\
d & e & f \\
--4 d & h-4 e & i-4 f
\end{array}\right|
$$

Theorem

For an $n \times n$ matrix A, following are equivalent
(3) $\operatorname{det}(\mathbf{A}) \neq 0$.
(2) A^{-1} exists
(3) If matrix $A X=B$ has a unigue solution for any B.
(3) A is invertible

