Final Exam, M-106, TM I, (2015-16), Department of Mathematics, King Saud University

1. [2+2 Marks]

1.1) Find $\frac{d y(x)}{d x}$ where $y(x)=\left(5^{x}+5^{-x}\right)^{5}$.
1.2) Evaluate the indefinite integral $\int x^{2} \sinh \left(x^{3}\right) d x$.
2. [3+3 Marks]
2.1) Determine whether the improper integral $\int_{1}^{\infty}(1-x) e^{-x} d x$ converges or diverges, and evaluate it if it converges.
2.2) Evaluate the indefinite integral $\int \cos ^{11}(x) \sin ^{3}(x) d x$.
3. [3+3+3 Marks]
3.1) Evaluate the indefinite integral $\int \frac{5 x^{2}+20 x+6}{x^{3}+2 x^{2}+x} d x$.
3.2) Sketch the region bounded by the graphs of the equations $x=3-y^{2}, x=y+1$, and find its area.
3.3) Evaluate the indefinite integral $\int \frac{x^{2}}{\left(1+x^{2}\right)^{2}} d x$.
4. [3+3 Marks]
4.1) Evaluate the indefinite integral $\int \frac{x}{\sqrt{6 x+1}} d x$.
4.2) Evaluate the indefinite integral $\int \frac{1}{\sqrt{8+2 x-x^{2}}} d x$.
5. [3+3 Marks]
5.1) Sketch the region R bounded by the graphs of the equations
$y=\sqrt{x}, y=x^{2}$, and find the volume of the solid generated by revolving R about the x-axis.
5.2) Find the arc length of the graph of the equation $y(x)=\ln (\cos (x))$ from $x=0$ to $x=\frac{\pi}{4}$.

6. [5+4 Marks]

6.1) Sketch the region which is outside the graph of the equation $r=3$ and inside the graph of the equation $r=2+2 \sin (\theta)$, and find its area.
6.2) Sketch the graph of the equation $r=2 \cos (\theta)$, and find the area of the surface generated by revolving it about the line $\theta=\frac{\pi}{2}$.

