Lexical Analysis

Implementation: Finite Automata



Outline

* Specifying lexical structure using regular
expressions

* Finite automata
— Deterministic Finite Automata (DFASs)

— Non-deterministic Finite Automata (NFAs)

* Implementation of regular expressions
RegExp => NFA => DFA => Tables



Notation

+ There is variation in regular expression

hotation

* Union: A|E~ = A+B

- Option: A +¢ = A?

* Range: ‘a’+' b+ .+ 7 = [a-Z]

+ Excluded range:
complement of [a-z] = [Ta-z]



Regular Expressions in Lexical Specification

* Given a string s and a reg. exp. R, is
s € L(R)?

* But a yes/no answer is not enough!
e Instead: partition the input into tokens

e We adapt regular expressions to this goal



Regular Expressions => Lexical Spec.

1. Write a rexp for the lexemes of each token
— Number = digit +
— Keyword = ‘if '+ ‘else’+ ...
— |ldentifier = letter (letter + digit)*
— OpenPar = ‘("



Regular Expressions => Lexical Spec.

2. Construct R, matching all lexemes for all
tokens

R = Keyword + Identifier + Number + ...

= R;+ R+ ...



Regular Expressions => Lexical Spec.

3. Letinput be x,...x,
For 1 <i £n check

X;...X; EL(R)

4. If success, then we know that

X;...X; EL(R;) for some ]
5. Remove x,...x, from input and go to (3)



Ambiguities (1)

* There are ambiguities in the algorithm
* How much input is used? What if

— X,...X; EL(R)and also
— X4.--X¢EL(R)
* e.g.=and ==
* Rule: Pick longest possible string in L(R)

— The “maximal munch”
— We as humans do that.



Ambiguities (2)

Which token is used? What if
— X;...X; EL(R;) and also
— Xq...X; EL(R)

e.g. ‘if’ could be an identifier or a keyword;
which one to choose?

Rule: use rule listed first (j if j < k)
— Treats “if” as a keyword, not an identifier

i.e. the one listed first is given higher priority



Error Handling

What if

— No rule matches a prefix of input ?
Problem: Can’t just get stuck ...

A compiler needs to give feedback to the user
e.g. where the error is in the file (line number)

Solution:
— Write a rule matching all “bad”strings
— Put it last (lowest priority)



Summary

* Regular expressions provide a concise
notation for string patterns

* Use in lexical analysis requires small
extensions
— To resolve ambiguities
— To handle errors

* Good algorithms known

— Require only single pass over the input
— Few operations per character (table lookup)



Finite Automata

* Regular expressions = specification
* Finite automata = implementation

* A finite automaton consists of
— An input alphabet 2
— A set of states S
— A start state n
— A set of accepting states F €S
— A set of transitions state >'"Put state



Finite Automata

* Transition
S12°S,
* |s read
* |n state s, on input “a” go to state s,
* If end of input and in accepting state => accept
* Otherwise =>reject

— |If it terminates in state s that not a member of F

— Or it gets stuck because there is not transition from
state s1 on input a (i.e. never reaches the end of

input).




Finite Automata State Graphs
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A Simple Example

* A finite automaton that accepts only “1”



Another Simple Example

* A finite automaton accepting any number of
1’s followed by a single O

e Alphabet: {0,1}
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And Another Example

* Alphabet {0,1}
 What language does this recognize?
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Epsilon Moves

e Another kind of transition: e-moves

e Machine can move from state A to state B
without reading input



Deterministic and Nondeterministic
Automata

e Deterministic Finite Automata (DFA)
— One transition per input per state
—No e-moves

 Nondeterministic Finite Automata (NFA)

— Can have multiple transitions for one input
In a given state

— Can have e-moves



Execution of Finite Automata

* A DFA can take only one path through the
state graph

— Completely determined by input

* NFASs can choose
—Whether to make e-moves

— Which of multiple transitions for a single
input to take



Acceptance of NFAs

* An NFA can get into multiple states

* |Input: 1 0 0
e States: {A} {A,B} {A,B,C}
* Rule: NFA accepts if it can get to a final state




NFA vs. DFA

* NFAs and DFAs recognize the same
set of languages (regular languages)

e DFAs are faster to execute

—There are no choices to consider



NFA vs. DFA

* For a given language NFA can be simpler than
DFA

e
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+ DFA can be exponentially larger than NFA



Regular Expressions to Finite
Automata

+ High-level sketch
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Regular Expressions to NFA (1)

* For each kind of rexp, define an NFA
- Notation: NFA for rexp M

* For e
+ For input a



Regular Expressions to NFA (2)
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Regular Expressions to NFA (3)

* For A*




Example of RegExp -> NFA conversion

* Consider the regular expression

(1+0)*1
* The NFA is
i £ I
— ~ -xl.ll
YT I VDN
-l'-._<\\_t h_f"h—-é____‘:fb‘xl D-I':]_-?‘]' E;__LE{; ?Hft *'-..J- _"'“-a.f'
\-\h—h— S iy




e-closure of a state

* e-closure of a state s is a set of states that
consists of s and all other states that | can
reach from s by making e-moves only.

 Example
— e-closure(B) = {B, C, D}

— e-closure(G) ={G, H, |, A, B, C, D}



An NFA may be in many states at any time

NFA to DFA. Remark

How many different states ?

If there are N states, the NFA must be in some

subset of those N states

How many subsets are there?

— 2N-1

i.e., finitely many



States: S States : subset of S

Start state: s €S Start state: e-closure(s)
Final states: F subset of S Final state: { X | XNnF #¢ }
The transition function: The transition function:

a(x)={y | xeXAx>%y} X>2Y if Y= e-closure(a(X))



NFA to DFA: The Trick

* Simulate the NFA
e Each state of DFA

= a non-empty subset of states of the NFA
e Start state

= the set of NFA states reachable through ¢-
moves from NFA start state

e Add atransition S =52 S’ to DFA iff

— S’ is the set of NFA states reachable from any state in
S after seeing the input a, considering e-moves as well



NFA -> DFA Example




Implementation

A DFA can be implemented by a 2D table T
— One dimension is “states”
— Other dimension is “input symbol”
— For every transition S, -2 S, define Tl[i,a] = k

* DFA “execution”

— If in state S. and input a, read Tl[i,a] = k and skip to
state S,

— Very efficient



Table Implementation of a DFA




algorithm

1=0;

State=0;

While(input[i]){
State=A[state, input[i++]];

}



Implementation of the NFA itself
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Trade off between speed and space

* DFAS

— Faster: we are in one state at any given time.

— less compact: there could be a large number of
states 2N-1.

* NFAs

— slower (the loop has to deal with set of states
rather than one state),

— concise



