Lexical Analysis

Part-1: Specification

Outline

* |Informal sketch of lexical analysis

— ldentifies tokens in input string

* |ssues in lexical analysis
— Lookahead
— Ambiguities
e Specifying lexers
— Regular expressions
— Examples of regular expressions

R R e

. Lexical Analysis

Parsing

Semantic Analysis
Optimization
Code Generation

* What do we want to do? Example:
if (i == j)

/=0;
else
/=1;

 The input is just a string of characters:
\tif (i ==j)\n\t\tz = O;\n\telse\n\t\tz = 1;

e G@Goal: Partition input string into substrings

— Where the substrings are tokens

What’s a Token?

* A syntactic category
— In English:
noun, verb, adjective, ...
— In a programming language:
|dentifier, Integer, Keyword, Whitespace, ...

Tokens

* Tokens correspond to sets of strings.
* e.g.
— Identifier: strings of letters or digits, starting with
a letter
— Integer: a non-empty string of digits
— Keyword: “else” or “if” or “begin” or ...

— Whitespace: a non-empty sequence of blanks,
newlines, and tabs

What are Tokens For?

Classify program substrings according to role
(e.g., identifier, keyword, whitespace, ...)

Output of lexical analysis is a stream of tokens

... Which is input to the parser

Parser relies on token distinctions
— An identifier is treated differently than a keyword

Example

Input:
X1=5
Output

<identifier,”x1”>, <op,”=“>, <int,”5">

Each pair is called a token

To
Or

ken format: <class, string>
<token class, lexeme>

Designing a Lexical Analyzer: Step 1

e Define a finite set of tokens
— Tokens describe all items of interest

— Choice of tokens depends on language, design of
parser

Example

* Recall
\tif (i == j)\n\t\tz = O;\n\telse\n\t\tz = 1;
* Useful tokens for this expression:

Integer, Keyword, Relation, Identifier,
Whitespace, (|,), =, ;

 Note that (,), =, ;are tokens, not characters,
here

Designing a Lexical Analyzer: Step 2

e Describe which strings belong to each token
* Recall:

— Identifier: strings of letters or digits, starting with
a letter

— Integer: a non-empty string of digits
— Keyword: “else” or “if” or “begin” or ...

— Whitespace: a non-empty sequence of blanks,
newlines, and tabs

Lexical Analyzer: Implementation

* An implementation must do two things:
1. Recognize substrings corresponding to tokens
2. Return the value or lexeme of the token

— The lexeme is the substring

Lexical analysis is not as easy as it sounds
For example in FORTRAN Whitespace is

insignificant

E.g., VAR1 is the same as VA R1

Also
—DO51=1,25
—DO51=1.25

(loop)
(is an assignment statement)

Lexical Analysis in FORTRAN (Cont.)

* Two important points:
1. The goal is to partition the string. This is

implemented by reading left-to-right,
recognizing one token at a time

2. “Lookahead” may be required to decide where
one token ends and the next token begins.

* FORTRAN was designed this terrible way
because on punch cards machines it was easy to
add whitespaces by mistake.

* Even our simple example has lookahead issues
e jvs.if

* =S, ==

Lexical analysis in PL/

PL/I keywords are not reserved
IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

Variables
keywords

Lexical Analysis in PL/I (Cont.)

PL/I Declarations:
DECLARE (ARG1,. . ., ARGN)

Can’t tell whether DECLARE is a keyword or
array reference until after the) to see if there
is = for example.

Requires arbitrary lookahead! Because we
have n args. = unbounded lookahead

* FORTRAN was designed in 1950’s
* PL/I was designed in 1960’s

* Things are not that bad with modern
languages

But the problems have not gone away completely.
C++ template syntax:
Foo<Bar>
C++ stream syntax:
cin >> var;
But there is a conflict with nested templates:
Foo<Bar<Bazz>>
For along time C++ compilers generated a syntax error

The only solution was to put a space between the last >
>

Review

 The goal of lexical analysis is to
— Partition the input string into lexemes

— |dentify the token of each lexeme

e Left-to-right scan =>look ahead sometimes
required

Next

* We still need
— A way to describe the lexemes of each token

— A way to resolve ambiguities
* Isif two variables | and f?
* |Is ==two equal signs =7

Regular Languages

* There are several formalisms for specifying
tokens

* Regular languages are the most popular

— Simple and useful theory
— Easy to understand
— Efficient implementations

Languages

Def. Let S be a set of characters. A language
over S is a set of strings of characters drawn

from S
Languages are sets of strings.

Need some notation for specifying which sets
we want

The standard notation for regular languages is
regular expressions.

Regular Expressions

* Atomic Regular Expressions
—Single character
c={"c")
—Epsilon

e={")

Atomic Regular Expressions

« Union

A+ B = {S | sEA or SEB}

« Concatenation

AB ={ab|a€ A and hE B}

« Tteration

A =] A where A' = A...i times ...4
i=0

* Def. The regular expressions over S are the
smallest set of expressions including

=

here c€),

where A, B are rexp over),

n " Ll

where 4 is a rexp over),

Examples

2=10,1}

1* = “"+1+11+111+...

(1+0)1 = {ablae€el1+0*be1}={11,01}
0*+1* = {0'| i>=0} U {1'| i>=0}

(0+1)* = U__, (0+1)' = “"+ 0+1, (0+1)(0+1), ..., (0+1)...(0+1)
= all strings of 0O's and 1’a

Syntax vs. Semantics

* To be careful, we should distinguish syntax (the
reg. exp.) and semantics (the langs. they denote).

 Meaning function L maps syntax to semantics
* L: Exp =2 Sets of Strings

o - {7}

L('c) = {"c"}

L(A+B) = L(A)JL(B)

L(AB) = {ab|aEL(A)and bEL(B))

L4y = U_ L)

* Regular expressions are simple, almost trivial

— But they are useful!

* Reconsider informal token descriptions.. ..

Example: Keyword

* Keyword: “else”or “if”’or “begin”or ...
‘else’+ ‘if'+ ‘begin’+ . ..
Note: ‘else’ abbreviates

7.7

Iellllls e

Example: Integers

Integer: a non-empty string of digits

digit = '04'T+'2'+'3'+'4'+'5'+'6'+'7'+'8'+'9’
digit digit”

integer

Abbreviation: A" = A4

Example: Identifier

* |dentifier: strings of letters or digits, starting
with a letter

letter = A+, .+ 'L +'a +...+
II?
identifier = letter (letter + digit)*

Is (letter* + digit*) the same?

Example: Whitespace

* Whitespace: a non-empty sequence of blanks,
newlines, and tabs

(“ “+\n" +\t')*

Example: Email Addresses

 Consider anyone@cs.stanford.edu

lettert ‘@’ letter* ‘ letter* // letter*
or

> = letters U{@}

name = letter”

address = name '@ name '.'name "' name

mailto:anyone@cs.stanford.edu

Example: Phone Numbers

* Regular expressions are all around youl!
e Consider (650)-723-3232

S = digits U {-(,)}
exchange = digit’
phone = digit”
area = digit’

phone number = '('area')-' exchange -' phone

Example: Unsigned Pascal Numbers

igit — IOI +I1I+I2l+l3l+l4l+|5l+l6l+l7l+l8l+I9I

C

digits = digit*

opt fraction = ('." digits) + & = (*. digits) ?

opt_exponent = ('E' ("+' +'-' + &) digits)+ €
= (‘E’ (‘+' + ‘") ? digits) ?

num = digits opt fraction opt exponent

Summary

* Regular expressions describe many useful
anguages

* Regular languages are a language specification

— We still need an implementation

* We still need to be able to decide given a
string s and a reg. exp. R, is

s € L(R) ?

