Lexical Analysis

Implementation: Finite Automata

Outline

- Specifying lexical structure using regular expressions
- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions
 RegExp => NFA => DFA => Tables

Notation

- There is variation in regular expression notation
- Union: $A \mid B = A + B$
- Option: $A + \varepsilon = A$?
- Range: 'a' +' b' +...+' z' = [a-z]
- Excluded range:

complement of $[a-z] = [^a-z]$

Regular Expressions in Lexical Specification

- Given a string s and a reg. exp. R, is
 s ∈ L(R) ?
- But a yes/no answer is not enough!
- Instead: partition the input into tokens
- We adapt regular expressions to this goal

Regular Expressions => Lexical Spec.

- 1. Write a rexp for the lexemes of each token
 - Number = digit +
 - Keyword = 'if'+ 'else'+ ...
 - Identifier = letter (letter + digit)*

— …

Regular Expressions => Lexical Spec.

- 2. Construct R, matching all lexemes for all tokens
 - R = Keyword + Identifier + Number + ...
 - $= R_1 + R_2 + ...$

Regular Expressions => Lexical Spec.

3. Let input be x₁...x_n

For $1 \le i \le n$ check

 $x_1...x_i \in L(R)$

4. If success, then we know that

 $x_1...x_i \in L(R_i)$ for some j

5. Remove $x_1...x_i$ from input and go to (3)

Ambiguities (1)

- There are ambiguities in the algorithm
- How much input is used? What if

 $-x_1...x_i \in L(R)$ and also $-x_1...x_K \in L(R)$

- e.g. = and ==
- Rule: Pick longest possible string in L(R)
 - The "maximal munch"
 - We as humans do that.

Ambiguities (2)

• Which token is used? What if

 $- x_1...x_i \in L(R_j) \text{ and also} \\ - x_1...x_i \in L(R_k)$

- e.g. 'if' could be an identifier or a keyword;
- which one to choose?
- Rule: use rule listed first (j if j < k)

- Treats "if" as a keyword, not an identifier

• i.e. the one listed first is given higher priority

Error Handling

• What if

– No rule matches a prefix of input ?

- Problem: Can't just get stuck ...
- A compiler needs to give feedback to the user e.g. where the error is in the file (line number)
- Solution:
 - Write a rule matching all "bad"strings
 - Put it last (lowest priority)

Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known
 - Require only single pass over the input
 - Few operations per character (table lookup)

Finite Automata

- Regular expressions = specification
- Finite automata = implementation
- A finite automaton consists of
 - An input alphabet Σ
 - A set of states S
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions state \rightarrow^{input} state

Finite Automata

• Transition

$$s_1 \rightarrow s_2$$

- Is read
- In state s₁ on input "a" go to state s₂
- If end of input and in accepting state => accept
- Otherwise => reject
 - If it terminates in state s that not a member of F
 - Or it gets stuck because there is not transition from state s1 on input a (i.e. never reaches the end of input).

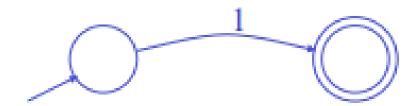
Finite Automata State Graphs

- A state
- The start state
- An accepting state

A transition

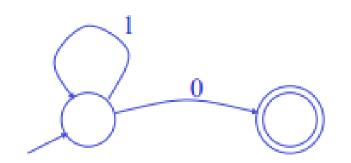
A Simple Example

• A finite automaton that accepts only "1"



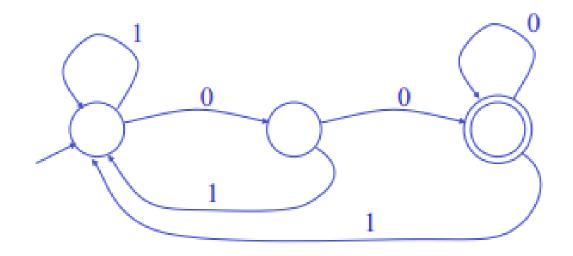
Another Simple Example

- A finite automaton accepting any number of
- 1's followed by a single 0
- Alphabet: {0,1}



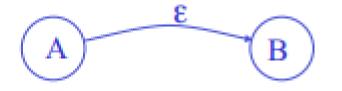
And Another Example

- Alphabet {0,1}
- What language does this recognize?



Epsilon Moves

• Another kind of transition: ε-moves



Machine can move from state A to state B without reading input

Deterministic and Nondeterministic Automata

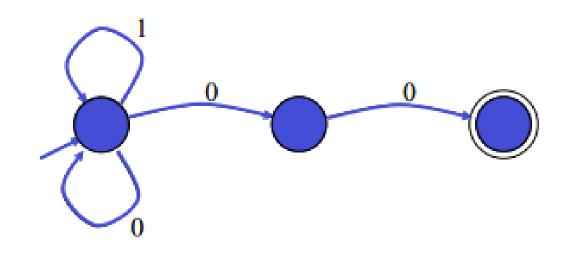
- Deterministic Finite Automata (DFA)
 - -One transition per input per state
 - –No ε-moves
- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input
- NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

• An NFA can get into multiple states



- Input: 1 0 0
- States: {A} {A,B} {A,B,C}
- Rule: NFA accepts if it can get to a final state

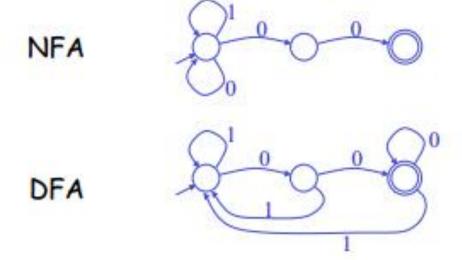
NFA vs. DFA

 NFAs and DFAs recognize the same set of languages (regular languages)

DFAs are faster to execute
 There are no choices to consider

NFA vs. DFA

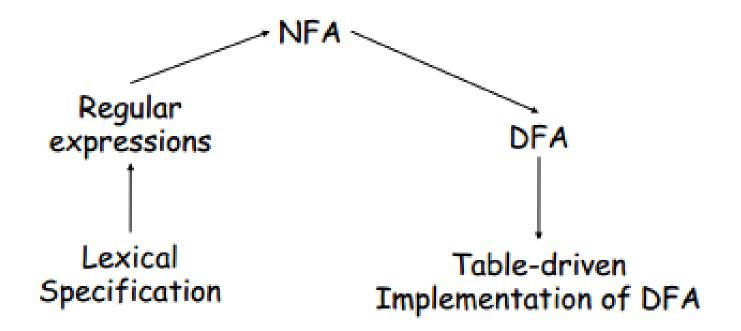
 For a given language NFA can be simpler than DFA



DFA can be exponentially larger than NFA

Regular Expressions to Finite Automata

High-level sketch



Regular Expressions to NFA (1)

- For each kind of rexp, define an NFA
 - Notation: NFA for rexp M

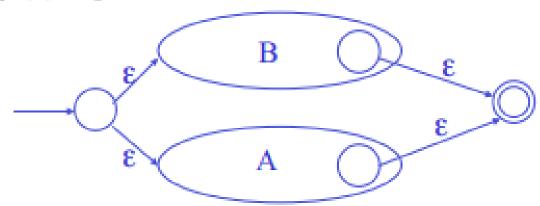
For ε

For input a

$$\rightarrow \bigcirc \xrightarrow{a} \bigcirc$$

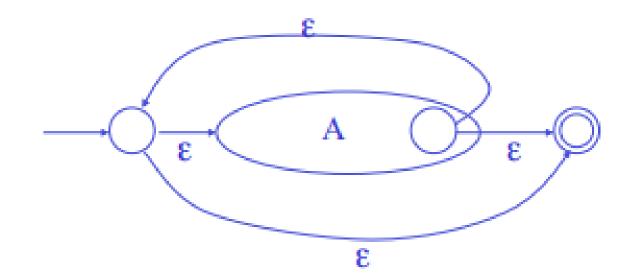
Regular Expressions to NFA (2)

- For AB \rightarrow A \rightarrow ϵ B \bigcirc
- For A + B



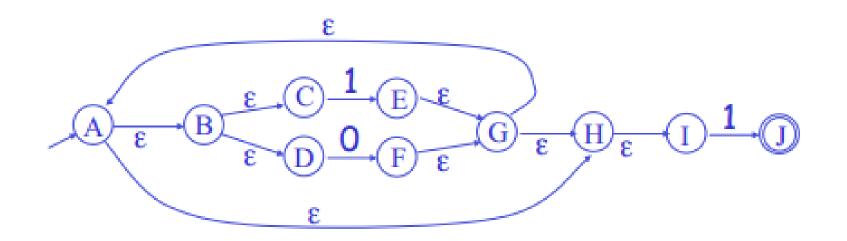
Regular Expressions to NFA (3)

For A*



Example of RegExp -> NFA conversion

- Consider the regular expression
 - (1+0)*1
- The NFA is



ε-closure of a state

- ε-closure of a state s is a set of states that consists of s and all other states that I can reach from s by making ε-moves only.
- Example
 - $-\epsilon$ -closure(B) = {B, C, D}
 - $-\epsilon$ -closure(G) = {G, H, I, A, B, C, D}

NFA to DFA. Remark

- An NFA may be in many states at any time
- How many different states ?
- If there are N states, the NFA must be in some subset of those N states
- How many subsets are there?
 - $2^{N}-1$ i.e., finitely many

NFA	DFA
States : S	States : subset of S
Start state: $s \in S$	Start state: ε-closure(s)
Final states: F subset of S	Final state: { X X \cap F $\neq \phi$ }
The transition function: a(x)={y $x \in X \land x \rightarrow a y$ }	The transition function: $X \rightarrow^{a} Y$ if $Y = \epsilon$ -closure(a(X))

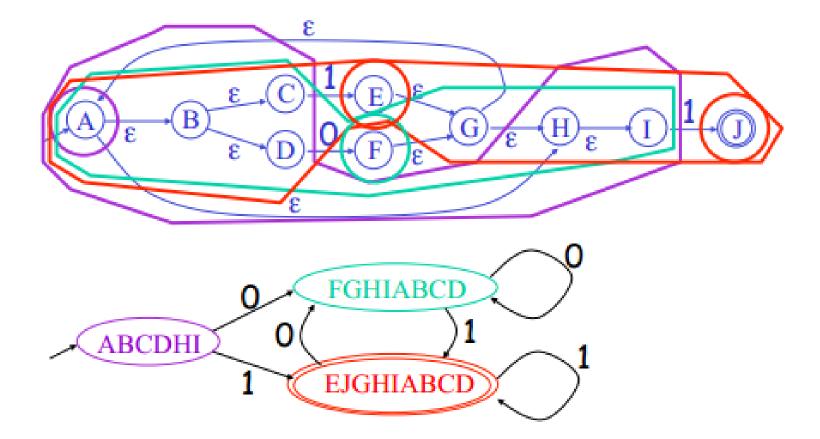
NFA to DFA: The Trick

- Simulate the NFA
- Each state of DFA
 - = a non-empty subset of states of the NFA
- Start state

 = the set of NFA states reachable through εmoves from NFA start state

- Add a transition S \rightarrow^{a} S' to DFA iff
 - S' is the set of NFA states reachable from any state in S after seeing the input a, considering ε-moves as well

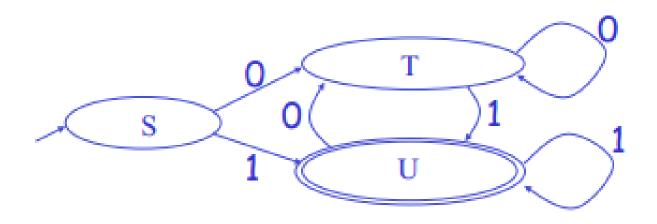
NFA -> DFA Example



Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is "states"
 - Other dimension is "input symbol"
 - For every transition $S_i \rightarrow^a S_k$ define T[i,a] = k
- DFA "execution"
 - If in state S_i and input a, read T[i,a] = k and skip to state S_k
 - Very efficient

Table Implementation of a DFA

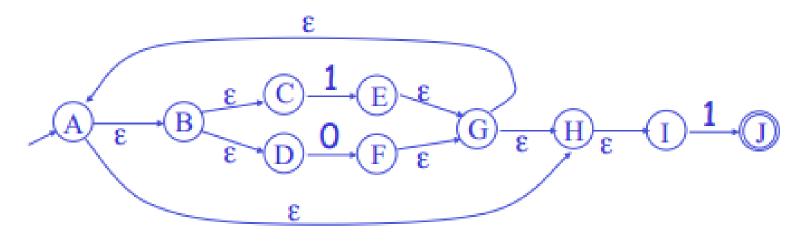


	0	1
S	Т	U
Т	Н	U
U	Т	U

algorithm

```
i=0;
State=0;
While(input[i]){
    State=A[state, input[i++]];
    }
```

Implementation of the NFA itself



0

1

ξ

A			{B}
В			{ C,D }
С		{ E }	
D	{ F }		
•			

Trade off between speed and space

- DFAs
 - Faster: we are in one state at any given time.
 - less compact: there could be a large number of states 2^N-1.
- NFAs
 - slower (the loop has to deal with set of states rather than one state),
 - concise