
Lexical Analysis 

Implementation: Finite Automata 



Outline 

• Specifying lexical structure using regular 
expressions  

• Finite automata  

– Deterministic Finite Automata (DFAs)  

– Non-deterministic Finite Automata (NFAs)  

• Implementation of regular expressions  

 RegExp => NFA => DFA => Tables 



Notation 



Regular Expressions in Lexical Specification 

• Given a string s and a reg. exp. R, is  

  s ∈ L(R) ? 

 

• But a yes/no answer is not enough!  

 

•  Instead: partition the input into tokens  

 

•  We adapt regular expressions to this goal  

 

 



Regular Expressions => Lexical Spec. 

1.  Write a rexp for the lexemes of each token  

– Number = digit +  

– Keyword = ‘if’+ ‘else’+ …  

– Identifier = letter (letter + digit)*  

– OpenPar = ‘(‘ 

– …  



Regular Expressions => Lexical Spec.  

2. Construct R, matching all lexemes for all 
tokens  

 R = Keyword + Identifier + Number + …  

    = R1+ R2+ …  



Regular Expressions => Lexical Spec. 

3.  Let input be x1…xn  

 For 1 ≤i ≤n check  

  x1…xi ∈L(R) 

4.  If success, then we know that  

  x1…xi ∈L(Rj) for some j 

5.  Remove x1…xi from input and go to (3) 



Ambiguities (1) 

• There are ambiguities in the algorithm  

• How much input is used? What if  

– x1…xi ∈L(R)and also  

– x1…xK∈L(R) 

• e.g. = and == 

• Rule: Pick longest possible string in L(R) 

– The “maximal munch”  

– We as humans do that. 



Ambiguities (2) 

• Which token is used? What if  
– x1…xi ∈L(Rj) and also  

–  x1…xi ∈L(Rk) 
 

• e.g. ‘if’ could be an identifier or a keyword;  

• which one to choose? 

• Rule: use rule listed first (j if j < k)  
– Treats “if” as a keyword, not an identifier  

• i.e. the one listed first is given higher priority 
 



Error Handling 

• What if  

– No rule matches a prefix of input ?  

• Problem: Can’t just get stuck …  

• A compiler needs to give feedback to the user 
e.g. where the error is in the file (line number) 

• Solution:  

– Write a rule matching all “bad”strings  

– Put it last (lowest priority)  



Summary 

• Regular expressions provide a concise 
notation for string patterns  

• Use in lexical analysis requires small 
extensions  
– To resolve ambiguities  

– To handle errors  

• Good algorithms known  
–   Require only single pass over the input  

–   Few operations per character (table lookup) 



Finite Automata 

• Regular expressions = specification  

• Finite automata = implementation  

• A finite automaton consists of  

–   An input alphabet Σ 

– A set of states S  

– A start state n  

– A set of accepting states F ⊆S  

– A set of transitions state →input state  



Finite Automata  

• Transition  
   s1→a s2  

• Is read  
• In state s1 on input “a” go to state s2  

• If end of input and in accepting state => accept  
• Otherwise => reject  

– If it terminates in state s that not a member of F 
– Or it gets stuck because there is not transition from 

state s1 on input a (i.e. never reaches the end of 
input). 



Finite Automata State Graphs 



A Simple Example 

• A finite automaton that accepts only “1” 



Another Simple Example 

• A finite automaton accepting any number of  

1’s followed by a single 0  

• Alphabet: {0,1}  



And Another Example  

• Alphabet {0,1}  

• What language does this recognize?  



Epsilon Moves 

• Machine can move from state A to state B 
without reading input 

• Another kind of transition: ε-moves 



Deterministic and Nondeterministic 
Automata 

• Deterministic Finite Automata (DFA)  

–One transition per input per state  

–No ε-moves  

• Nondeterministic Finite Automata (NFA)  

–Can have multiple transitions for one input 
in a given state  

–Can have ε-moves 



Execution of Finite Automata 

• A DFA can take only one path through the 
state graph  

–Completely determined by input  

• NFAs can choose  

–Whether to make ε-moves  

–Which of multiple transitions for a single 
input to take 



Acceptance of NFAs 

• An NFA can get into multiple states 

• Input:       1          0            0 
• States:    {A}        {A,B}     {A,B,C}     
• Rule: NFA accepts if it can get to a final state 

 



NFA vs. DFA 

• NFAs and DFAs recognize the same 
set of languages (regular languages)  

 

• DFAs are faster to execute  

–There are no choices to consider 



NFA vs. DFA  



Regular Expressions to Finite 
Automata 



Regular Expressions to NFA (1) 



Regular Expressions to NFA (2) 



Regular Expressions to NFA (3) 



Example of RegExp -> NFA conversion 

• Consider the regular expression  

   (1+0)*1  

• The NFA is 



ε-closure of a state 

• ε-closure of a state s is a set of states that 
consists of s and all other states that I can 
reach from s by making ε-moves only.  

• Example 

– ε-closure(B) = {B, C, D} 

– ε-closure(G) = {G, H, I, A, B, C, D} 



NFA to DFA. Remark 

• An NFA may be in many states at any time  

• How many different states ?  

• If there are N states, the NFA must be in some 
subset of those N states  

• How many subsets are there?  

–   2N-1        i.e.,  finitely many 



NFA DFA 

States :   S States : subset of S 

Start state: s ϵ S Start state: ϵ-closure(s) 

Final states:   F  subset of S Final state: { X | X∩F ≠ф } 

 
The transition function: 

 
a(x)={y | x ϵ X ˄ xa y} 

 

 
The transition function: 
 
 Xa Y    if Y= ϵ-closure(a(X)) 



NFA to DFA: The Trick 

• Simulate the NFA  

• Each state of DFA  

 = a non-empty subset of states of the NFA  

• Start state  

 = the set of NFA states reachable through ε-
moves  from NFA start state  

• Add a transition S →a S’ to DFA iff  
–   S’ is the set of NFA states reachable from any state in 

S after seeing the input a, considering ε-moves as well 



NFA -> DFA Example 



Implementation 

• A DFA can be implemented by a 2D table T  

–   One dimension is “states” 

– Other dimension is “input symbol” 

– For every transition Si →
a Sk  define T[i,a] = k  

• DFA “execution” 

– If in state Si and input a, read T[i,a] = k and skip to 
state Sk  

– Very efficient  



Table Implementation of a DFA 



algorithm 

i=0; 

State=0; 

While(input[i]){  

State=A[state, input[i++]]; 
} 

 



Implementation of the NFA itself 

{B} 

{ C,D } 

     { E } 

   {  F }  

A 
B 
C 
D 
: 

                         0                                               1                                              ξ 



Trade off between speed and space 

• DFAs      

– Faster: we are in one state at any given time.  

– less compact: there could be a large number of 
states 2N-1. 

• NFAs      

– slower  (the loop has to deal with set of states 
rather than one state),  

– concise 


