
Lexical Analysis

Part-1: Specification

Outline

• Informal sketch of lexical analysis

– Identifies tokens in input string

• Issues in lexical analysis

– Lookahead

– Ambiguities

• Specifying lexers

– Regular expressions

– Examples of regular expressions

1. Lexical Analysis
2. Parsing

3. Semantic Analysis

4. Optimization

5. Code Generation

• What do we want to do? Example:

if (i == j)

Z = 0;

else

Z = 1;

• The input is just a string of characters:

\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1;

• Goal: Partition input string into substrings

– Where the substrings are tokens

What’s a Token?

• A syntactic category

– In English:

noun, verb, adjective, …

– In a programming language:

Identifier, Integer, Keyword, Whitespace, …

Tokens

• Tokens correspond to sets of strings.

• e.g.

– Identifier: strings of letters or digits, starting with
a letter

– Integer: a non-empty string of digits

– Keyword: “else” or “if” or “begin” or …

– Whitespace: a non-empty sequence of blanks,
newlines, and tabs

What are Tokens For?

• Classify program substrings according to role
(e.g., identifier, keyword, whitespace, …)

• Output of lexical analysis is a stream of tokens
. . .

• . . . which is input to the parser

• Parser relies on token distinctions

– An identifier is treated differently than a keyword

Example

• Input:

X1=5

• Output

<identifier,”x1”>, <op,”=“>, <int,”5”>

• Each pair is called a token

• Token format: <class, string>

• Or <token class, lexeme>

Designing a Lexical Analyzer: Step 1

• Define a finite set of tokens

– Tokens describe all items of interest

– Choice of tokens depends on language, design of
parser

Example

• Recall

\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1;

• Useful tokens for this expression:

Integer, Keyword, Relation, Identifier,
Whitespace, (,), =, ;

• Note that (,), =, ;are tokens, not characters,
here

Designing a Lexical Analyzer: Step 2

• Describe which strings belong to each token

• Recall:

– Identifier: strings of letters or digits, starting with
a letter

– Integer: a non-empty string of digits

– Keyword: “else” or “if” or “begin” or …

– Whitespace: a non-empty sequence of blanks,
newlines, and tabs

Lexical Analyzer: Implementation

• An implementation must do two things:

1. Recognize substrings corresponding to tokens

2. Return the value or lexeme of the token

– The lexeme is the substring

• Lexical analysis is not as easy as it sounds

• For example in FORTRAN Whitespace is
insignificant

• E.g., VAR1 is the same as VA R1

• Also

– DO 5 I = 1,25 (loop)

– DO 5 I=1.25 (is an assignment statement)

Lexical Analysis in FORTRAN (Cont.)

• Two important points:

1. The goal is to partition the string. This is
implemented by reading left-to-right,
recognizing one token at a time

2. “Lookahead” may be required to decide where
one token ends and the next token begins.

• FORTRAN was designed this terrible way
because on punch cards machines it was easy to
add whitespaces by mistake.

• Even our simple example has lookahead issues

• i vs. if

• = vs. ==

Lexical analysis in PL/I

• PL/I keywords are not reserved

• IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

• Variables

• keywords

Lexical Analysis in PL/I (Cont.)

• PL/I Declarations:

• DECLARE (ARG1,. . ., ARGN)

• Can’t tell whether DECLARE is a keyword or
array reference until after the) to see if there
is = for example.

• Requires arbitrary lookahead! Because we
have n args.  unbounded lookahead

• FORTRAN was designed in 1950’s

• PL/I was designed in 1960’s

• Things are not that bad with modern
languages

• But the problems have not gone away completely.

• C++ template syntax:

Foo<Bar>

• C++ stream syntax:

cin >> var;

• But there is a conflict with nested templates:

Foo<Bar<Bazz>>

• For along time C++ compilers generated a syntax error

• The only solution was to put a space between the last >
>

Review

• The goal of lexical analysis is to

– Partition the input string into lexemes

– Identify the token of each lexeme

• Left-to-right scan => look ahead sometimes
required

Next

• We still need

– A way to describe the lexemes of each token

– A way to resolve ambiguities

• Is if two variables I and f?

• Is == two equal signs =?

Regular Languages

• There are several formalisms for specifying
tokens

• Regular languages are the most popular

– Simple and useful theory

– Easy to understand

– Efficient implementations

Languages

• Def. Let S be a set of characters. A language
over S is a set of strings of characters drawn
from S

• Languages are sets of strings.

• Need some notation for specifying which sets
we want

• The standard notation for regular languages is
regular expressions.

Regular Expressions

• Atomic Regular Expressions

–Single character

‘c’={“c”}

–Epsilon

ε={“”}

Atomic Regular Expressions

• Def. The regular expressions over S are the
smallest set of expressions including

Examples

• ∑={0,1}

• 1* = “”+1+11+111+…

• (1+0)1 = {ab| a ϵ 1+0 ^ b ϵ 1} ={ 11,01}

• 0*+1* = { 0i| i>=0} U {1i| i>=0}

• (0+1)* = Ui>=0 (0+1)i = “”+ 0+1, (0+1)(0+1), …, (0+1)…(0+1)
= all strings of 0’s and 1’a

Syntax vs. Semantics
• To be careful, we should distinguish syntax (the

reg. exp.) and semantics (the langs. they denote).
• Meaning function L maps syntax to semantics
• L: Exp  Sets of Strings

• Regular expressions are simple, almost trivial

– But they are useful!

• Reconsider informal token descriptions . . .

Example: Keyword

• Keyword: “else”or “if”or “begin”or …

‘else’+ ‘if’+ ‘begin’+ . . .

Note: ‘else’ abbreviates

‘e’’l’’s’’e’

Example: Integers

Example: Identifier

• Identifier: strings of letters or digits, starting
with a letter

Example: Whitespace

• Whitespace: a non-empty sequence of blanks,
newlines, and tabs

(‘ ‘ + ‘\n’ + ‘\t’)+

Example: Email Addresses

• Consider anyone@cs.stanford.edu

letter+ ‘@’ letter+ ‘.’ letter+ ‘.’ letter+

or

mailto:anyone@cs.stanford.edu

Example: Phone Numbers

• Regular expressions are all around you!

• Consider (650)-723-3232

Example: Unsigned Pascal Numbers

digit = '0' +'1'+'2'+'3'+'4'+'5'+'6'+'7'+'8'+'9'

digits = digit+

opt_fraction = ('.' digits) + ξ ≡ (‘.’ digits) ?

opt_exponent = ('E' ('+' + '-' + ξ) digits)+ ξ

≡ (‘E’ (‘+’ + ‘-’) ? digits) ?

num = digits opt_fraction opt_exponent

Summary

• Regular expressions describe many useful
languages

• Regular languages are a language specification

– We still need an implementation

• We still need to be able to decide given a
string s and a reg. exp. R, is

s ∈ L(R) ?

