King Saud university Department of Mathematics M - 203
 (Differential and Integral Calculus)
 Final Examination (Summer Semester 1434/1435)
 Full Marks: 40
 Time: 3 Hours

Q. \#1. [Marks: $3+3+3+3=12]$
(a) Determine whether the sequence $\left\{\left(\frac{n+1}{n-1}\right)^{n}\right\}$ convergences or diverges and if it converges, find its limit.
(b) Determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$.
(c) Find the interval of convergence and the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x+\pi)^{n}}{\sqrt{n}}$.
(d) Find the first three non-zero terms of a Taylor series for the function $f(x)=\cos x$ at $x=\pi / 3$.
Q. \#2. [Marks: $3+3+3+3=12$]
(a) Evaluate the integral $\int_{0}^{4} \int_{\sqrt{y}}^{2} e^{x^{3}} d x d y$.
(b) Find the area of the portion of the surface given by the cone $z^{2}=$ $4 x^{2}+4 y^{2}$ that is above the region in the first quadrant bounded by the line $y=x$ and the parabola $y=x^{2}$.
(c) Use cylindrical coordinates to evaluate the integral
$\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{0}^{a^{2}-x^{2}-y^{2}} x^{2} d z d y d x \quad(a>0)$.
(d) Find the mass of the solid enclosed between the two spheres $x^{2}+y^{2}+$ $z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$ with density $\delta(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}$. Q. \#3. [Marks: $4+4+4+4=16$]
(a) Show that the following line integral is independent of path and find its value:
$\int_{(0,0)}^{(\pi, \pi)}(x+y) d x+(x-y) d y$.
(b) Use Green's theorem to evaluate the line integral
$\oint_{C} x y d x+\left(x^{2}+y^{2}\right) d y$,
where C is the closed curve determine by $y=x$ and $y^{2}=x$ with $0 \leq x \leq 1$.
(c) Use divergence theorem to evaluate the integral $\iint_{S} \vec{F} \cdot \vec{n} d S$, where $\vec{F}=4 x \vec{i}-4 y \vec{j}+z^{2} \vec{k}$ and S is the surface of the region bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $z=0$ and $z=3$.
(d) Use Stokes' theorem to evaluate $\oint_{C} \vec{F} \cdot d \vec{r}$, where C is the boundary of the portion of $z=4-x^{2}-y^{2}$ above the $x y$-plane oriented upward and $\vec{F}(x, y, z)=\left(x^{2} e^{x}-y\right) \vec{i}+\sqrt{y^{2}+1} \vec{j}+z^{3} \vec{k}$.

