Lexical Analysis

Part-1: Specification

Outline

- Informal sketch of lexical analysis
- Identifies tokens in input string
- Issues in lexical analysis
- Lookahead
- Ambiguities
- Specifying lexers
- Regular expressions
- Examples of regular expressions

1. Lexical Analysis

2. Parsing
3. Semantic Analysis
4. Optimization
5. Code Generation

- What do we want to do? Example:
if ($i==j$)
Z = 0;
else

$$
\mathrm{Z}=1 ;
$$

- The input is just a string of characters:
\tif $(i==j) \backslash n \backslash t \backslash t z=0 ; \backslash n \backslash t e l s e \backslash n \backslash t \backslash t z=1 ;$
- Goal: Partition input string into substrings
- Where the substrings are tokens

What's a Token?

- A syntactic category
- In English:
noun, verb, adjective, ...
- In a programming language:

Identifier, Integer, Keyword, Whitespace, ...

Tokens

- Tokens correspond to sets of strings.
- e.g.
- Identifier: strings of letters or digits, starting with a letter
- Integer: a non-empty string of digits
- Keyword: "else" or "if" or "begin" or ...
- Whitespace: a non-empty sequence of blanks, newlines, and tabs

What are Tokens For?

- Classify program substrings according to role (e.g., identifier, keyword, whitespace, ...)
- Output of lexical analysis is a stream of tokens
- . . . which is input to the parser
- Parser relies on token distinctions
- An identifier is treated differently than a keyword

Example

- Input:

$$
\mathrm{X} 1=5
$$

- Output <identifier,"x1">, <op,"=">, <int,"5">
- Each pair is called a token
- Token format: <class, string>
- Or <token class, lexeme>

Designing a Lexical Analyzer: Step 1

- Define a finite set of tokens
- Tokens describe all items of interest
- Choice of tokens depends on language, design of parser

Example

- Recall
\tif $(i==j) \backslash n \backslash t \backslash t z=0 ; \backslash n \backslash t e \mid s e \backslash n \backslash t \backslash t z=1 ;$
- Useful tokens for this expression:

Integer, Keyword, Relation, Identifier,
Whitespace, (,), =, ;

- Note that (,), =, ;are tokens, not characters, here

Designing a Lexical Analyzer: Step 2

- Describe which strings belong to each token
- Recall:
- Identifier: strings of letters or digits, starting with a letter
- Integer: a non-empty string of digits
- Keyword: "else" or "if" or "begin" or ...
- Whitespace: a non-empty sequence of blanks, newlines, and tabs

Lexical Analyzer: Implementation

- An implementation must do two things:

1. Recognize substrings corresponding to tokens
2. Return the value or lexeme of the token

- The lexeme is the substring
- Lexical analysis is not as easy as it sounds
- For example in FORTRAN Whitespace is insignificant
- E.g., VAR1 is the same as VA R1
- Also
- DO 5 I = 1,25 (loop)
- DO 5 I=1.25 (is an assignment statement)

Lexical Analysis in FORTRAN (Cont.)

- Two important points:

1. The goal is to partition the string. This is implemented by reading left-to-right, recognizing one token at a time
2. "Lookahead" may be required to decide where one token ends and the next token begins.

- FORTRAN was designed this terrible way because on punch cards machines it was easy to add whitespaces by mistake.
- Even our simple example has lookahead issues
- i vs. if
- = VS. ==

Lexical analysis in PL/I

- PL/I keywords are not reserved
- IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN
- Variables
- keywords

Lexical Analysis in PL/I (Cont.)

- PL/I Declarations:
- DECLARE (ARG1,. . ., ARGN)
- Can't tell whether DECLARE is a keyword or array reference until after the) to see if there is = for example.
- Requires arbitrary lookahead! Because we have n args. \rightarrow unbounded lookahead
- FORTRAN was designed in 1950's
- PL/I was designed in 1960's
- Things are not that bad with modern languages
- But the problems have not gone away completely.
- C++ template syntax:

Foo<Bar>

- C++ stream syntax:
cin >> var;
- But there is a conflict with nested templates:

Foo<Bar<Bazz>>

- For along time C++ compilers generated a syntax error
- The only solution was to put a space between the last > $>$

Review

- The goal of lexical analysis is to
- Partition the input string into lexemes
- Identify the token of each lexeme
- Left-to-right scan => look ahead sometimes required

Next

- We still need
- A way to describe the lexemes of each token
- A way to resolve ambiguities
- Is if two variables I and f?
- Is == two equal signs =?

Regular Languages

- There are several formalisms for specifying tokens
- Regular languages are the most popular
- Simple and useful theory
- Easy to understand
- Efficient implementations

Languages

- Def. Let S be a set of characters. A language over S is a set of strings of characters drawn from S
- Languages are sets of strings.
- Need some notation for specifying which sets we want
- The standard notation for regular languages is regular expressions.

Regular Expressions

- Atomic Regular Expressions
-Single character

$$
' c^{\prime}{ }^{\prime}\left\{"^{\prime \prime}{ }^{\prime \prime}\right\}
$$

-Epsilon

$$
\varepsilon=\left\{{ }^{\prime \prime \prime}\right\}
$$

Atomic Regular Expressions

- Union

$$
A+B=\{s \mid s \in A \text { or } s \in B\}
$$

- Concatenation

$$
A B=\{a b \mid a \in A \text { and } b \in B\}
$$

- Iteration

$$
A^{*}=\bigcup_{i \geq 0} A^{i} \text { where } A^{i}=A \ldots i \text { times } \ldots A
$$

- Def. The regular expressions over S are the smallest set of expressions including
ε
' c ' where $c \in \sum$
$A+B$ where A, B are rexp over \sum
$A B$ " " "
A^{*}
where A is a rexp over \sum

Examples

- $\Sigma=\{0,1\}$
- $1^{*}=$ """ $+1+11+111+\ldots$
- $(1+0) 1=\left\{a b \mid a \in 1+0^{\wedge} b \in 1\right\}=\{11,01\}$
- $0^{*}+1^{*}=\left\{0^{i} \mid i>=0\right\} \cup\left\{1^{i} \mid i>=0\right\}$
- $(0+1)^{*}=U_{i>=0}(0+1)^{i}={ }^{\prime \prime \prime}+0+1,(0+1)(0+1), \ldots,(0+1) \ldots(0+1)$
= all strings of 0's and 1'a

Syntax vs. Semantics

- To be careful, we should distinguish syntax (the reg. exp.) and semantics (the langs. they denote).
- Meaning function L maps syntax to semantics
- L: Exp \rightarrow Sets of Strings

$$
\begin{array}{ll}
L(\varepsilon) & =\{" "\} \\
L\left({ }^{\prime} c^{\prime}\right) & =\left\{" c^{\prime \prime}\right\} \\
L(A+B) & =L(A) \cup L(B) \\
L(A B) & =\{a b \mid a \in L(A) \text { and } b \in L(B)\} \\
L\left(A^{*}\right) & =\mathrm{U}_{i \geq 0} L\left(A^{i}\right)
\end{array}
$$

- Regular expressions are simple, almost trivial
- But they are useful!
- Reconsider informal token descriptions . . .

Example: Keyword

- Keyword: "else"or "if"or "begin"or ...
'else'+ 'if'+ 'begin'+ . . .
Note: 'else’ abbreviates
'es|'l's'e'

Example: Integers

Integer: a non-empty string of digits

$$
\begin{aligned}
& \text { digit }=0^{\prime}+{ }^{\prime} 1^{\prime}+{ }^{\prime} 2^{\prime}+{ }^{\prime} 3^{\prime}+{ }^{\prime} 4^{\prime}+{ }^{\prime} 5^{\prime}+{ }^{\prime} 6^{\prime}+' 7 '+{ }^{\prime}+{ }^{\prime} '^{\prime} \\
& \text { integer }=\text { digit digit }
\end{aligned}
$$

Abbreviation: $A^{+}=A A^{*}$

Example: Identifier

- Identifier: strings of letters or digits, starting with a letter

$$
\begin{aligned}
& \text { letter }=' A{ }^{\prime}+\ldots+' Z '+' a '+\ldots+ \\
& \text { 'z' } \\
& \text { identifier }=\text { letter (letter + digit)* }
\end{aligned}
$$

Is (letter* + digit*) the same?

Example: Whitespace

- Whitespace: a non-empty sequence of blanks, newlines, and tabs

$$
\left({ }^{\prime} \quad+\quad+n^{\prime}+‘\left(t^{\prime}\right)^{+}\right.
$$

Example: Email Addresses

- Consider anyone@cs.stanford.edu
or

$$
\begin{array}{ll}
\sum & =\text { letters } \cup\{., @\} \\
\text { name } & =\text { letter }^{+} \\
\text {address } & =\text { name '@' name '.' name '.' name }
\end{array}
$$

Example: Phone Numbers

- Regular expressions are all around you!
- Consider (650)-723-3232
Σ
exchange
phone
area phone_number = '(' area ')-' exchange '-' phone

Example: Unsigned Pascal Numbers

digit = '0' +'1'+'2'+'3'+'4'+'5'+'6'+'7'+'8'+'9' digits $=$ digit $^{+}$
opt_fraction $=($ '.' digits $)+\xi \equiv\left({ }^{\prime}\right.$. digits) ? opt_exponent $=($ (E ' ('+' + '-' $+\xi$) digits) $+\xi$

$$
\equiv \text { ('E’ ('+' + ' ' ') ? digits) ? }
$$

num = digits opt_fraction opt_exponent

Summary

- Regular expressions describe many useful languages
- Regular languages are a language specification
- We still need an implementation
- We still need to be able to decide given a string s and a reg. exp. R, is

$$
s \in L(R) ?
$$

