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Chapter 1 

1 Introduction 
 

1.1 Algorithm and Complexity Analysis 

In computer science, researchers are often faced with the problem of comparing 

two algorithms in terms of their efficiency and in terms of speed and resource 

consumption. The field of algorithm analysis helps scientists to perform this task by 

providing an estimate of the number of operations performed by the algorithm, 

irrespective of the particular implementation or input used. 

Exact analysis of algorithm complexity is usually hard to achieve. As a result, 

approximation is usually the alternative approach used. The O notation is usually used to 

provide an upper bound of the complexity of an algorithm. We say that an algorithm is of 

O(n) (Order n), where n is the size of the problem, if the total number of steps carried out 

by the algorithm T(n) is at most a constant times n, with the possible exception of a few 

small values of n. 

T(n) is O(f(n)) if T(n)   kf(n) for some k, for all n>n0  

Where k is some constant and n0 is a small possible value of n 

The O notation is a measure of asymptotic analysis. Using it, we can be certain 

that as n approaches infinity, an algorithm of O(n) is better than an algorithm of  O(n
2
). 

In addition to analyzing the efficiency of a particular algorithm, we sometimes need to 

know whether there exist better algorithms for solving a particular problem. The field of 

complexity analysis analyzes problems rather than algorithms. 



 2 

Two major classes of problems can be identified:  

1. Problems that can be solved in polynomial time. 

2. Problems that cannot be solved in polynomial time, irrespective of the type of the 

algorithm used. 

The first class of problems is called P, polynomial time problems. It contains 

problem with running times like O(n), O(log n) and O(n
1000

). They are relatively easy 

problems. 

Another important class of problems is NP, non-deterministic polynomial time 

problems. This class includes problem for which there exists an algorithm that can guess 

a solution and verify whether the guessed solution is correct or not in polynomial time. If 

we have an unbounded number of processors that each can be used to guess and verify a 

solution to this problem in parallel, the problem can be solved in polynomial time. 

One of the big open questions in computer science is whether the class P is 

equivalent to the class NP. Most scientists believe that they are not equivalent. This, 

however, has never been proven. 

Researchers also distinguish a sub class of NP, called the NP-complete class. In a 

sense, this class include the hardest problems in computer science, and is characterized 

by the fact that either all problems that are NP-complete are in P, or not are in P. Many 

NP-complete problems require arrangement of discrete objects, like the traveling 

salesman problem (TSP), and the job shop scheduling problem. These problems belong to 

combinatorial optimization problems. 

An optimization problem for which the associated decision problem is NP-

complete is called an NP-hard problem. For example, if the problem is a cost 



 3 

minimization problem, such that it is required to find a solution with the minimum 

possible cost, the associated decision problem would be formulated as: “ is there a 

solution to the problem whose cost is  B, where B is a positive real number?” 

Solving combinatorial optimization problems has been a challenge for many 

researchers in computer science. Exact methods used to solve regular problems cannot be 

used to solve combinatorial optimization problems given current resources. The natural 

alternative would be to use approximate methods that give good rather than optimal 

solution to the problem in a reasonable amount of time. 

1.2 Heuristic Search Methods 

Many heuristic search methods have been designed and used in solving 

combinatorial and NP-complete problems (Haralick & Elliot, 1980; Pearl, 1984; Stone & 

Stone, 1986; Glover, 1989). Genetic algorithms and simulated annealing are two 

successful methods in this area. 

Genetic algorithms, referred to thereafter by GAs, are search methods based on 

the principles of natural selection and survival of the fittest. The algorithm operates on a 

population of individuals representing solutions to the required problem. Each generation, 

a new set of solutions is generated using bits and pieces of good solutions in the previous 

generation, using an operator called crossover. Occasionally new parts are tried to allow 

for better exploration of the search space. This is performed using the GA mutation 

operator. 

GAs have been developed by John Holland in the 1970s (Holland, 1975). The 

main idea was the attempt to develop a system that simulates nature in its robustness and 

adaptation; a system that operates consistently well on a variety of problems and can 
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survive many different environments. These algorithms are computationally simple yet 

powerful in their ability to improve and obtain good solutions. They are also less 

sensitive than other search methods to assumptions made about the search space like 

continuity, existence of derivatives, number of local optima...etc. 

Simulated annealing (SA) is another well-known heuristic search method that has 

been used successfully in solving many combinatorial optimization problems (Chams et 

al., 1987; Connolly, 1988; Wright, 1989). The term is adopted from the annealing of 

solids where we try to minimize the energy of the system using slow cooling until the 

atoms reach a stable state. The slow cooling technique allows atoms of the metal to line 

themselves up and to form a regular crystalline structure that has high density and low 

energy.  The initial temperature and the rate at which the temperature is reduced are 

called the annealing schedule. 

In solving a combinatorial optimization problem we start with a certain feasible 

solution to the problem. We then try to optimize this solution using a method analogous 

to the annealing of solids. A neighbor of this solution is generated using an appropriate 

method, and the cost (or the fitness) of the new solution is calculated. If the new solution 

is better than the current solution in terms of reducing cost (or increasing fitness) the new 

solution is accepted. However, if the new solution is not better than the current solution, 

it is accepted with a certain probability, which decreases exponentially with the badness 

of the move. Thus, the procedure is less likely to get stuck in a local optimum since bad 

moves still have a chance of being accepted. 

GAs are capable of wide exploration of the search space, since they operate on a 

population of individuals and combine good solution using a recombination operator. SA 
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on the other hand operates by producing several small moves on one solution, and thus is 

capable of fine tuning a good solution obtained in search of a better solution. 

Combining GAs and SA is an attractive area of research, since the hybridization 

has the potential of achieving the benefits of both techniques.  SA in this context can be 

used as part of the genetic engine to improve the solutions obtained by a GA. 

1.3 Goal and Motivation 

In the current research we try to augment a standard GA with SA which acts as a 

directed or intelligent mutation operator. Unlike previous research, the SA used in this 

technique is adaptive in the sense that its parameters evolve and optimize themselves 

according to the requirements of the search process. Using adaptation is intended to make 

simulated annealing parameter adjustment an easy and automatic task. In addition, 

adaptation should help guide the search towards optimal solutions, and improve the 

quality of the search. 

The algorithm is tested on an important problem in the field of inference and 

acting under uncertainty, which is the MAP (maximum a-posteriori) assignment problem, 

also known as the Most Probable Explanation problem (MPE) on Bayesian Belief 

networks. This problem is NP-hard and it has many applications in the fields of medical 

diagnosis, computer vision and natural language understanding. 

1.4 Organization 

The rest of this thesis is organized as follows: 
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Chapters 2, 3, and 4 provide a review of background information about the main 

topics used in the research. These are Genetic Algorithms, Simulated Annealing, and 

Bayesian Belief Networks, respectively. 

Chapter 5 is a survey of the most important previous research in the literature. 

Chapter 6 explains research goal and motivation, and compares the technique with other 

hybridization techniques. Chapter 7 provides implementation details, and chapter 8 is a 

discussion of the results obtained from experimentation. Finally, chapter 9 concludes 

with a direction for future research. Appendix A is a listing of the source code, and 

Appendix B contains the topology of some BBN networks used in testing. 
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Chapter 2 

2 Genetic Algorithms 

2.1 Overview 

Genetic algorithms are intelligent search methods that have been used 

successfully in solving many difficult problems such as combinatorial optimization 

problems. The principles of GAs were founded by John Holland (1975). The theme of a 

GA is to simulate the processes of biological evolution, natural selection and survival of 

the fittest in biological organisms. In nature individuals compete for the resources of the 

environment, they also compete in selecting mates for reproduction. Individuals who are 

better or fitter in terms of their genetic traits survive to breed and produce offspring. 

Their offspring carries their parents’ basic genetic material, which lead to their survival 

and breeding. Over many generations this favorable genetic material propagates to an 

increasing number of individuals. The combination of good characteristics from different 

ancestors can some times produce “super fit” offspring who out perform their parents. In 

this way species evolve to become more and more suited to their environment. 

GAs operate in exactly the same manner. They work on a population of 

individuals representing possible solutions to a given problem. Each individual is usually 

represented by a string of bits analogous to chromosomes and genes, i.e. the parameters 

of the problem are the genes and are joined together in a solution chromosome. A fitness 

value is assigned to each individual in order to judge its ability to survive and breed. The 

highly fit individuals are given a chance to breed by being selected for reproduction, i.e. 

the selection process usually favors the more fit individuals. Good individuals may be 



 8 

selected several times in a generation, poor ones may not be selected at all. By favoring 

the “most fit” individuals, favorable characteristics spread throughout the population over 

several generations, and the most promising areas of the search space are explored. 

Finally, the population should converge to an optimal or near optimal solution. 

Convergence means that the population evolves toward increasing uniformity, and the 

average fitness of the population will be very close to the highest fitness. 

During the reproduction phase of a GA, two individuals breed by combining their 

genes in an operation called crossover. Not all selected pairs undergo crossover; A 

random choice is applied where the likelihood of crossover is some given probability. If 

crossover is not performed, offspring are produced simply by duplicating their parents. 

Crossover allows the basic genetic material of the parents to pass to their children who 

form the next generation. Another operation that is performed by GAs is mutation. 

Mutation is applied to each child generated from crossover. With a certain small 

probability each gene may be altered. Thus, Crossover allows a rapid exploration of the 

search space by producing large jumps, While mutation allows a small amount of random 

search and helps ensure that no point in the search space have a zero probability of being 

explored. 

In summary, the basic principles of GAs  are: Coding or representing the problem 

as a set of parameters (genes), assigning a Fitness or objective value indicating the utility 

or the goodness of the chromosome, and finally Reproduction by performing crossover 

and mutation over selected chromosomes. 

The basic outline of a GA is as follows: 
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1. 1.Initialize and encode a random population of solutions called chromosomes. 

2. Decode and evaluate the fitness or the objective of each chromosome. 

3. Create a new generation by stochastically selecting some chromosomes from the 

current population as parents that will breed and produce new offspring. The selection 

criterion depends on the fitness of the selected parents. 

4. Apply crossover between the selected parents to produce new children. 

5. Apply Mutation with some small probability to some genes of the newly produced 

offspring, or to some selected members of the population. 

6. Repeat steps 2-5 as needed until a certain stopping criterion is achieved. 

Figure 2. 1 : Outline of a GA 

 

Example of crossover (one-point crossover): 

Parent1:  1100111|000 

Parent2:  0101010|111 

Child1:   1100111|111 

 

Child2:   0101010|000 

Example of Mutation 

Parent: 1100111000 

Child:  1110111000 
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2.2  Basic Terminology 

In biological systems, a chromosome represents the genetic material of an 

individual. The chromosome is composed of genes carrying hereditary features. The total 

genetic package is called the genotype, and the organism formed by the interaction with 

the total genetic package is called the phenotype. 

In artificial systems a chromosome is a string or a structure. The structure decodes 

to a solution or a point in the space. The genes of the structure can take their values from 

a set of different values called the alleles. The position of the gene in the structure is 

called its locus. 

2.3 Crossover Types 

2.3.1 One-Point Crossover 

The traditional GA uses one-point crossover, where the two mating chromosomes 

are each cut once at corresponding points, and the sections after the cuts are exchanged. 

However, many different crossover algorithms have been devised, often involving more 

than one cut point.  

2.3.2 Two-point crossover 

In this technique, two cut points are chosen randomly in the parent chromosome. 

The section between the selected cut points is exchanged between the two children. 

Example: 

Parent1:  1100|111|000 

Parent2:  0101|010|111 

Child1:   1100|010|000 
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Child2:   0101|111|111 

One-point crossover can be seen as a special case of a two-point crossover with 

one of the cut points fixed at the start of a string. 

2.3.3 Uniform crossover 

In this technique a random mask of bits is created. Each gene in the offspring is 

created by copying the corresponding gene from one of the parents. The parent is selected 

according to the value of the corresponding bit in the mask. 

Example: 

Mask:     0010101010 

Parent1:  1100111000 

Parent2:  0101010111 

Child1:   1100010010 

Child2:   0101111101 

2.3.4 Partially Matched Crossover(PMX): 

This technique is useful in order-based problems, such as the traveling salesman 

problem, where gene values are fixed and the fitness depends on the order in which they 

appear. In PMX it is not the genes that are crossed, but the order in which they appear. 

Offspring have genes that inherit order information from each parent. This avoids the 

problem of generating offspring that violate the problem constraints, such as having 

duplicate cities in a chromosome that represents a solution to the TSP problem. 

Example: 

Parent1:  9 8 4 |5 6 7  | 1 3 2 10 

Parent2:  8 7 1 |2 3 10| 9 5 4 6 
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Child1 :  9 8 4  |2 3 10| 1 6 5 7 

Child2 :  8 10 1|5 6 7  | 9 2 4 3 

In this example cities 5,6,7 exchange their positions with 2, 3 and 10 respectively.   

2.4 Why use GAs in solving problems? 

There are a number of successful search techniques that have been proposed for 

use in search and optimization problems. Random search, hill climbing and Iterated 

search are examples of such techniques. Although these techniques usually perform well 

on functions with only one peak (Unimodal functions), they perform poorly on functions 

with many peaks (Multimodal), because they can be easily trapped in a local optimum 

and never locate a global optimum solution. In addition, all these techniques operate by 

modifying one single solution, and thus are poor in exploring the search space. 

GAs, on the other hand,  represent an intelligent method for solving problems, 

because they operate on a random population of solutions and allocate trials to promising 

areas of the search space. In fact, they usually succeed in solving problems that many 

other techniques have failed to solve. These are problems that require an adaptive 

algorithm as opposed to a fixed one, and in this case the best use is made of one of the 

great features of GAs which is their Robustness or their ability to perform consistently 

well on a broad range of problem types. GAs are not easily affected by the change of the 

input or the presence of noise as the conventional AI systems, depth-first, breadth-

first...etc. They are also appropriate for searching large or multi-dimensional spaces.  

Another advantage of GAs is that they do not depend heavily on information 

available from the problem at hand, they are remarkably easy to connect to existing 
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simulations and models, and they have a clean interface that just requires the ability to 

propose a solution and then evaluate it. 

GAs are also easy to hybridize to generate knowledge augmented GAs. This 

could be done in cases where the best answer requires applying some problem-specific 

techniques of search that can be combined with the general features of GAs. Using the 

operations of selection of the fittest, mutation, and crossover, GAs quickly reach 

extremely fit individuals (not always the most fit), but who are fit enough to solve 

problems of very large magnitude.  

2.5 How GAs work? 

The Schema Theorem and the Building Block Hypothesis 

In order to understand how a GA works its important to shift our attention from 

strings to what actually a string represents, and how it is similar to other strings in the 

population at certain string positions. According to Holland (1975), a schema is a 

similarity template describing a subset of strings with similarities at certain string 

positions. Considering that a string is represented by the alphabet {0,1,#}, where a # 

means don’t care, a schema matches a string if at every location in the string a 1 matches 

a 1 in the string, 0 matches a 0, and a # matches either. For example, the schema 11#10# 

matches the strings {110100,111100,110101,111101}. 

The length of the schema is the distance between the outer most non # symbols. 

The length of the schema in the previous example is 5. The order of the schema is the 

number of non # symbols it contains, the previous schema is of order 4. 

A string of length l is a member of 2
l
 different schemata, because each position 

may take its actual value or #. A population of size n will have a number of schemata 
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ranging from 2
l 
to n2

l
 (where n2

l
 corresponds to the case that each string in the population 

represents a unique schema). Holland (1975) showed that the optimum way to explore the 

search space is to give opportunities of reproduction for individuals in proportion to their 

fitness with respect to the rest of the population. And since it is assumed that an 

individuals high fitness is due to the fact that it contains good schemata, in this way good 

schemata receive an exponentially increasing number of trials in successive generations. 

By passing some of the good schemata to next generations, the likelihood of finding 

better solutions exists. This theorem is called the Schema Theorem (Holland, 1975). 

Holland also showed that since each individual belongs to many different 

schemata, a GA while operating on individual strings, actually processes a large number 

of schemata. This number is of order n
3
, where n is the population size. This property of 

GA is called Implicit Parallelism and one of the good explanations of the power of GAs.  

The effect of the different genetic operators on a particular schema can also be 

examined. As mentioned above, reproduction favors highly fit schemata by giving them 

an increasing number of samples. Crossover may disrupt the schema if it was    cut by the 

crossover operator. Schemata of long length are more likely to be disrupted by crossover, 

while schemata of short defining length are less likely to be destroyed due to crossover. 

For example, the schema 1####0 is more likely to be cut than the schema  #10##. 

Mutation with its usual small rate does not disrupt the schema very frequently.  

The building block hypothesis puts these observations in formal terms by stating 

that: highly fit, short defining length schemata (called building blocks) are propagated 

generation to generation by giving exponentially increasing samples to the observed 
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best ones.(Goldberg, 1989; Holland, 1975). The bits of good building blocks work well 

together and tend to lead to improved performance when incorporated into an individual.  

To encourage the formation of building blocks, a good coding scheme should try 

to place related genes close to each other and also attempt to avoid interaction between 

genes. Interaction between genes (known also as Epistasis) means that the contribution of 

a gene to the fitness depends on the presence of other genes in a chromosome. 

Unfortunately, meeting the two recommendations of the building block 

hypothesis is not usually easy. Multimodal functions, which are the interest of GAs, 

always have parameters that interact together. A good coding scheme should try to 

minimize the interaction between genes. 

2.6 Advanced Issues in GAs 

2.6.1 Genetic Drift and Premature Convergence 

A good search method should combine both exploration and exploitation. 

Exploration is the ability to locate and investigate new areas in the search space, while 

exploitation is the ability to make use of previous knowledge of visited points. For 

example, random search is good at exploration, while hill climbing is good at 

exploitation. Holland (1975) showed that if the following simplifying assumptions are 

made, a GA will combine both exploration and exploitation. First, the population size is 

infinite. Second, the fitness function accurately reflects the utility of the solution. Third, 

the genes in a chromosome do not interact significantly.  

Of course, assumption one can never be met in practice. The effect of a limited 

population size is the accumulation of stochastic errors, which leads to the problem of 

genetic drift.  This problem occurs when a gene becomes predominant and its spreads to 



 16 

the whole population from one generation to the next. Once a gene has converged in this 

way, crossover will not be able to change its value, and as generations go by all genes 

will converge in the same way. The rate of genetic drift can be reduced by increasing the 

rate of mutation. However, a very high mutation rate makes the search more or less 

random. 

Another closely related problem is premature convergence. This happens when 

the genes of a highly fit (but not optimal) individual rapidly dominate the population, 

causing it to converge to a local maximum. When this happens, crossover will produce 

identical copies of individuals and no further improvement can be achieved unless 

mutation was very lucky in locating some new promising search areas. This problem is 

highly related to selecting the more fit individuals for reproduction. To overcome 

premature convergence the selection strategy could be modified.  

In principle, individuals are selected from the population for reproduction form 

what is called a “mating pool”. Highly fit individuals could be copied into the mating 

pool more than once, while lower fit individuals may not receive any copies in the mating 

pool. The mating pool is usually the same size as the original population. Pairs of 

individuals are then selected from the mating pool at random and combined to form new 

offspring. The process is repeated until the mating pool is exhausted. The following 

strategies can be used to select parents for reproduction and the choice among them is 

highly application dependent: 

1- Uniform Selection: 

This selection method picks randomly from the population. Any individual has a 

probability of selection that is equal to 1 divided by the population size. 
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2- Rank Selection: 

In this selection method, individuals are sorted according to their objective function 

values, and each individual is assigned a number of offspring that is a function of its rank 

in the population 

3- Roulette Wheel Selection: 

This selection method picks an individual based on the magnitude of the fitness score 

relative to the rest of the population. The higher the score, the more likely an individual 

will be selected. The probability of the individual being chosen is equal to the fitness of 

the individual divided by the sum of the fitnesses of each individual in the population. 

4- Tournament Selection: 

This method uses the roulette wheel method to select two individuals then picks the one 

with the higher score. The tournament selection typically chooses higher valued 

individuals more often than the roulette wheel selection. 

5- Deterministic Remainder Sampling Selection. 

This selection scheme uses a two-staged selection procedure. In the first stage, each 

individual’s expected representation is calculated. A temporary population is created 

using the individuals with the highest expected numbers. Any remaining positions are 

filled by first sorting the original individuals according to the decimal part of their 

expected representation, then selecting those highest in the list. The second stage of 

selection is uniform random selection from the temporary population. 
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6- Stochastic Remainder Sampling Selection. 

This method uses a two-staged selection procedure. In the first stage, each individual’s 

expected representation is calculated. A temporary population is filled using the 

individuals with the highest expected numbers, Any fractional expected representations 

are used to give the individual more likelihood of filling the space. For example, an 

individual with an expected number of 1.4 will have one position and a 40 percent chance 

of having a second position. The second stage selection is uniform random selection from 

the temporary population. 

Besides choosing an appropriate selection strategy, a GA should choose an 

appropriate replacement strategy. Replacement refers to the method by which new 

offspring are inserted in the population. To keep the population size fixes, the new 

offspring generated in one generation should replace other individuals in the previous 

generation. The replacement strategy may also affect convergence towards an optimal or 

a sub-optimal solution. 

In traditional GAs  the whole population is replaced by the generated offspring in 

each generation. This type of GAs is called the Simple Genetic Algorithm (Goldberg, 

1989). Other types of GAs prefer a steady state replacement, where the population of 

parents and children overlap. In each generation only a few individuals from the original 

population are replaced. The percentage of population that is replaced each generation is 

called the generation gap. This replacement scheme is more like the living organisms in 

which parents and children coexist in each generation, and competition is allowed 

between them. Steady state replacement requires a strategy for choosing some unlucky 

individuals to be replaced. For example, a newly generated offspring may replace a 
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parent, a random individual, or the worst individual in the population. Although steady 

state GA is relatively computationally expensive, since some statistics of the population 

have to be calculated after each mating, it has the advantage of making new offspring 

available once they are generated, which allows more areas of the search space to be 

explored immediately. 

2.6.2  Epistasis and Deception 

Epistasis is the interaction between different genes in the chromosome. It is the 

extent to which the contribution of fitness of one gene depends on the values of other 

genes. If a small change is made in one gene, the fitness of the chromosome will also 

change. This resultant change may vary according to the values of other genes.  

The level of interaction between genes may be mild or profound depending on the 

extent to which the chromosome fitness, resulting from a small change in one gene, 

varies according to the values of other genes.  The hardest case is when a particular 

change in a gene produces a change in fitness that varies in both sign and magnitude 

depending on the values of other genes. Epistasis usually refers to this hard case. 

If the interaction between genes is mild, the problem can be generally solved 

using various simple techniques like hill climbing. However, GAs  can outperform other 

simple techniques in solving problems with significant epistsis. Unfortunately, however, 

the building block hypothesis mentioned above requires that a successful GA should be 

designed with a minimum interaction between genes. This suggests that a GA will not be 

effective on precisely those cases in which it is mostly needed. 

Another very related problem is deception, which is a special case of epistasis. A 

problem is referred to as deceptive if the average fitness of schemata, which are not 
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contained in the global optimum, is greater than the average fitness of those which are. A 

problem is referred to as fully deceptive if all low order schemata containing a sub-

optimal solution are better than other competing schemata (Beasley et al., 1993).  

In a deceptive problem, schemata, which are not contained in the global optimum, 

increase more rapidly than those which are. As a result, the GA will be mislead away 

from the global optimum instead of towards it. 

The problem of epistasis may be tackled by changing the coding scheme, such 

that the interaction between the genes is minimized, and by using appropriately designed 

crossover and mutation operators. In some problems the effort to do that is not trivial. 

Traditional GA theory, based on the schema theory, relies on low epistasis. If genes in a 

chromosome have high epistasis, a new theory may have to be developed, and new 

algorithms developed to cope with this (Beasley et al., 1993). 

2.6.3  Operators Probabilities 

As mentioned above, the basic operators of GAs are Crossover and Mutation. 

Crossover is the main source leading to a thorough search of the search space, because of 

its ability to produce large jumps and generate new solutions very rapidly. Mutation, 

however, is also very critical because it is the only way of restoring diversity and 

avoiding genetic drift and premature convergence. As the population converges mutation 

usually becomes more productive than crossover. 

The chosen probability for both operators is very important in leading the GA 

towards the optimum solution. The optimum mutation probability is more critical, 

however, than that of crossover. Usually crossover is performed with a much higher 
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probability than mutation. The task of choosing appropriate probabilities is application 

dependent, and it is best achieved with trial and error. 

Some researches tried to develop dynamic operator probabilities, where the 

optimal value for each operator probability may change during the run. Davis (1985) tried 

linear variations in crossover and mutation probability, with crossover decreasing during 

the run and mutation increasing. Booker (1985) uses a dynamically variable crossover 

rate depending on the spread of fitnesses. When the population converges, the crossover 

rate is reduced to give more opportunity for mutation to find new variations. 

Another adaptive technique developed by Davis (1989,1991) depends on giving 

credit to each operator if produces a chromosome better than any other in the population. 

During the course of a run, operator probabilities vary in an adaptive problem dependent 

way. An operator that consistently looses weight is probably less effective than other 

operators. This technique has the advantage of alleviating the problem of choosing 

operator probabilities. Its drawback is that credit may be sometimes given to operators 

that simply locate local optima, rather than helping to find the global optimum( Beasley 

et al., 1993). 

Other researches like Ackley (1987) tried varying the mutation probability by 

decreasing it exponentially during a run. No clear analysis is given to explain why this 

approach should lead to an improvement. One possible explanation is that mutation 

probability is analogous to the temperature of SA, which must be reduced during the run 

to aid convergence. Increasing Mutation probability near convergence may introduce a 

large degree of diversity that could lead the GA away from convergence. 
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2.6.4  Niche and Speciation 

In natural systems, a niche may be viewed as the organism’s role in the 

environment and a species is a class of organisms with common characteristics. Inducing 

a niche like and speciation behavior in a GA can help its search towards the global 

optimum.  

In a GA, niches are analogous to maxima in the fitness function. A multimodal 

function have several peaks, and it might be desirable to locate all peaks. Unfortunately, a 

traditional GA will not do that because eventually all the population will converge on a 

single peak, this is due the genetic drift problem introduced above. The basic techniques 

used to overcome this problem and to encourage a niche like behavior in a GA are:  

1. Maintaining Diversity 

2. Sharing the Payoff associated with a niche. 

Maintaining diversity can be achieved by several techniques. For example, a 

technique called pre-selection (Grefenstette, 1987) a newly produced offspring replaces 

its parent only if its fitness is higher than the fitness of its parent. This helps maintaining 

diversity because individuals replace others that are similar to them.  

Another technique called crowding (Dejong, 1975) diversity is maintained by 

allowing an offspring to replace the most similar individual from a set of randomly 

chosen individuals in the population, using hamming distance as a similarity measure, i.e. 

an individual replaces another individual in the same niche. A multiple sub-population 

approach with migration has also been used to simulate  niching and speciation 

(Grefenstette, 1987). Goldberg and Richardson (Grefenstette, 1987) describe the 

advantage of sharing, several individuals which occupy the same niche are made to share 
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the fitness payoff among them. Once a niche has reached its full capacity it no longer 

seem rewarding in comparison with other unfilled niches. 

Another important technique to encourage speciation and reduce the formation of 

lethals is restricted mating. A lethal is an unfit child that is produced by two highly fit 

individuals. Nature avoids the formation of lethals by preventing mating between 

different species. Restricted mating only allows individuals from the same niche (similar 

to each other in their phenotypes) to mate.  

2.7 Applications of Genetic Algorithms 

GAs have been used successfully in a wide range of problems. Some of these 

problems have been used in practice and others still remain in the research area. The most 

important applications are: 

Numerical Function Optimization: GA techniques were found to outperform others on 

difficult, discontinuous, multimodal and noisy optimization problems. 

Image Processing: This includes the task of aligning two images of the same area taken 

at different times, such as x-ray or satellite images. Another application is producing 

pictures of criminal suspects where the witness operates as the objective function for each 

picture. 

Combinatorial Optimization Problems: which include tasks that require arrangements 

of discrete objects. Such as the traveling salesman problem, bin packing, job shop 

scheduling or time tabling.  

Design Tasks: which can be a mixture of combinatorial and function optimizations. For 

example, designing bridge structures, optimal routing in multiprocessor systems, 

construction of neural networks, and many other design tasks. 
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Machine Learning: the classical example is classifier systems developed by  

(Holland et al., 1989) for learning a set of  “if.. then” rules to deal with a particular 

situation. This has been applied to game playing and maze solving as well as political and 

economic modeling. 

2.8 Knowledge Based and Hybrid Techniques. 

The above discussion shows that GAs have a great potential. They are not 

limited to solving one class of problems, but many different classes. Moreover, their 

potential increases if they were tailored and modified to suit the particular application 

under consideration. Knowledge-based techniques try to combine problem specific 

information with genetic algorithms. Although this approach will make the GA less 

robust, because it will be more problem specific, it may improve performance 

significantly. For example, chromosome representation is not restricted to bit strings. A 

chromosome can be represented by a vector, a graph, a string of characters, or even a 

complete object. This latest technique has been used for minimum cost routing and 

wavelength allocation in a network of nodes. The chromosome in this case was 

represented as a C++ object, composed not only of nodes, links and ordered sequences of 

paths, but also objects representing the network adjacency matrix, connection matrix, and 

the traffic requirements. Network objects are themselves the structure undergoing 

adaptation (Sinclair, 1989). 

Problem specific knowledge can be also incorporated into the crossover or 

mutation operators. For example, a crossover operator may be modified in a way that 

prevents the formation of poor or invalid chromosomes. This will reduce the amount of 

time wasted during the evaluation of such poor chromosomes. Problem specific 
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knowledge can also be used for heuristic initialization in which the initial population 

contains a set of reasonably good points instead of a completely random set of points. 

Hybrid techniques have been also used in many applications to improve the 

performance of genetic algorithms. For example, a GA can be combined with a local 

search technique such as simulated annealing or hill climbing techniques, in which a GA 

can be used to find the hills, and a local search technique is used to climb the hills and 

improve the solution obtained. A particular advantage of this technique is that a GA can 

spend excessive time refining an acceptable solution, while a simulated annealing search 

for example has an adjustable parameter – the cooling rate- that can be fine tuned to 

minimize the time to a reasonable bound. Combining both techniques offers the 

advantages of both. 

2.9 Parallel Genetic Algorithms 

 Parallel processing is the current trend of computer science, and genetic 

algorithms are attractive for application on parallel machines. As mentioned above, GAs 

are not guaranteed to find an optimal solution; however as the size of the population 

increase, the chances of finding more efficient solution become better. Unfortunately, this 

increases computation time and cost of the solution. 

 However, since GAs operate on a population of individuals, this makes them 

parallel in nature. Parallel genetic algorithms (PGAs) can be used to process a large 

number of individuals in parallel and produce better solutions in less time, because they 

better explore the search space. PGAs maintain multiple separate sub-populations that are 

allowed to evolve independently in parallel, and this allows each sub-population to 
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explore different parts of the search space, each maintaining its own individuals and 

controlling how mixing occurs with other sub-populations. 

 PGAs also help to overcome the problem of premature convergence, in which a 

sub-optimal solution dominates the population and leaves no chance for improvement. 

The children chromosomes produced thereafter will be very similar to each other and to 

their parents, thus causing the crossover operation to be largely ineffective. 

 Another advantage of parallel GAs is to help find solutions for multi-objective 

functions, i.e. each sub-population can emphasize a different objective. 

 There are different ways to parallelize GAs, but they can be divided into three 

main categories: Global Parallelization, Coarse Grained Parallel GAs, and the Fine 

Grained Parallel GAs. 

2.9.1  Global parellization (Micro-Grain GAs) 

 This technique is characterized by having a single population while the evaluation 

of individuals is performed in parallel. A speedup that is proportional to the number of 

processors is expected, although probably sub-linear. This technique is most suited for 

applications in which the fitness function is very costly. 

 Each processor is assigned a subset of the population, and it is responsible for 

evaluating the fitness of each of its members. The best case is when each processor is 

assigned only one individual, making evaluation time equivalent to the time needed to 

evaluate the most costly individual. There is no communication between the processors, 

because fitness evaluation is an independent process.  

There are two models to be considered here: 
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2.9.1.1 The Shared Memory model 

In this model each processor can read individuals assigned to it from the shared 

memory, and write the results back in the shared memory without conflict. However, 

synchronization between generations is needed, such that each processor must wait for all 

others to finish evaluating individuals belonging to one generation, before processing the 

next generation. 

2.9.1.2 The Distributed Memory Model 

 In this model there is a “master” processor that is responsible for storing the 

population, and sending the individuals to the “slave” processors that will evaluate their 

fitness. Then, the master collects the results and applies the genetic operators (mutation 

and crossover) to produce the next generation. 

 Global parallelization can be used to perform genetic operators (selection, 

mutation and crossover) in parallel as well. However, operators that require global 

statistics such as population average fitness are not suitable in this case, because they will 

cause serious performance bottleneck. Also, communication between processors and 

message passing, in case of distributed memory, is a serious drawback that might degrade 

performance. 

2.9.2 Coarse Grained Parallel GAs 

 The grain size in parallelism refers to the ratio of the time spent in computation 

and the time spent in communication. When this ratio is high the processing is called 

coarse grained, and is suitable for implementation on MIMD (Multiple Instruction 

Multiple Data) machines. 
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 In this model the population is divided into several sub-population, each is 

assigned to one processor and is allowed to evolve independently from the others. 

Occasionally some individuals migrate between sub-populations in order to introduce 

new genetic material that will allow a better exploration of the search space and avoid 

premature convergence. 

 The parameters that affect this model can be categorized along three dimensions: 

migration method, connection scheme, and processor node homogeneity. 

2.9.2.1 Migration Method 

 Migration is controlled by two parameters: migration rate, which determines 

how many individuals are migrated between sub-populations, and migration interval, 

which determines when migration occurs.  

 As mentioned above, migration is important to allow for introducing new genetic 

material in a sub-population (also called a deme). This is based on the theory of  

“Punctuated Equilibria”, which states that new spices are likely to form quickly in 

relatively small isolated populations after some change in the environment occurs.  

 Previous research has shown that there is a critical migration rate below which the 

performance of the algorithm might degrade as a result of the isolations of demes, and 

above which the partitioned population behaves as a one large population. 

There are basically three methods of migration: 

Isolated Island GAs: in which there is no migration between sub-populations. 

Synchronous Island GAs: in which all sub-populations evolve at the same rate, after 

which migration can occur, for example, migration occurs after a certain number of 
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generations. Of course, different machine speeds and different loads can cause some 

processors to stay idle while others are still processing their sub-populations. 

Asynchronous Island GAs: in which migration occurs irrespective of the state of 

evolution across all of the system’s sub-population. This kind of migration is more 

suitable for the different loads and diverse machine architectures as well as the large 

number of processors found in the parallel machines of today. However, in this approach 

there is a possibility that a relatively high-fitness individual from a fast-evolution node is 

inserted in low-fitness population on a slow-evolution node. This might cause the genetic 

material of this individual to dominate the sub-population, possibly resulting in premature 

convergence. 

Some variations of these migration methods exist, such as sending a copy of the 

best individual found in each deme to all its neighbors after every generation to ensure 

good mixing. Another migration method performs migration after the sub-population has 

converged. And a third one uses a master processor to which all processors executing the 

GAs periodically send their best individuals. Then the master processor chooses the 

fittest individuals among those it received, and broadcasts them to all the nodes. 

2.9.2.2 Connection Schemes 

 The connectivity of the processing nodes is also very important in the 

performance of parallel GAs, because it determines how fast (or how slow) a good 

solution disseminates to other demes. If the topology has high connectivity or short 

diameter or both, good solutions will spread very fast, and may quickly dominate the 

population, possibly causing premature convergence. On the other hand, if the 

connectivity is low or the diameter of the network is large, good solutions will spread 
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slowly, allowing for better exploration of the search space. There are two main 

connection schemes: 

Static Connection Scheme: the network topology is static and does not change over 

time. There are various topologies, such as a rings, meshes, n-cubes, etc., but the 

topology determines which nodes are allowed to exchange individuals. 

Dynamic Connection Scheme: here the topology of the network is mutable during run 

time. This allows for changing the migration scheme based on the current state of the 

evolutionary process. For example, individuals can migrate only to other sub-populations 

that are similar (or dissimilar) to them in terms of hamming distance, which can make the 

migration process more effective. 

 There are also some variations of the migration schemes, such as sending 

individuals to random destinations, rather than destinations that are determined by the 

topology or the similarity between individuals. 

2.9.2.3 Node Homogeneity 

 Node homogeneity is a measure of how similar the GA processes are on different 

processing nodes. We can distinguish the following categories: 

Homogeneous Island GAs: in which all nodes use the parameters (population size, 

crossover rate, mutation rate, migration interval, etc.) 

Heterogeneous Island GAs: sub-populations evolve with different parameters, genetic 

operators, objective functions and encoding methods. Of course, interchanging 

individuals between sub-populations in this case will be more difficult, but these 

problems can be addressed. 
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2.9.3  Fine Grained Parallel GAs  

 In this model, the population is divided into a large number of very small demes, 

the ideal case is to have one individual for every processing element. This model calls for 

massively parallel computers, and is suitable for implementation on SIMD (Single 

Instruction Multiple Data) machines. 

 Here also, selection and mating occur within a single sub-population, but the 

demes overlap providing a way to disseminate good solutions across the entire 

population; i.e., selection and crossover are performed between a processor and its 

neighbors. For example, a processor may borrow some individuals from the neighboring 

processors, perform genetic operations on them, and discard the worst ones. 

 The danger of a sub-optimal state being reached in this model is greater than any 

other model for two reasons. First, there is a greater degree of migration between sub-

populations. Secondly, the number of chromosomes in each sub-population is less than 

any other PGA model. In order to address these problems, the size of the network and the 

degree of overlap must be controlled. 

 It is common to place the individuals of a fine-grained PGA in a 2-D grid, 

because in many parallel computers, the processing elements are connected using this 

topology. However, most of these computers have a global router that can send messages 

to any processor in the network (at a higher cost) and other topologies can be simulated 

on top of the grid. Some research show that the performance of the fine grained PGA is 

affected by the topology of the interconnection network, and it seems that the topology 

with a medium diameter gives good results. 
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2.9.4 Hybrid Algorithms 

 A few researchers have tried to combine two of the methods to parallelize GAs. 

For example, we can use global parallelization on each of the demes of a coarse grained 

GA. Migration occurs between demes as in the coarse grained algorithm, but the 

evaluation of individuals is handled in parallel. 

2.9.5 Underlying Problems 

 Although parallel GAs promise a lot in terms of both speed up and quality of 

solutions, there is a number of underlying problems that are not fully addressed, two of 

these problems are population size and migration 

Population Size: this is related to the deming issue. That is, to how many demes should 

the population be divided? And what is the size of each deme? 

Migration: after determining the number and the size of each deme, we need to establish 

the way they are going to communicate (migration). The parameters affecting migration 

are migration interval and migration rate. Migration interval is related to when 

individuals should be migrated. Intuitively, migration should occur after the expected 

number of building blocks in each individual is relatively high, i.e. when it covers a 

reasonable part of the search space. Migration before that is a waste of resources. 

Migration rate is the number of individuals that must migrate. If the migrated individuals 

are rich in their building blocks, then it is enough to migrate just a few. 

Topology: which is the best way to connect demes. In a topology with a long diameter, 

good solutions will take longer to reach all demes. On the other hand, in a topology with 

a small diameter, good solutions will spread very fast and possibly dominate the 

population.  
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Chapter 3 

3 Simulated Annealing 

3.1 Overview 

Simulated annealing is a well-known heuristic search method that has been used 

successfully in solving many combinatorial optimization problems (Chams et al., 1987; 

Connolly, 1988; Wright, 1989). It is a hill-climbing algorithm with the added ability to 

escape from local optima in the search space. However, although it yields excellent 

solutions it is very slow. It is mostly used for solving problems that are not very well 

understood. 

The term simulated annealing is adopted from the annealing of solids where we 

try to minimize the energy of the system using slow cooling until the atoms reach a stable 

state. The slow cooling technique allows atoms of the metal to line themselves up and to 

form a regular crystalline structure that has high density and low energy.  The initial 

temperature and the rate at which the temperature is reduced are called the annealing 

schedule. 

In solving a combinatorial optimization problem using SA, we start with a certain 

feasible solution to the problem. We then try to optimize this solution using a method 

analogous to the annealing of solids. A neighbor of this solution is generated using an 

appropriate method, and the cost (or the fitness) of the new solution is calculated. If the 

new solution is better than the current solution in terms of reducing cost (or increasing 

fitness) the new solution is accepted. However, if the new solution is not better than the 

current solution, the new solution is accepted with a certain probability which is usually 
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set to exp(- /T) Where  ∆ is the change in cost between the old and the new solution and 

T is the current temperature, i.e. the probability decreases exponentially with the badness 

of the move. Thus the procedure is less likely to get stuck in a local optimum since bad 

moves still have a chance of being accepted. 

The annealing temperature is first chosen to be high so that the probability of 

acceptance will also be high, and almost all new solutions are accepted. The temperature 

is then gradually reduced so that the probability of acceptance will be very low and the 

algorithm works more or less like hill climbing, i.e. high temperatures allow better 

exploration of the search space, while lower temperatures allow fine tuning of a good 

solution. The process is repeated until the temperature approaches zero or no further 

improvement can be achieved. Which is analogous to the atoms of the solid reaching a 

crystallized state. 

3.2 Theoretical Foundation 

The theoretical foundation of SA was lead by Kirkpatrick et al. (1983). The 

theory is based on statistical mechanics of physical systems. 

Consider a physical system with many degrees of freedom that can reside in any 

one of a large number of possible states. The probability of occurrence of state i is pi, 

such that: 

  pi>=0 (1) 

 pi = 1   (2) 
i
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Let Ei denote the energy of the system when it is in state i. A fundamental result 

in statistical mechanics tells us that when the system is in thermal equilibrium with its 

surrounding environment, state i occurs with probability defined by 

Pi = 1/Z exp (-Ei/KbT)    (3) 

Where T is the absolute temperature in Kelvins, Kb is Boltzmann’s constant, and Z 

is a constant that is independent of all states. One degree Kelvin corresponds to –273 

degrees Celsius, and Kb=1.38  10
-23

 jouls/kelvin. 

Imposing the condition for the normalization of probabilities defined by equation 

(2) on equation (3) gives us the normalization constant Z 

Z=  exp (-Ei/KbT) (4) 

      
i 

Z is called the partition function and the factor exp (-Ei/KbT) is called the 

Boltzmann factor. The distribution given by equation (3) is called The Boltzmann 

distribution. Two important properties of the Boltzmann distribution are: 

1. States of low energy have a higher probability of occurrence than states of high 

energy. 

2. As the temperature T is reduced, the probability is concentrated on a smaller subset of 

low energy states. 

For example, growing a single crystal from a melt, require that the atoms reach a 

stable low energy state at a low temperature. However, achieving a perfect crystal 

requires lowering the temperature slowly enough, and spending a long time at 

temperatures in the vicinity of the freezing point. If cooling proceeds two fast, the atoms 

will be allowed to get out of equilibrium and the resulting crystal will have many defects. 
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Kirkpatrick makes the connection between statistical mechanics and 

combinatorial optimization by stating that: ”Finding the low-temperature state of a 

system when a prescription for calculating its energy is given is an optimization problem 

not unlike those encountered in combinatorial optimization...” (Kirkpatrik et al., 1983) 

Kirkpatrick et al. (1983) applied the Metropolis algorithm from statistical 

mechanics to combinatorial optimization problems. The Metropolis algorithm introduced 

in (Metropolis et al., 1953) provides an efficient simulation of atoms in equilibrium at a 

given temperature. The algorithm provides a generalization of iterative improvement 

where controlled uphill moves (moves that do not lower the energy of the system) are 

probabilistically accepted in the search for obtaining better solutions and escaping local 

optima. 

In each step of the Metropolis algorithm an atom is given a small random 

displacement. If the displacement results in a decrease in the system energy, the 

displacement is accepted and used as a starting point for the next step. If on the other 

hand the energy of the system is not lowered, the new displacement is accepted with a 

certain probability exp(-E/kbT) where E is the change in energy resulting from the 

displacement, T is the current temperature, and kb is a constant called a Boltzmann 

constant . Depending on the value returned by this probability either the new 

displacement is accepted or the old state is retained. For any given T, a sufficient number 

of iterations always lead to equilibrium, at which point the temporal distribution of 

accepted states is stationary (this distribution is called the Boltzman distribution). 

The SA algorithm has also been shown to possess a formal proof of convergence 

using the theory of Markov chains (Eglese, 1990).  A sequence of random variables 
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X1,X2,...,Xn,Xn+1 forms a Markov chain if the probability that the system is in state Xn+1 at 

time n+1 depends exclusively on the probability that the system is in state Xn at time n. 

We may think of a Markov chain as a model consisting of a number of states linked 

together on a pair-wise basis by possible transitions. If the transition probabilities are 

fixed and do not change with time, the Markov chain is said to be homogeneous in time. 

In case of a system with finite possible sates K the transition probabilities 

constitute a K –by- K matrix, where pij represents the probability of transition from state i 

to state j. 
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In the above system, the transition from one state to another takes place in some 

fixed number of steps. 

In an SA algorithm, if the temperature parameter T is kept constant, the 

probability of moving from any state i to any other state j is independent from the 

iteration number. Representing these probabilities in a transition matrix, it may be shown 

that it is possible to get from any state i to any other state j in a finite number of moves, 

which corresponds to a homogeneous Markov chain. This Markov chain has a unique 

stationary distribution, which does not depend on the initial state. This distribution 

corresponds to the Boltzmann distribution in statistical mechanics. 

The Limit as T 0 of this stationary distribution is a uniform distribution over the 

set of optimal solutions, i.e. the SA algorithm converges asymptotically to the set of 

globally optimum solutions. This convergence property is a very important and 
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encouraging result. The question, however, is how many iterations are sufficient to 

guarantee convergence? 

In an attempt to solve this question we can try to describe the SA algorithm as a 

sequence of Markov chains of finite length, using decreasing values of the temperature T.  

This can be considered as a single non-homogenous Markov chain, as the transition 

probabilities are now not independent of the number of iterations, which violates the 

homogeneity condition of a Markov chain. This model of SA does not require the 

stationary distribution to be reached at any non-zero temperature.  

Using this assumption, Hajek provides a necessary and sufficient condition for 

convergence (Hajek, 1988). He showed that if T(k)=c/log(1+k), where k is the number of 

iterations, the condition for convergence is that the constant c be greater than or equal to 

the depth of the deepest local minimum which is not a global minimum. This temperature 

function represents very slow cooling. It has also been shown in (Mitra et al., 1986) that 

attempting to approximate the uniform distribution on the set of optimal solutions, 

typically leads to a number of iterations, which is larger than the size of the solution 

space, and so results in exponential running time for most problems. 

3.3 Implementing SA 

Implementing SA requires many choices that must be considered. These choices 

include both general SA parameters and problem specific decisions. The choice of the 

general parameters of the SA operator is critical to the performance of the algorithm. 

Following (Eglese, 1990) These parameters are: 

1. The value of the initial temperature T. 
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2. A temperature function T(t) that determines how the temperature will change with 

time. 

3. The number of iterations N(t) to be carried at each temperature 

4. A stopping criterion to terminate the algorithm. 

The initial temperature T(0) is generally chosen high enough so that almost any 

move is accepted regardless of its fitness. This choice is adopted from the physical 

analogy and corresponds to heating up a substance until all particles are randomly 

arranged in a liquid.  

The temperature function is usually a proportional temperature function    

T(t+1)= T(t) where   is a constant close to 1. Typical values of  used lie between 0.8 

and 0.99. Using such value provides very small decrements of temperature values, which 

corresponds to a very slow cooling of the substance until the temperature approaches 

zero. 

The number of iterations carried out at each temperature value should be large 

enough to bring the system to a stable state analogous to thermal equilibrium in the 

physical analogy. Some applications may choose N(t) to be constant for each 

temperature. The stopping criterion of the algorithm is usually the stagnation of the 

system when no change in the result can be obtained for a specified number of iterations 

or temperature changes. 

The choice of a cooling schedule is a subject of controversy among researchers. 

Some choose N(t) to be large enough at each value of T such that the system approaches 

“a stationary distribution ” at that value of T. However, as mentioned above, the result 

achieved by Hajek in (Hajek,1988) indicates that if the cooling process is performed 
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sufficiently slowly, there is no need to attain equilibrium at each temperature. There is a 

trade-off between a large reduction of temperature values and a small number of 

iterations at each temperature. Some researches even suggest only one iteration per 

temperature value (Lundy & Mees, 1986), while providing very slow reduction of 

temperature values. Others suggest that the majority of iterations should be conducted at 

suitably fixed temperature (Connolly, 1988). 

Whatever cooling schedule is chosen, it is important not to spend to long at high 

temperatures, where most neighborhood moves are accepted. It is also important not to 

spend too long at the end of the algorithm where most moves are rejected. These two 

situations can waste much processing time. At the end of the algorithm it is worth 

checking that at least a local optimum has been obtained (Eglese, 1990). 

Implementing SA also requires a set of problem specific decisions. These include: 

defining the set of feasible solutions to the problem, define a clear objective function, 

generating an initial solution, and defining a neighborhood operator that generates moves 

using current solution. 

The topology of the neighborhood structure is critical to the performance of SA 

algorithm. This is clearly indicated by the result obtained by Hajek (1988) as mentioned 

above, which states that the rate of cooling required for asymptotic convergence depends 

on the depth of the deepest of the local minima, i.e. the topology of the neighborhood 

structure. In general, a smooth topology with shallow local optima is favored over a 

bumpy topology with many deep local minima. 

A neighborhood function is easy to implement for discrete problems. 

Implementing a neighborhood function for continuous problems is more challenging. 
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Continuous SA should choose a point on the unit hyper-sphere at random about the point 

representing the current solution. This selection gives the search direction. The algorithm 

would then choose a random length to step in that direction. 

Constrained problems also raise some difficulties. A choice must be made 

between restricting the solution space to solutions that conform to the constraints, or 

allowing solutions that break the constraints at the expense of a suitably defined penalty 

function. The generic simulated annealing algorithm is described in Fig 3.1. 

 

1- Start with some state S. 

2- T= T0 

3- Repeat{ 

4-     While (not at equilibrium){ 

5-         Perturb S to get a new state Sn 

6-         E = E(Sn)-E(S) 

7-         if E < 0 

8-               replace S with Sn
 

9-         Else with probability e 
-E/T 

10-              replace S with Sn
 

11-      } 
 

12- T = c  T   // c<1
 

13- } until frozen 

Figure 3. 1 The SA Algorithm 
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3.4 Modifications to SA 

A major problem in applying the SA algorithm is the trade-off between the 

quality of the solution and a very long computational time imposed by the requirement of 

slow cooling to achieve convergence.  

In an attempt to solve this problem some modifications to the basic SA algorithm 

have been suggested. These modifications are easy to implement and have provided an 

improvement of the quality of the solution and/or processing time (Eglese, 1990). 

One attempt was to store the best solution found so far. Since the SA algorithm 

accepts solutions probabilistically, it may accept solutions that are worse than the current 

solution. A good solution found during the run may be discarded because it was not lucky 

during the acceptance attempt. Storing the best solution found so far prevents the SA 

algorithm from returning a solution that is worse than the best solution ever found. In 

addition, Glover and Greenberg (1989) argue that with this modification there is less need 

for the SA algorithm to rely on a strong stabilizing effect over time. Connolly (1989) 

support this idea by showing that using this modification it is possible to find a suitable 

fixed temperature and to carry out all remaining iterations at that temperature. In the final 

phase, a descent algorithm can be employed to find the local optimum containing the best 

solution encountered in earlier phases. 

Another modification is sampling the neighborhood without replacement. At 

the end of SA run, the temperature drops to very small values making the probability of 

accepting a new move very low. If only a few moves improve the current situation, the 

algorithm will waste a lot of time trying to locate these moves. The modification tries to 

generate neighborhood moves in such a way that all possible moves in the neighborhood 
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of a solution are attempted before repeating a move, unless a new solution is accepted. 

For example, the neighborhood may me searched in a sequential manner as in (Connolly, 

1988) or in random manner as in (Jhonson et al., 1987). 

Some researches also modify the basic SA algorithm using problem specific 

information. For example, Grover (1986) showed that significant speedups can be 

obtained by calculating the change in objective value  using approximate rather than 

exact methods. These approximations were found to yield solution quality compatible 

with exact methods, provided the error is kept less than a particular function of the 

temperature T.  

Tovey (1988) suggested an adaptive method for approximately calculating  . The 

approximate method is not used every iteration, but it is applied with a certain probability 

which is updated as the algorithm proceeds, so that the resulting algorithm will simulate 

the results of the basic SA approach. 

Tovey (1988) also suggests a neighborhood operator that is able to identify 

promising areas in the neighborhood, and gives a greater probability to generate moves 

that fall in the promising areas. It is not clear, however, whether this technique performs 

significantly better than sampling the neighborhood without replacement.  

In an attempt to reduce the amount of time spent in the latter part of the SA 

algorithm when the majority of the moves are rejected, Green and Supowit (1986) 

proposed a rejection-less method. In this scheme a probability distribution is constructed 

over the set of all moves to show the relative probability of a move being accepted if it is 

chosen. A move is then generated at random according to this distribution and accepted 

automatically. Applying this algorithm to different problem types requires finding an 
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efficient way to update the probability distribution, and this depends on problem specific 

information. 

3.5 Hybrid Techniques 

There are two basic approaches to combine SA with other techniques 

1. Using another technique to generate a good initial solution that SA can improve. 

2. Using SA to generate a good solution that can be used by another search 

technique. 

An example of the first technique is found in (Chams et.al.1987) in solving the 

graph coloring problem, and in (Jhonson et.al., 1987) in solving the graph partitioning 

problem. A good starting solution obtained using another search method was found to 

improve both the quality of the solution as well as the processing time. When using this 

technique the initial temperature chosen should be reduced, in order not loose the benefits 

gained by having a good starting solution. They also show that using problem specific 

information to generate a good starting solution is preferable to using general heuristics. 

The second approach is exemplified by using SA as a way of obtaining a good initial 

solution for a branch and bound, an integer programming, or an evolutionary algorithm. 

3.6 Parallel SA 

Although parallelizing SA is not an easy task because the algorithm is inherently 

sequential, several approaches have been developed to implement parallel versions of the 

algorithm with the aim to speed up the search process. 

According to Eglese (1990), two main strategies of paralleliziation are used: 

single-trial parallelism and multiple-trial parallelism. In the first strategy, the calculations 
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to evaluate a single trial are divided among a number of processors. The implementation 

of this strategy and the speed up that can be achieved is problem dependent, since it 

depends on the how the serial portion is processed in parallel. 

In the second strategy, several SA trials are evaluated in parallel. Three variations 

of this strategy exist: 

1. The division algorithm: in which the number of iterations at each temperature is 

divided among the processors. After a change in temperature, each processor may 

start from the final solution obtained by that processor at the previous temperature. 

The best solution found among all processors is then taken to be the final solution 

returned by the algorithm. Another variant of this approach is to transfer the best 

solution found among all processors after each stage of temperature change. 

2. The clustering algorithm: In this algorithm, two or more processors are used to  

generate one sequence of accepted moves. Processors evaluate possible moves 

independently until one is accepted. This move is then communicated to all 

processors in the cluster, which abort their current calculations and resume with 

the accepted solution. The algorithm should be more efficient towards the end of a 

run than at the beginning. This is due to the reduced number of accepted solutions 

at the later phase of the algorithm. 

3. The error algorithm: In which several processors are used to investigate potential 

neighborhood moves in parallel. Any accepted move updates the current solution. 

The name of the algorithm is derived from the fact that that some calculations 

made by a processor of the change in objective value for a potential move may be 

calculated wrongly if another processor has just accepted a move of which the 



 46 

processor is unaware. The performance of the algorithm is thus dependent on the 

neighborhood structure and the amount of error resulting from two moves being 

accepted simultaneously.  

3.7 SA Performance 

Assessing the performance of SA requires considerable testing and comparison 

with other search methods. In general the same remarks can be made concerning the 

performance of SA if compared with other techniques. 

First, a comparison of SA with an iterative descent algorithm that starts from 

several random starting positions indicates that SA can give significantly better results in 

the same amount of computing time. The result, however, is not general because it is 

highly dependent on the problem type and the neighborhood structure. For example, a 

problem with a search space that has one global optimum and no local optima is easily 

solved using a descent algorithm faster than SA. 

Second, in comparison with problem specific techniques, Jhonson et al. 

(1987,1988) found that SA outperformed some classical graph partitioning algorithms, in 

both quality and speed for certain types of random graphs. The same result was obtained 

for solving the traveling salesman problem. For graph coloring problems, SA was able to 

find very good solutions but with increased processing time. Again, this result cannot be 

generalized since it is obvious that SA as a general algorithm may not be able to compete 

with some techniques designed specifically for certain problems. 

Finally, a comparison of SA with other heuristic methods is still inconclusive. For 

example, a comparison with Tabu search for graph coloring problem done by Hertz and 

de Werra (1987) indicated that Tabu search was superior to SA. However, in another 
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research done by Bland and Dawson (1989), SA was found to obtain better results for the 

layout optimization problem than Tabu search. More research is still needed in this area 

to find the best way of implementing these algorithms. 

3.8 Advantages of SA 

SA has several attractive features, especially in difficult optimization problems in 

which a good solution with a reasonable computational effort and processing time is 

preferred to an optimal solution with much greater programming or computing effort. 

The basic advantages of SA are: 

1- It is very easy to implement, since it just requires a method for generating a move 

in the neighborhood of the current solution, and an appropriate annealing schedule. 

2- It can be applied to a wide range of problem types. For example, any 

combinatorial optimization problem can be tackled using SA if an appropriate 

neighborhood structure has been devised. 

3- High quality solutions can be obtained using SA if a good neighborhood structure 

and a good annealing schedule have been chosen. This, however, may be at the 

expense of a long processing time. 
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Chapter 4 

4 Uncertainty and Belief Networks 
 

4.1 Knowledge Based Agents and  First Order Logic 

The most important task of any AI (Artificial Intelligent) system is to build agents 

that act rationally. An agent is anything that can be viewed as perceiving its environment 

through sensors and effectors. A rational or logical action is an action that causes the 

agent to be most successful, i.e. an action that maximizes the performance measure of the 

agent. A rational action is highly dependent on the agents knowledge of the world and the 

environment in which its operates, i.e. its knowledge base.  

One technique used in AI to represent the knowledge base of the agent uses first 

order logic, which is a general purpose representation language that is based on an 

ontological commitment to the existence of objects and properties or relations in the 

world. Some of these relations are functions in which there is only one value for a given 

input. The following are examples of objects, properties, relations and functions: 

Objects: people, houses, numbers, theories, colors, wars, countries … 

Relations: brother of , bigger than, inside, part of, has color …. 

Properties: red, round, bogus, prime … 

Functions: father of, best friend, one more than … 

First order logic can express any thing that can be programmed. It has sentences, 

which represent facts, terms which represent objects. It also has constant symbols, 

variables, and function symbols that are used to build terms, and quantifiers and predicate 



 49 

symbols that are used to build sentences.  Knowledge representation using first order 

logic is the most studied and best understood knowledge representation scheme used in 

AI (Russel and Norvig, 1995). 

4.2 Acting Under Uncertainty 

One problem with first order logic, and thus with the logical agent approach, is 

that the agent always never have access to the whole truth about its environment. There 

are always some questions that the agent cannot answer, and there are always some 

incorrectness or incompleteness in the agents understanding of his environment. The 

agent must therefore act under uncertainty. First order logic cannot correctly and 

completely represent all facts about the domain, because there are too many conditions to 

be explicitly enumerated, or because some of the conditions are unknown. 

For Example, trying to use first order logic to cope with a domain like medical 

diagnosis will fail for several reasons: 

1. Difficulty: It is too much work to list the complete set of antecedents or consequents 

needed to represent a complicated rule, and too hard to use the enormous rules that 

result. 

2. Incomplete theoretical knowledge: Medical science has no complete theory for the 

domain. 

3. Incomplete practical knowledge: Even if all theoretical knowledge is available, we 

may not be certain about a particular patient’s case because all the necessary tests 

have or cannot be done. 

Knowledge in the medical domain, as well as many other domains such as low, 

business, design, automobile repair, and many others, can best be represented by only a 
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degree of belief as opposed to a fact. Dealing with a degree of belief is done using 

probability theory, which assigns a numerical degree of belief between 0 and 1 to 

sentences. A probability of 0 corresponds to a definite belief that the sentence is false. A 

probability of 1 corresponds to a definite belief that the sentence is true. Probabilities 

between 0 and 1 correspond to intermediate degrees of belief in the truth of a sentence. 

When deciding upon actions, an agent assigns probabilities to certain 

propositions. The agent assigns probabilities to propositions depending on the percepts 

that it has received from its environment. In uncertain reasoning this is called the 

evidence. As the agent receives new percepts, its probability assessments are updated to 

reflect the new evidence. Before the evidence is obtained we talk about prior or 

unconditional probability. After the evidence is obtained we talk about posterior or 

conditional probability. In most cases, the agent will have collected some evidence from 

its percepts, and is interested in determining the conditional probabilities of the outcomes 

given the evidence it has. 

4.2.1 The joint probability distribution 

One important notion in dealing with probabilities is the joint probability 

distribution, which completely specifies an agent’s probability assignments to all 

propositions in the domain. A probabilistic model of a domain consists of a set of random 

variables that can take on particular values with certain probabilities. Let the variables be 

X1,X2,…Xn. An atomic event is an assignment of particular values to all the variables, i.e. 

a complete specification of the state of the domain. 

P(Xi) is a one dimensional vector of probabilities for the possible values of the 

variable Xi. The joint probability distribution P(X1,X2,…Xn) assigns probabilities to all 
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possible atomic events. Thus, the joint probability is an n-dimensional table with an entry 

for every possible state that gives the value of the probability of the occurrence of this 

state.  

The joint probability distribution can answer any question about the domain, but 

as the number of variables increases, the joint probability distribution increases 

exponentially. In addition, the task of assigning probabilities to variables is usually 

difficult and may be infeasible unless a sufficient amount of statistical information is 

available. 

4.2.2 Baye’s Rule 

 One important rule that allows unknown probabilities to be calculated from 

known stable ones is Bay’s rule. Its general form is: 

P(B/A) = P(A/B)P(B) / P(A) 

 Its application in a field like medical diagnosis is very useful. In many cases 

statistical data provides information about some prior or unconditional probabilities, as 

well as some conditional probabilities on cause and effect relationships (disease and 

symptoms), which helps in calculating the values of other unknown probabilities. 

4.3 Probabilistic Reasoning Systems 

 In most cases there is no enough information in the environment to prove that any 

given action will work. In this case logical reasoning will not be of much help in 

achieving rational decisions. The agent should be able to use probabilistic reasoning to 

achieve the decisions that will maximize its success. 

 As mentioned above, the joint probability distribution can answer any problems 

about the domain. The problem, however, is that it is not practical to use in cases that 
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have a large number of variables. It is also a very difficult task to specify probabilities of 

all atomic events. 

Using Bay’s rule simplifies the computations required to answer specific 

questions about conditional probability values, because it incorporates conditional 

independence relationships among variables. One tool used to capture uncertain 

knowledge and represent dependence between variables in an efficient way consistent 

with Bay’s rule is Bayesian Belief Networks (BBNs).  

4.3.1 BBNs 

Bayesian Belief networks (BBN) are used to represent and reason about complex 

systems under uncertainty and combine the advantages of an intuitive visual 

representation with a sound mathematical basis in Bayesian Probability. They have been 

applied to many scientific applications such as medical diagnosis, diagnosis of 

mechanical failures and computer language understanding.   

BBNs are DAG (Directed Acyclic Graphs) graphs that represent the probabilistic 

dependence and the conditional independence among variables.  Each variable is 

represented as a node and each variable can assume a number of discrete values with a 

certain conditional probability, given the values of its parents. 

According to Russell and Norvig (1995), the following properties hold for a BBN.  

1. A set of random variables makes up the nodes of the network. 

2. A set of directed links connect pairs of nodes. A link between two nodes indicates 

that there is a direct influence from the first to the second, the first is the parent and 

the second is the child. 
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3. Each node has a conditional probability table that quantifies the effects that the 

parents have on the node. 

4. The graph has no directed cycles. 

Pearl (1988) provides a more formal definition. Let D = (V,E) be a directed 

acyclic graph whose nodes are identified with the random variables v1,v2,…vn from the set 

of random variables V.  D is said to be a minimal independency map of P (where P is the 

probability distribution over V), if and only if every v  V is conditionally independent, 

given its parents ∏ (v), of all its non-descendents; in other words,  

Probability of v given its parents and non-descendents = probability of v given its parents 

only. 

“A Bayesian belief network of P is a DAG (V,E), such that (V,E) is a minimal 

independency map of P, augmented with a set of conditional probability distributions {Pv 

: v V} where each Pv is a local probability distribution which specifies the probability 

of each possible instantiation of v given every possible instantiation of its parents.” Pearl 

(1988) 

However, if we assume only binary valued random variables (boolean variables), 

it is enough to specify for each variable the probability of TRUE, since the sum of both 

probabilities must be 1. 

An instantiation or a full assignment A of a binary-valued belief network, is an 

assignment that assigns a truth value to each member of V. A partial assignment ℮ is an 

assignment to a subset of the nodes. 
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Based on the assumption that the belief network is an independency map of the 

network variables, the joint probability of any given full assignment can be computed as 

the product of the probabilities of every variable given its parents, i.e. 

                             n   

P(v1,v2,…vn) =   ( P (vi |  (vi)) 

                         i = 1  

 

The following example follows (Russell & Norvig, 1995). 

You have a burglar alarm that goes off when it detects a possible burglary, and 

also occasionally when an earthquake happens. Two neighbors John and Mary promise to 

call you at work when they here the alarm. John may sometimes confuse telephone 

ringing with the alarm, and Mary may some time miss the sound of the alarm because she 

likes to listen to loud music. This information can be represented in the following BBN 

graph. 

 

 

    Burglary          P(B)             Earthquake           P(E)  
                       0.001                  0.002  
 

 

                          Alarm                                    B   E   P(A) 
                                                                        T   T   .95 

                                                                         T   F   .94                                                      

                                                                         F   T   .2 

  John Calls             Mary Calls        F    F   .001      

 

 
   A  P(A)                                       A  P(M) 

     T  0.9                                          T   0 

    F  0.05                                         F   0.01 
 

 

Figure 4. 1 Belief Network Example 
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4.3.2 Inference in BBNs 

A BBN is a natural way to represent conditional independence information. The 

links between nodes represent the qualitative aspects of the domain, and the conditional 

probability tables represent the quantitative aspects. It is a complete representation for the 

joint probability distribution for the domain, but it is often exponentially smaller in size. 

Inference in BBNs means computing the probability distribution of a set of query 

variables, given a set of evidence variables, i.e. P(Query/Evidence). For example, we can 

use the previous BBN graph to infer the probability of burglary knowing that both John 

and Mary had called.  Any variable in the network can serve as either a query or 

evidence. 

BBNs are capable of several types of inferences. They can be used for diagnostic 

inference, which allows calculating the probability of a cause given the effect, such as 

P(Burglary/JohnCalls). They can also be used in causal inference which allows 

calculating the probability of an effect given the cause, such as P(JohnCalls/Burglary). 

They are also capable of making inter-causal inference between causes of a common 

effect, such as P(Burglary/Alarm ^ Earthquake), and finally it is capable of mixed 

inference where two or more types of the above are combined. 

Besides answering query variables, BBNs can help in making decisions based 

upon the probabilities of the variables in the network. For example, a decision about a 

certain treatment method can be made based on a diagnostic network, which identifies 

probabilities of certain related diseases and symptoms. They can also be used to decide 

what additional evidence should be observed in order to reach more useful inferences 

from the network. In addition, they can aid in sensitivity analysis in order to identify what 
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variables of the domain are more important than others in calculating query probabilities, 

and thus should be more accurate. Finally, they also help in explaining the results of 

probabilistic inference to the user. 

Complexity of inference in belief networks depends on the network structure. In 

general, computation time for inference in singly connected networks, in which there is at 

most one directed path between any two nodes in the network, is linear in the size of the 

network.  

A Multiply connected network, on the other hand, is a graph in which two nodes 

are connected by more than one path. This could happen when there are two or more 

possible causes for some variable, and the causes share a common ancestor, i.e. when one 

variable influences another through more than one causal relationship. 

In general, exact inference in multiply connected networks is NP-hard. This is 

easy to prove by observing that that a general belief network can represent any 

propositional logic problem (if all probabilities are 1 or 0), and propositional logic 

problems are known to be NP-complete. 

 

4.3.3 The MAP Problem 

 Explanation or finding causes for observed facts (evidence), is frequently 

encountered in the field of artificial intelligence. For example, natural language 

understanding may be seen as finding the facts that would explain the existence of the 

given text. In medical diagnosis if certain symptoms were observed, we would like to 

find the disease or diseases that explain the observed symptoms. In computer vision or 

image understanding, we would like to find the objects that explain the given image. 
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 Cost based abduction attempts to find the best explanation for a set of facts by 

finding the minimal cost proof for the facts. The costs are computed by summing the 

costs of the assumptions necessary for the proof plus the cost of the rules. Charniak 

(1994) proved the equivalence of the cost minimization problem to the Bayesian Belief 

Network MAP (Maximum a-posteriori) assignment solution of the system. also known as 

the Most Problem Explanation problem (MPE). As the name indicates, solving this 

problem helps us to find the most probable or logical explanation for a set of observed 

evidence, by finding appropriate values for variables in the network. 

More Formally, in the MAP problem we are given a bayesian belief network B 

and a partial assignment e of B, which represents a set of evidence for which we seek an 

explanation. It is required to find the instantiation A with the maximum probability          

P (A | e) . This is equivalent to maximizing P(A) under the constraint  e. If the evidence 

set is empty, then we want to find an instantiation with a maximum unconditional 

probability.   

In the MAP problem we try to find an assignment that maximizes the joint 

probability. In case that we have a certain evidence set then some variables have certain 

fixed assignment, and the instantiation that we choose must respect this assignment. For 

example, in the previous BBN graph one instantiation could be: 

B = T,  E = F,  A = T,  J = T,  M = F 

And the joint probability would be: 

P(B=T)  P(E=F) P(A=T/B=T&E=F) P(J=T/A=T) P(M=F/A=T) = 

0.0010.998.940.90.3= 2.5329 e-4. 

According to the above discussion of multiply connected BBNs, the MAP 

problem is NP-hard. Moreover, approximating it with a bounded degree of accuracy have 
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been proven to be NP-hard (Abdelbar & Hedetniemi, 1998)  The complexity of the 

problem increases with the number of variables in the system, the number of states per 

variable and the number of undirected cycles in the network. Exact inference in such 

complex cases may not be feasible, and approximate methods become the natural 

alternative. 

4.3.3.1 Applying Genetic Algorithms to the MAP Problem 

 GAs is one technique that can be used to provide approximate solutions to 

combinatorial optimization problems. The first attempt to use GAs to solve the MAP 

problem on BBNs seems to be the work done by Rojas-Guzman & Kramer (1993). The 

aim of the research was to examine the potential of using GAs in obtaining near optimal 

solutions for large and multiply connected BBNs. 

The genetic algorithm presented in this work uses non-binary alphabet to 

represent individual solutions. Each chromosome is represented as a graph instead of a 

string. This is because it is desirable to encode node neighborhood in the chromosome. 

Each node in the graph represents a gene that corresponds to one variable in the belief 

network. Each gene can take a number of discrete values that a variable can assume in the 

network. 

 The fitness function of each chromosome is the absolute probability of each 

possible solution. The fitness is a product with one factor for each node, each factor is 

either a prior probability (for root nodes), or a conditional probability (for internal and 

leaf nodes). 

Crossover is achieved when new individuals are created by combining the 

chromosomes of their parents. Parents are selected among the best found in the previous 
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generation. Since individuals are represented as graphs, a cluster, which is a subset of 

nodes is interchanged. A cluster is defined by choosing a random node as the center of 

the cluster, and then choosing all nodes that fall less than N links away from the center, 

where N is a user defined constant. 

Mutation is performed by changing the value of one gene, which represents a 

value that a certain node can assume. However, variables that are assigned known values 

at instantiation time, do not change their value by mutation, to guarantee that all 

individuals retain legal and meaningful representation. These variables represent the 

evidence set for which we seek an explanation. 

To test the performance of the algorithm four networks of different sizes and 

connectivity were used. The first network BBN1 is a 13-node singly connected network. 

The second network is a 20-node multiply connected network with 5 undirected cycles. 

The third network BBN3 is a simplification of BBN2 with only one cycle. The fourth 

network has no links among variables but has the same search space size as BBN3. 

The optimal solution for the first 3 networks was found using exhaustive search of 

all possible combinations of values. The optimal solution of the fourth network was 

calculated as the largest prior probability of each node. 

The results obtained by the running the GA on each network 135 times were 

promising. For the most difficult network (BBN2) the optimal solution was obtained 30% 

of the runs. A solution among the 10 best was obtained 60% of the time, and a solution 

among the best 50 was obtained in 100% of the runs. Each GA run took less than one 

minute, as opposed to 70hrs for obtaining the optimal solution by exhaustive search. For 
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the simple network BBN4 with no arcs, the optimal solution was found in 100% of the 

runs. 

The effect of the network structure on the results was also interesting. According 

to the authors, theoretically, the GA should not be affected greatly by the number of 

cycles in the network. The more profound effect is expected to come from the degree of 

connectivity of the network. This is not surprising if one recalls that the most difficult 

problems for GAs are the ones that have large variable (gene) interaction, called Epistasis 

in GA terminology. This expectation was supported by the results obtained. It was clear 

that the extreme case of 0 arcs (BBN4) was easy to solve and a greedy algorithm would 

be probably more efficient than a GA. Zero epistasis would occur in a network without 

links, while high epistasis with each node directly connected with all other nodes. 

Fortunately, a BBN is seldom fully connected, and gene interaction is limited to 

immediate neighbors. This characteristic supports the notion of small compact blocks that 

helps to guide the search towards the optimal solution, and thus making a GA approach 

attractive over a greedy algorithm. 

Theoretically, it appears that gene location in the string may have an effect on the 

results. It may be desirable to locate neighboring genes in the network close to each other 

in the chromosome representation. Experiments are required, however, to test the effect 

of this representation. 

According to the authors, further research is required to determine whether the 

proposed approach will prove practically useful to build decision support tools to 

diagnose and manage complex systems. Future research should concentrate on coupling 

the GA with another local search technique that can be used to refine the near optimal 
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solutions obtained by the GA. In addition, the approach should be tested on larger 

networks with different degrees of connectivity, and should be compared with other 

approximate methods.  
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Chapter 5 

5 Literature Review 

5.1 A Comparison between GA and SA 

Simulated annealing and genetic algorithms are two very similar techniques. The 

concept of both is borrowed from nature. They both work well on a variety of problems 

and require little problem specific information. They both require some criterion of 

determining the fitness or the cost of a solution, and they both create random solutions in 

the search space, and move from one solution to another probabilistically. 

Both techniques are not guaranteed to give optimal results. SA possesses a formal 

proof of convergence. The convergence of a SA algorithm can be controlled using the 

annealing schedule to produce a sufficient number of iterations that will lead to slow 

cooling and finally to asymptotic convergence. GAs, on the other hand, do not possess 

such proof of convergence. Their convergence cannot be easily controlled since they are 

heavily dependent on random operators, and they work on a large number of individuals. 

In both algorithms good solutions may be discarded. In SA, this happens when a 

new structure is accepted and the old one is discarded even in the case that the old one is 

better. In GAs, this happens because a GA always accepts new solutions resulting from 

genetic operations. This characteristic may cause disruption where good solutions are 

discarded or damaged preventing optimal performance. 

Another important difference between SA and GA is the ease with which each 

method can be parallelized. GAs are easy to parallelize because they operate on a 
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population of individuals that can be evaluated and processed in parallel. SA, on the other 

hand, works on a single solution at a time. It moves from one solution to the next in a 

sequential manner; thus it is not easy to parallelize. In addition, the population of 

individuals gives GAs useful redundant information about what it has learned from 

previous searches. Critical components of past good solutions can be captured and 

combined together via crossover to give better solutions and better exploration of the 

search space. On the other hand, SA does not posses such memory of the past since it 

operates on only one solution at a time and exploration is limited to the immediate 

neighborhood. 

Besides explicit parallelism mentioned above, GAs also possess an important 

feature called implicit parallelism. In short, this means that while a GA operates on an 

individual encoded by a string, this string actually represent a group of individuals who 

share with the string its schemata, or its basic features. Both Implicit and explicit 

parallelism help to achieve super linear speedups when GAs are parallelized. (Chen et al., 

1998;  Goldberg & Mahfoud, 1993) 

5.2 Previous Work 

Combining  GAs and SA is an attractive area of research. GAs are naturally 

capable of exploring wide areas of the search space, since they operate on a large 

population of solutions in parallel. The crossover operator allows large jumps in the 

solution space by combining two solutions. The mutation operator on the other hand 

performs one small move on one individual. As a result, GAs are not capable of fine 

tuning a good solution, because they have no method of performing several small moves 

on a solution. SA, on the other hand, possesses this characteristic. SA is capable of fine 
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tuning a good solution because it produces a sequence of small moves that usually result 

in an improvement of the current solution. 

Thus, a combination of GAs and SA may allow the benefits of both to be realized 

especially in solving difficult problems such as combinatorial optimization problems. In 

fact, there are several attempts in the literature to hybridize GAs and SA. In general, 

research in this area can be classified into four main categories. 

The first category tries to use simulated annealing to improve the quality of the 

solutions obtained by genetic algorithms. This category tries to carry over to the basic 

genetic algorithm the fine tuning features of SA, thus a good solution obtained by GAs 

can be further refined to obtain better and closer to the optimal solution. examples of such 

research are the Boltzmann Darwin Strategy (Boseniuk & Ebling, 1988 ), the SAGA 

algorithm (Brown et al., 1989), the UFO algorithm (Abdelbar & Hedetniemi, 1997), and 

SA as a genetic operator (Abdelbar & Attia, 1999). 

The second category tries to carry over to simulated annealing the population 

oriented feature specific to GAs. Some research belonging to this class strives to carry 

over to GAs the asymptotic convergence properties of SA, by having a population of 

solutions which have a distribution that is provably near Boltzmann (Goldberg, 1990; 

Mahfoud & Goldberg, 1993). Other research is more concerned with finding the optimal 

annealing parameters in a population oriented fashion. In (Lin et al., 1991) The 

population serves as parallel Markov chain, while in (Cho & Choi, 1998) the population 

is a just collection of solutions, each has its own annealing temperature that is adjusted 

according to its rank in the population. 
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The third category tries to augment the basic simulated annealing algorithm with 

the GA recombination or crossover operator. The main idea is that when SA reaches 

stagnation, a large jump in the solution space is introduced using the GA recombination 

operator. This will help the algorithm to perform a better exploration of the search space, 

which is a characteristic of the GA not usually enjoyed by regular SA. This category 

includes the work by (Koakutsu et al., 1996)  

The fourth category includes research that tries to introduce the SA acceptance 

probability, based on the annealing schedule, to the genetic algorithm operators. The 

main idea is convert the usual replacement strategy of GAs, in which offspring replace 

parents irrespective of their fitness, to a SA controlled replacement strategy. Doing so, 

superior children have a higher chance of replacing their parents, while inferior children 

still have a non-zero chance of replacing their parents. This category includes the work 

by (Esbensen, 1992) , (Adler, 1993) and (Chen et al., 1998). 

Following, a summery of the research done in each category is provided. 

5.2.1 Using SA to Improve Solutions obtained by GAs 

5.2.1.1 Boltzmann-Darwin strategy (Boseniuk & Ebling, 1988 ) 

This research solves the traveling salesman problem using a mixed Boltzmann-

Darwin strategy; i.e. it combines SA with GA while introducing the idea of life cycles. 

 The general scheme depends on having N tours each one can be represented in 

the population by one or more copies of itself. Each tour can change its internal structure 

by Boltzmann type mutations with temperature T
k
, where k is the current stage of the 

tour. Each tour has a lifetime consisting of at least two stages, childhood and maturity. 

The child hood stage starts at a high temperature, and the maturity stage is reached when 
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the temperature reaches zero, i.e. the life cycle of a tour is similar to a short annealing 

procedure. When a tour reaches maturity it is able to reproduce itself by making an 

identical copy of itself that replaces of the worst tour in the system. 

Experimental results showed that the mixed strategy yields, in special cases, 

better results than pure simulated annealing. In addition, the algorithm is well suited for 

parallel implementation. 

 

5.2.1.2 The SAGA algorithm (Brown et al., 1989) 

The research introduced here tries to solve the Quadratic Assignment Problem 

using a hybrid SA-GA approach. The QAP is an NP-hard problem, that is usually 

represented by two N*N matrices C & D. The matrix C is called the structure or the cost 

matrix, with entries cij. The matrix D is called the distance matrix with entries dij. We 

want to find a permutation P of the N indices, such that 

  N      N 

      cij  dij    is minimized 
            i=1  j=1 

 

The TSP is a special case of the QAP in which the desired structure is a cyclic 

permutation of the cities. The QAP is a good candidate for the application of the adaptive 

concepts employed by both genetic algorithms and simulated annealing. The idea was 

that after identifying the promising regions of the search space by the GA, SA is invoked 

to optimize members of the final population.  The hybrid Simulated Annealing – Genetic 

Algorithm approach is called (SAGA). This technique is useful for improving the quality 

of the solution obtained by GAs, using a local search method such as SA, which will 

perform a fine tune of the solution. In other words, each offspring is required to “mature” 

before it is allowed to reproduce. 
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The following are the steps performed by the SAGA algorithm 

1. Initialize the parameters of the GA. 

2. Generate an initial population of solutions for the GA. 

3. Use the GA to produce k good solutions. 

4. For each of the k solutions, do the following 

a. initialize the parameters of SA 

b. improve the “good” solutions using SA, and return to the GA 

population 

5. Repeat steps 3 and 4 as needed. 

The algorithm was better improved by applying step 4 in parallel for the k 

solutions.  

In SAGA the selection operation is a greedy operator that selects the first parent 

from the best s structures where s is a user defined constant, while the second parent is 

selected at random 

Crossover is similar to partially matched crossover, in which a portion of the 

structure of one parent is copied directly to the offspring, and the rest is copied from the 

second parent resolving conflicts. 

Ex:          P1:     1 2 3 4 5 6 7 8            P2:     6 4 8 3 7 2 1 5 

Step 1:    O: -   -  |  -  -  -  |  -  -  - 

Step2:     O: -   -  | 3  4 5  |  -  -  - 

Step3:     O: 6   -  | 3  4 5  |  2 1 - 

Step4:     O: 6  8  | 3  4 5  |  2 1 7  
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To find an appropriate annealing schedule for the SA operator, the following 

heuristic was applied. 

1- An average change in cost () was calculated by applying random pair wise 

interchange of the terms of the solution, and computing the corresponding change 

in cost. This method is one of the most commonly used heuristics for solving the 

QAP. The mean absolute deviation (MAD) of 100 pair wise interchanges was 

calculated. 

2- To calculate the initial temperature T0, a certain initial probability of acceptance 

 was assumed. T0 was then set to T0 =   MAD. 

3- The decrement constant   used to decrement the temperature value was set to     

 = [T
*
/ T0 ] 

1/
 where T0 is the initial temperature, T

*
 is the final temperature and 

 is the number of temperatures in the schedule. 

The algorithm was tested with two standard problem sets found in the literature. 

Results indicated that SAGA was superior in solution quality to steepest descent pair-

wise interchange method, which is the most important heuristic search method to solve 

the QAP.  However, the run time of the SAGA algorithm was not as good as its 

competitor for small problems. This situation is reversed for large problems. Based on 

these results, SAGA has excellent potential for solving large-scale QAP applications. 

According to the authors, future research should be directed to solving the real 

problems with the algorithm. In addition, more tests should be done to improve the 

quality of the SA and GA parameters used in the algorithm. 
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5.2.1.3 The UFO algorithm (Abdelbar & Hedetniemi, 1997) 

In this paper a hybrid of GA and SA was used to solve the MAP problem on 

BBN’s. The algorithm is similar to the SAGA algorithm, but it is more “loosely-

coupled”, since not all newly produced offspring from the genetic algorithm undergo 

simulated annealing. 

 The algorithm was implemented on a multiprocessor system where one processor 

-called the kernel- was used to run a regular genetic algorithm. The other processors are 

called satellite processors, and each one is used to apply simulated annealing on a chosen 

individual from the population. The idea is that periodically some individuals undergo a 

process of genetic improvement for whatever reason before being returned to the 

population, as if it was abducted by UFOs who improve its traits and then return it to the 

population.  

The difference between this algorithm and the SAGA technique is that in the 

SAGA algorithm every new offspring resulting from a crossover operator undergoes a 

SA process. In the UFO algorithm whenever an SA processor finishes its current search, 

it requests another individual from the satellite kernel processor. 

The algorithm was implemented on PVM a public domain SW package that 

allows a network of heterogeneous Unix machines to be used as a single large parallel 

Computer. 

The results indicate that the hybrid method performs better that either GA or SA 

alone, even disregarding the effect of parallelism. The problem in the algorithm is that 

SA has a much higher cost in terms of processing time, when compared with the regular 

random mutation operator. A single application of the annealing operator can take as 
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much time as one or two hundred generations of applying simple random mutation and 

crossover operators. Thus, the algorithm is particularly suited for parallel processing. 

Since a satellite processor does not need to communicate with the master processor while 

it is performing the annealing procedure, the hybrid algorithm is more suited for 

application on loosely coupled, distributed multi-computers with high communication 

cost. 

5.2.1.4 Simulated Annealing as a Genetic Operator (Abdelbar & Attia, 1999) 

The focus of this research was on the potential for obtaining better solutions by 

supplementing a genetic algorithm with a simulated annealing operator as a type of 

intelligent or directed mutation operator, as distinguished from the random or undirected 

regular mutation operator. 

The regular mutation operator is very cheap computationally. It introduces 

diversity in the population and allows slow evolution to be achieved in a large number of 

generations. Simulated annealing as a genetic operator allows occasional modification of 

some individuals in the population in an intelligent and directed manner. Thus, it can be 

seen as modeling a situation where selected members of the population undergo “fast-

track” evolution for whatever reason, before being admitted to the population. 

The problem that was solved using this technique is the MAP problem on BBNs 

(Maximum A Posteriori Assignment Problem). The implementation used the popular 

MIT class library GALIB. The genetic algorithm used was a steady state GA with a 

population replacement factor of 10%. The chromosome representation was a binary 

string representing a candidate truth assignment to the underlying BBN. 
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The crossover operator was a standard one-point crossover operator with 

probability Pcross of being performed, and the mutation operator selected a random bit to 

flip with probability Pmut. Selection for reproduction was based on uniform random 

distribution. The objective function is the joint probability of the underlying BBN, given 

the truth assignment and the conditional probability table of each node in the network.  

Simulated annealing was implemented as a special case of mutation. A call to 

mutation may cause simulated annealing to be performed on the individual with a certain 

predefined probability PSA. The solution resulting from SA is inserted in the population as 

the result of mutation. If SA is not performed, regular mutation is performed with 

probability 1-PSA. The SA operator used a fixed initial temperature T0, and the 

temperature was reduced by a certain factor f. The neighborhood operator used to find 

neighboring states for annealing was the regular mutation operator of the GA. 

The algorithm was tested on 30, 40 and 50-node networks with random 

probabilities uniformly distributed between [0,1]. First, A regular GA was run to 

convergence 200 times, with different randomly generated values of  Pcross and Pmut. The 

best 10 parameters pairs were used to test the Genetic algorithm augmented with SA. For 

each pair, 200 PSA values were tested. Results indicate that for every one of the genetic 

parameter pairs, simulated annealing produced an improvement in the quality of the 

solution returned. However, the effect of mutation seems to be positively related to the 

ratio of Pcross to Pmut. When this ratio was highest, the effect of simulated annealing was 

more profound. In addition, the performance of the algorithm was better for the 50-node 

network than for the other smaller networks.  
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5.2.2 Population Oriented Simulated Annealing 

5.2.2.1 Boltzman Tournament selection for Genetic algorithms (Goldberg, 1990) 

In this research a Boltzmann tournament selection procedure is derived and 

implemented to give stable distributions within a population of structures that are 

provably near Boltzmann. This is basically a means to carry over Boltzmann distributions 

and cooling schedules to GAs, thereby guaranteeing asymptotic convergence to a 

population oriented structure as well.  

The algorithm depends on selecting an individual from the current population. 

Two other individuals are then selected to compete with the first individual. The selected 

individuals are chosen according to the differences between their objective functions and 

the objective function of the first individual. A tournament like competition in two stages 

is held between the three individuals. This competition uses logistic acceptance 

probability exp(-Ei/T)/ (exp(-Ei/T)+exp(-Ej/T)), where i & j are the two competing 

individuals. The winner of the tournament finds its way to the new population, and the 

process is repeated until the new population is full. 

The algorithm is strait forward except that in the first stage of selection between 

two individuals an anti-acceptance probability is used, which favors poorer individuals. 

The objective of this is to help the population achieve a Boltzmann distribution stably. If 

the better individual is always favored, as in the usual acceptance probability, the best 

individual will ultimately fill the population with copies of itself, in a manner similar to 

other GA selection scheme. This is particularly true in case of repeatedly comparing an 

individual to a copy of itself. Using the anti-acceptance probability helps the population 
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equivalent of generating a neighbor uniformly at random. Choosing competitors that have 

different function values also helps to achieve this objective. 

One advantage of the above technique is that it is easily implemented on parallel 

hardware, unlike the regular SA procedure which is difficult to parallelize.  

 

5.2.2.2 Parallel Recombinative Simulated Annealing (Mahfoud & Goldberg, 1993) 

This research provides a parallel version of simulated annealing that strives to 

retain the desirable asymptotic convergence properties of SA, while adding the 

population approach and the regular GA crossover and mutation operators. It is a parallel 

version of the research summarized in the previous section. 

In this algorithm several copies of SA run in parallel with mutation as the 

neighborhood operator and crossover combining individual solutions. Alternative 

solutions in PRSA, unlike Boltzmann tournament selection, do not come purely from the 

current population, but from applying both crossover and mutation.  

In PRSA, cooling is synchronized across processors. Thus a Boltzmann 

distribution is approached on every processor. The combined distribution also approaches 

Boltzmann. Crossover reconciles independent solutions, and together with mutation play 

the role of an extended population-level neighborhood operator between independent SA. 

Slow cooling and diversity maintaining operators help PRSA to avoid genetic drift and 

premature convergence. 

The following algorithm is run on every processor: 

1- Set initial temperature to a sufficiently high value. 

2- Initialize a random population. 

3- Repeatedly generate each new population from the current population as follows: 
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Do n/2 times (n is the size of the population) 

a. Generate two children using crossover. 

b. Mutate every newly generated child. 

c. Hold one or two Boltzmann trials between children and parents. 

d. Overwrite the parents with the trial winners 

e. Periodically lower T. 

A Boltzmann trial refers to using the logistic probability 1/(1+exp(E/T)) to 

select between an old and a new solution. One possible way to perform competition 

between two parents and two children is to allow both parents to compete as one unit 

against the two children, this is called double acceptance/rejection. A second approach 

called single acceptance/rejection allows a parent to compete against the child that 

inherited its right end. 

The research proves the asymptotic convergence property for two versions of the 

algorithm. The two versions differ in the selection and replacement criteria, and in the 

way a competition is carried out between parents and children. The proof depends on 

proving the two conditions that suffice to guarantee asymptotic convergence 

1- The ability to move from any state to the optimal solution in a finite number of steps. 

2- The probability at any given temperature for generating state y from state x, is the 

same as the probability of generating state x from y. 

Applying PGSA on two deceptive test problems, showed that the algorithm 

consistently converged to the global optimum at all population sizes. In addition, both 

serial speedup and combined speedup (from implicit and explicit parallelism) can be 

polynomial. 
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5.2.2.3 The Annealing Genetic Approach (Lin et al., 1991) 

The main purpose of this research is to design an efficient annealing schedule for 

simulated annealing. Genetic algorithm’s parameters were applied to find good annealing 

parameters. 

In designing a simulated annealing operator, the following factors must be 

carefully analyzed and optimized: 

1. The optimum initial temperature value. 

2. The length of the Markov chain at each temperature, which implies the number of 

iterations that should be carried out at each temperature. 

3. Detecting the equilibrium condition of the system at each temperature. 

4. Finding methods to help the system escape local optima. 

5. Finding a suitable temperature reduction factor. 

6. Detecting that the system has reached stagnation, and no further improvement is 

possible. 

In order to find a good initial temperature, the annealing genetic approach 

performed  preprocessing calculations of the over all algorithm. The following steps were 

conducted: 

1. Create an initial random population P0 

2. Apply regular genetic operators on the population once to produce an intermediate 

population. 

3. Take the worst individual in the intermediate population and apply a Markov chain 

on it. If the resulting individual is better, insert it into a new population called P1, and 

continue to generate other individuals using the same Markov chain. If the new state is 
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worse than the initial state, stop this Markov chain, select another individual from the 

intermediate population and repeat the same process. 

4. Stop when the new population P1 has been completely generated. 

In order to calculate the initial temperature value, the researches assumed an 

initial acceptance probability of 0.6. The change in cost (C) was taken to be the 

difference between the highest and lowest cost of the final population. The initial 

temperature can thus be calculated from the formula: Paccpet = exp (-C/T) as 

T= -C/ ln 0.6  2C. The initial temperature was then taken to be 

               T0= C / (pop_size/2). 

The second important parameter is the length of the Markov chain. From the 

above procedure it is clear that the length of the Markov chain is bounded by the 

population size, because the chain was generated from multiple states of the population. 

For the new population to achieve a quasi-equilibrium state at each temperature, 

regular genetic operators (crossover and mutation) were applied on the population to 

create a new population. 

In order for the system to reach convergence, the average cost of the population at 

each generation should not exceed that of the population in the previous generation. The 

condition for achieving convergence was determined by keeping the cost of the best so 

far solution at each generation. When 80% of a new population in a certain generation 

have their costs equal to the best solution found so far, convergence is declared and the 

genetic annealing algorithm stops. 

The value of the best decrement factor was calculated adaptively. When the 

difference in cost between two successive generations is high,  was taken to be 0.5, 
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which represents fast annealing. When the difference in cost is low,  was set to 0.95, 

which represents slower annealing. 

The annealing genetic approach was tested on the traveling salesman problem. 

The results indicated that the algorithm could actually find results closer to the best 

known solution than SA alone. The authors also proved that their algorithm is of O(n
2
). 

Their proof, however, is problem specific and difficult to be applied to different 

problems. Although the experimental results did not show a great enhancement in the 

solution quality when compared to the best known solution, the algorithm actually 

reduced the amount of time needed to find an approximate solution. 

5.2.2.4 NPOSA  A New Population Oriented SA (Cho & Choi, 1998) 

This is a new algorithm that introduces the evolutionary concept to SA. The idea 

is to have a population of solutions each has its own local temperature. The local 

temperature is used as usual to improve the solution using SA. The temperature is also 

adjusted according to the individual’s rank in the population. If an individual finds that its 

cost is high compared to others in the population, it raises its temperature to give itself a 

chance to improve through uphill moves. Otherwise it drops its temperature to avoid 

uphill moves and allow more fine search, i.e. higher temperature is assigned to an inferior 

individual with a high cost and vice versa. 

The advantage here is that the temperature need not be defined explicitly by the 

user, since it is adjusted implicitly using the individuals rank. This also has the advantage 

of making the algorithm less sensitive to the initial temperature value as is the case in 

regular SA in which the cooling schedule parameters have to be carefully determined, 

usually by trial and error, because they highly affect the final solution. 
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The algorithm was applied to the 100-city TSP problem and compared with the 

regular SA results on the same problem. It was found that NPOSA obtains better 

solutions closer to the optimum than SA.  

5.2.3 Augmenting SA with GAs Recombination Operator 

5.2.3.1 Genetic Simulated Annealing GSA (Koakutsu et al., 1996) 

This technique is an SA-oriented hybrid approach which tries to incorporate the 

GA based crossover operator into SA in order to produce large jumps in the solution 

space and enlarge the search region. GSA generates the seeds of SA sequentially, i.e. the 

starting solution of a SA local search depends on the best so far solutions of all previous 

SA local searches. This sequential approach seems to generate better child solutions than 

a its parallel counterpart in which the seeds of SA local search are generated in parallel, 

and the order of applying each SA local search is independent. 

Initially a population is created at random and then three operations are repeatedly 

applied on the population. SA-based local search, GA based crossover operation, and 

population update. 

While performing SA search, GSA keeps the best so far solution found. At the 

end of each SA based local search GSA replaces the current solution with the best so far 

solution.  

When the system reaches a frozen state, a jump in the search space is introduced 

by performing GA based crossover on two randomly chosen individuals from the 

population. The new solution produced by the crossover operator undergoes a full 

annealing process before being inserted into the population. At the end of the SA search, 
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the new solution replaces the worst solution in the population. The process repeats for a 

predefined CPU time. 

The algorithm was applied to the non-slicing floor plan design problem which is 

defined as “given a set of arbitrary shaped and fixed sized modules and connection 

information, find a minimum area placement with the shortest wire length”. By 

comparing the results with SA, it was found that that GSA improved the average chip 

area by 12.4% and the average wire length by 2.95%. 

5.2.4  Introducing SA Acceptance Probability to GA operators 

5.2.4.1 Parallel Genetic Simulated Annealing (Chen et al., 1998) 

This technique is a parallel version of GSA. It tries to combine the parallel 

features of genetic algorithm with the selection criterion and the convergence property of 

SA. It is a massively parallel algorithm suited for implementation on MIMD (Multiple 

Instruction Multiple Data)  machines. 

The algorithm works by setting a temperature value for each processor, and then 

having each PE (Processing Element) create a random solution. Then, for a certain 

number of iterations the following is performed: this processor receives a new individual 

from another processor. The second processor is determined using two random values 

(direction and distance) created by the first processor at random. Mutation is performed 

on the resident individual and crossover is performed between the resident individual and 

the new one to create two children. 

The SA part now comes to work. Selection is performed between three 

individuals, the resident and the two children, in a tournament fashion. The selection 

criterion works in a manner similar to SA, in which a new candidate is accepted if the 
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cost increase is less than or equal to the current temperature. The winner of the 

tournament replaces the resident individual, and finally the temperature is reduced. 

The basic contribution of this method is exploiting the parallel nature of GA by 

having each individual reside on a different processor. At the same time no parallelization 

of any serial or problem specific portion of GA or SA is required. The calculations 

required for the objective function, mutation, crossover, and the selection criterion are 

replicated on each processor. Thus, communication and synchronization between 

processors is minimized. 

Another new idea introduced here is the random temperature approach as opposed 

to the fixed temperature approach. For each PE, the initial temperature is computed in a 

function, which samples the effect of operators in the domain to calculate an expected 

change in cost. Initial temperature value is calculated such that the probability of 

accepting an uphill move is between 0.5 and 1. The  parameter is calculated from a 

randomly generated final temperature, the initial temperature, and the maximum number 

of iterations required for SA. 

The PGSA algorithm was tested on two problems: the traveling salesman problem 

(TSP), and the error correcting code design problem (ECC).  

The results obtained indicated that the random approach to create initial 

temperature values for each PE separately produces results similar or better than the 

uniform approach regardless of the population size. The advantage in the random case is 

that the progress is apparent immediately after the algorithm starts, unlike the uniform 

temperature case in which little progress is achieved during the initial period due to the 

high temperature at the beginning of the run. Another advantage is that using this 
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approach, there is hardly a need for fine tuning the SA parameters. Obtaining the optimal 

parameters is a critical and very tedious task in traditional SA, because these parameters 

highly affect the results obtained by the algorithm. 

In addition, the random temperature approach allows the algorithm to keep a 

diversity of annealing schedules. At PEs where the initial temperature, the final 

temperature and  are high, inferior solutions are accepted at a greater probability. This 

helps to maintain diversity in the population, which is critical to the performance of the 

algorithm. On the other hand, PEs with lower temperatures and  accept inferior 

solutions with a much lower probability. Thus good solutions are protected from 

disruption. Keeping a balance between diversity and disruption is one of the key features 

that lead to the success of the algorithm. 

The second striking result was that the performance of the algorithm scales up 

linearly with the increase in processing elements. In TSP domain, the constant of 

proportionality approaches one for finding a solution within 2% of the optimal. This 

means that we can reduce the execution time by half if we double the number of 

processing elements.  

Another important finding was that the performance was improved with increased 

population size. This result appears to be unique to the PGSA technique, because in 

standard GA systems the performance usually degrades if the population size exceeds a 

few hundred. A traditional GA uses roulette wheel selection criterion for selecting 

parents. This approaches allows above average solutions to replicate themselves in the 

new generation, and low fitness solutions gradually die during evolution. Diversity may 

be lost very quickly, leading to fast and premature convergence. Increasing population 
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size does not help in solving the problem. On the other hand, PGSA technique helps to 

maintain diversity by using SA-type annealing schedule in place of selection, when a 

choice must be made between parents and their offspring.  

 

5.2.4.2 Adaptive SAGA (Esbensen & Mazumder, 1994) 

In this research a mixture of GA and SA is introduced and applied to the Macro 

cell placement problem. The idea was to bring the fine tuning feature of SA to the genetic 

algorithm after stagnation, thus combining the benefits of both algorithms. By nature, in a 

GA the cost of the solution improves rapidly in the initial phase. In the later phase of the 

process, improvements become very slow, and most run time is wasted trying to achieve 

very small improvements. SA, on the other hand, does not converge as fast as the GA in 

the initial phase, but it is usually capable of obtaining improvements faster in the later 

phase. Combining both algorithms attempts to gain the benefits of both. 

The basic GA has been modified in two ways 

1- the mutation performed on an individual is accepted with a certain probability as in 

SA. This probability is determined by the temperature of the individual and each 

individual has its own annealing schedule. 

2- Initially the algorithm behaves as a regular GA. As time goes on ,however, the GA is 

switched to SA as a result of stagnation 

The algorithm keeps track of the best individual ever found. It performs regular 

crossover on two individuals chosen from the population according to their fitness values. 

Mutation, as said previously, is SA controlled. A mutation that increases the individual 

fitness is always accepted, while a mutation that decreases fitness is accepted with a 
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probability proportional to the change in fitness. The temperature of the individual is then 

modified according to its own annealing schedule. 

A step towards SA is taken whenever no improvement has been accomplished for 

a number of generations. This is achieved by gradually reducing population size and 

increasing the probability of mutation, i.e. more SA controlled mutations will be 

performed on a smaller number of individuals. Finally the algorithm will behave as a 

pure SA when the population size reaches one. 

The algorithm was tried on the macro cell placement problem. The problem can 

be defined as follows: Given 

 A set of rectangular cells, each with a number of terminals at fixed positions along 

the edges of the cell. 

 A net list specifying the interconnections of all terminals, and 

 An approximate horizontal length W of the chip under construction. 

It is required to find 

 The position of each cell. 

 The orientation and possible reflection(s) of each cell. 

 A rectangle B defining the shape of the chip. The objective is to find B,  such that 

B has the minimum possible area, satisfying the following constraints:   

1- No pair of cells overlap each other 

2- The rectangle B encloses all cells and has approximate horizontal length W.  

3- The area within B, which is not occupied by cells, is sufficiently large to 

contain all routing needed to implement the inter-connections. 
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The genotype was encoded using a binary tree in which the i
th

 node corresponds 

to cell i. Two types of edges were used, top edges and right edges. All edges are directed 

and oriented away from the root. Crossover and mutation operators were specifically 

designed for the problem such that the resulting offspring should not violate the problem 

constraints. 

 The algorithm was tested on Apte, Xerox and Hp benchmarks from the 1992 

MCNC International Workshop on Placement and Routing described in (Esbensen, 

1992). It was found that the combined approach actually performs better than a pure GA, 

in terms of solution quality, on the first two test cases. For the Hp benchmark, no 

significant improvement was obtained. A comparison with other systems used to solve 

the same problem also indicated that the SAGA technique was superior. 

5.2.4.3 Simulated Annealing Mutation and Recombination (Adler, 1993) 

This technique augments the mutation and recombination operators of GAs with a 

SA-like acceptance probability scheme. The basic idea is to use the SA stochastic 

acceptance function internally to limit adverse moves.  

The simulated annealing mutation operator (SAM) performs regular mutation on a 

candidate solution. The SA part is introduced by applying an acceptance trial with a 

temperature schedule between the parent and the child produced by mutation.  

The simulated annealing recombination operator (SAR) works in a similar 

manner. The acceptance trial is held between the two parents, and then between the 

winner and each of the two children resulting from recombination. The winning two 

individuals from this acceptance trial is inserted in the population. 
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The SAM and SAR operator do not affect the GA convergence, since the 

schemata theorem does not assume any specific behavior on the genetic operators. The 

hybrid technique can also be seen as introducing the population notion to the regular SA 

operator. In addition, the convergence properties of SA are also not affected by the hybrid 

algorithm, since each individual in any generation is the successor of another member in 

the previous generation, which maintains the Markov chain model within GA domain. 

The algorithm was tested on the problem of training a feed forward neural 

network. The objective function was the mean squared error of running the network 

forward with the given weights. The performance of the hybrid technique outperformed 

pure GA by an order of magnitude. 

5.3 A Note on Adaptive Simulated Annealing 

The researches summarized above include many attempts to adapt the basic 

simulated annealing algorithm. The main objective is to optimize the SA parameters in an 

adaptive manner, without the need for the manual adjustment of operators through trial 

and error. For example, the work done by Esbensen & Mazumder (1994) uses a SA 

controlled mutation, in which each individual has its own annealing schedule. The initial 

temperature is calculated for each individual using a probability of acceptance that 

changes adaptively during the course of evolution depending on the number of mutations 

performed on the individual. 

The work by Cho et al. (1998) also uses a different annealing schedule for each 

individual. The temperature value is adjusted for each individual depending on its rank in 

the population. This will give poorer individuals more chance of improving through 

simulated annealing. 
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The PGSA approach (Chen et al., 1996)  uses different annealing schedules for 

each processing element. In addition, the initial temperature value is created using a 

randomly generated probability of acceptance. The reduction factor  is also calculated 

adaptively using a randomly generated final temperature, the initial temperature, and the 

desired number of iterations. As explained above, varying the annealing schedule 

between processors and using adaptively generated parameters allow the balance between 

disruption and diversity to be maintained. 

Finally, the annealing genetic approach (Lin et al., 1991) also utilizes a heuristic 

method to calculate the initial temperature value, using a certain initial probability of 

acceptance, an expected change in cost, and the current population size. In addition, the 

reduction factor  is set adaptively such that fast annealing is performed when only a 

quick and dirty solution is required, while slow annealing is performed when 

convergence is approached and more fine search is needed. 

Adaptation in simulated annealing seems to be an attractive area of research. The 

reason is that SA suffers from a major drawback, which is its sensitivity to the annealing 

parameters. Finding optimal annealing parameters is by no means an easy or strait 

forward task. Therefore, adaptive simulated annealing, in which the annealing parameters 

are optimized during processing depending on the current situation, seems to be the 

natural alternative. 
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Chapter 6 

6 Adaptive Simulated Annealing as a Genetic Operator 
 

6.1 Motivation  

The technique presented in this research can be described as a hybrid genetic-

annealing technique, in which simulated annealing acts as a directed or intelligent 

mutation operator. Although the feasibility of this approach has been established in a 

previous work (Abdelbar & Attia, 1999), there were still many open questions that need 

further investigation. 

The theory behind the hybrid GA-SA technique, in which SA plays the role of an 

intelligent or directed mutation operator, is based on the idea that SA in this context 

represents a situation in which some individuals in the population undergo “fast track” 

evolution for whatever reason. This can also be thought of as helping some newly 

generated offspring to reach maturity before being inserted in the population. 

Theoretically, this should allow better solutions to be obtained as a result of directed 

mutation. The presence of superior children in the population should help the evolution of 

genetic algorithms, through the regular mutation and crossover operators, towards 

optimal or closer to the optimal solutions. 

The results obtained in the previous thesis work (Abdelbar & Attia, 1999) support 

this theoretical observation. It was actually found that the hybrid technique yields better 

results than GA alone when the technique was tested on large size belief networks. It was 

found, however, that the best results were obtained when the annealing parameters were 

specifically tailored for the network under consideration. This observation may limit the 
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use of the technique, since manual adjustment of parameters is by no means easy or strait 

forward, although it is very critical for the final results obtained. 

Designing a simulated annealing algorithm, in which the parameters adapt 

themselves according to the current situation in the search process, seems to be an 

attractive alternative that will remedy the defects of the regular static simulated annealing 

algorithm.  

Traditionally, if we were to use GAs to optimize the parameters of any algorithm, 

we would think of a Meta-genetic algorithm, or a genetic algorithm within another 

genetic algorithm. The primary GA will have each individual consisting of the 

parameters that should be optimized. To determine the fitness of each set of parameters 

(each individual), we would run another secondary complete GA using the parameters of 

this particular individual. The best result obtained by the secondary GA would be 

returned to the primary GA as the fitness of that particular set of parameters. This process 

is repeated for all individuals in the primary genetic algorithm. Of course, applying such 

technique is very difficult and time consuming.  

The concept of GAs and SA are both borrowed from nature. Nature again may 

provide the solution to our problem. In nature the genotype of an individual may contain 

genes that do not directly affect the individuals phenotypic characteristics or its 

performance in life. Nevertheless, these genes affect the offspring produced by that 

individual. Some genes transmitted from the parent to the child may result in inferior 

offspring that have some phenotypic defect. Other genes may result in superior children if 

they were carried over from a parent to a child. Defective offspring do not usually live 

long enough to transmit the defective genes from one generation to another. These genes 
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thus have a short life span. On the other hand, superior offspring continue to live and 

reproduce, and their genetic material spreads and propagates from one generation to the 

next. 

This situation is exactly what we are trying to mimic in this research. The analogy 

in this case is that the SA parameters play the role of hidden genes that do not directly 

affect the solution in terms of its fitness. Their role comes to play when offspring of this 

individual are produced using these parameters. Good parameters result in superior 

offspring that continue to survive from one generation to another. Bad parameters 

produce inferior offspring that quickly die out together with their bad genes, parameters 

in our case. 

6.2 Thesis Contribution 

The discussion in chapter 5 (section 5.3) shows that several attempts in the 

literature, concerning hybrid GA-SA techniques, tried to introduce adaptation in the SA 

operator. These include (Lin et al., 1991; Esbensen & Mazumder 1994; Chen et al. 1996 

and Cho et al. 1998). The adaptation of parameters in all these cases depended on a 

heuristic adjustment of parameters using randomization, or by checking the existence of 

certain conditions in the search process, such as approaching convergence, number of 

mutations, rank of individual...etc. Non of these attempts introduced self-adaptation of 

parameters that evolve and learn from experience without any external guidance or 

supervision.  

Thus, the first contribution of this thesis is that the SA operator will be self -

adaptive, and its parameters will evolve and change according to the current situation and 

the requirements of the search process. This should eliminate the problem of having to 
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find fixed global annealing parameters that should be general enough to give good results 

for all individuals in the population, yet specific enough to suit each  and every stage of 

the search. As mentioned above, this task is very difficult and may be infeasible in many 

practical applications. For example, in some cases, especially at the beginning of a run, 

we may just need a quick and dirty solution, which means having fast annealing schedule 

with high reduction parameter . In other cases, especially when we approach 

convergence, we might need much slower cooling, in order to achieve better fine tune of 

the good solutions obtained.  

The role of adaptation in this research is not restricted to finding optimal 

parameters easily, but it also offers a great contribution to the quality of the solutions 

obtained. In a sense, the optimization of parameters as well as optimizing the solution to 

the problem will go hand in hand. From the analogy with nature, we can see that as the 

parameters evolve with time, they can directly affect the quality of the solutions 

produced. Bad solutions resulting from bad parameters will not live long enough to 

degrade performance, while good parameters will produce good results that will continue 

to live and produce other superior solutions. 

The second important contribution of this thesis is that the genetic algorithm used 

is augmented with problem specific knowledge. The problem selected to test the 

algorithm is the MAP problem on BBNs, described in chapter 4. Utilizing problem 

specific information is achieved by having a crossover operator that is aware of the 

structure of the BBN graph. This crossover operator is similar to the one used in (Rojas 

Guzman & Kramer, 1993). In this technique a random node is selected as a center of the 

cluster. All nodes that fall within N links away from the center node, where N is a user-



 91 

defined parameter, are selected. This subset of nodes is then interchanged between the 

two children produced from crossover (see chapter 7 for details). 

The advantage of the cluster based crossover operator over the regular one point 

crossover used in (Abdelbar & Attia 1999), is that the cluster based crossover allows 

nodes that are directly affected by each other, because they are directly connected, to be 

transferred together. This should have a better effect on the resulting fitness, because 

nodes are transferred according to their location in the graph, and not according to their 

location in the chromosome representation.  

Finally, the previous thesis work (Abdelbar & Attia 1999) tested the algorithm on 

randomly generated large size belief networks, with no particular structure. In this thesis 

we try to test the performance of the algorithm on graphs that have specific structures. 

We aim to test the features of the network that directly affect the GA performance. In the 

work by (Rojas Guzman & Kramer, 1993) it was thought that connectivity has a more 

profound effect than the number of cycles in the network. The truth of this observation 

has not yet been established. In this work we try to provide an answer to this open 

question by testing several networks with different structures. Specifically, we 

concentrate on networks with a large number of undirected cycles, large connectivity, and 

large number of nodes. 

6.3 A Comparison between Adaptive GASA and other Techniques 

 In this section a comparison between the new technique introducing adaptive SA 

as a genetic operator, with the most famous techniques in the literature. The new adaptive 

technique is referred to as ADP-GASA. 
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Table 6. 1 A Comparison Between ADP-GASA and SAGA 

SAGA 

(Brown et al., 1989) 

ADP-GASA 

1- The entire SA algorithm is called by 

the GA to improve current solution. 

2- The SA algorithm is called for every 

newly created child, i.e. the 

hybridization is tightly coupled. 

3- The annealing parameters are fixed 

for all individuals, and do not change 

during evolution. 

4- Regular crossover and mutation 

operators performed by the GA. 

 

1- The entire SA algorithm is called by 

the GA to improve current solution. 

2- The SA algorithm is called for some 

newly created children, i.e. the 

hybridization is loosely coupled. 

3- The annealing parameters are unique 

for each individual, and evolve with 

time. 

4- Cluster-based crossover operator 

performed by the GA. Mutation is 

diverted to SA with some probability 

attached to each individual. 
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Table 6. 2 A Comparison Between ADP-GASA and Adaptive SAGA 

Adaptive SAGA 

(Esbensen & Mazumder, 

1994) 

ADP-GASA 

1- Mutation is altered by applying SA 

acceptance probability to newly 

generated offspring. 

2-  Each individual has unique annealing 

parameters. The annealing parameters 

change according to the number of 

mutations performed on the 

individual. 

3- The algorithm starts with a certain 

population size, and gradually 

decreases this population each time 

the GA goes through a stagnation 

period. 

4- The algorithm starts with pure GA 

and gradually shifts to pure SA. 

1- Mutation is altered by applying SA 

with a certain probability to some 

generated offspring. 

2-  Each individual has unique annealing 

parameters. The annealing parameters 

are adaptive and evolve with time. 

 

 

3- The population size is fixed and does 

not change over time. 

 

 

 

4- The amount of SA performed each 

generation is adaptive, and changes 

according to the requirement of the 

search process. 
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Table 6. 3 A Comparison Between ADP-GASA and GSA 

GSA 

(Koakutsu et al., 1996) 

ADP-GASA 

1- The entire SA algorithm is called by 

the GA to improve current solution. 

2- The annealing parameters are global 

among all individuals in any 

generation. 

3- Regular crossover operator performed 

by the GA. The mutation operator is 

removed and replaced with SA. The 

SA operator is called for every child 

resulting from crossover. 

1- The entire SA algorithm is called by 

the GA to improve current solution. 

2- Each individual has unique annealing 

parameters. The annealing parameters 

are adaptive and evolve with time. 

3- Regular crossover operator performed 

by the GA. Mutation is diverted to SA 

with some probability attached to 

each individual. 
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Table 6. 4 A Comparison Between ADP-GASA and PGSA 

PGSA 

(Chen et al., 1998) 

ADP-GASA 

 

1- A massively parallel hybrid 

SA/GA technique with one 

individual residing on each PE 

(Processing Element) 

2- The SA acceptance probability is 

applied to the selection operator. 

Selection is performed, after 

regular mutation and crossover, 

between three individuals: the 

resident one, the visiting one and 

the two newly created children. 

The winner  becomes the resident 

3- Each PE has a different initial 

temperature, final temperature and 

cooling factor. 

4- The initial temperature is 

calculated from random initial 

probability of acceptance between 

10 
–10

 and 1.0. 

 

1- Purely sequential algorithm where the 

whole population resides on one 

processor. 

 

2- SA is a special case of mutation. 

Selection is regular GA selection 

method. 

 

 

 

 

 

3- Each individual has a different initial 

temperature, final temperature and 

cooling factor. 

4- The initial temperature is calculated 

from a large change in fitness and a 

small initial probability like 0.01. 

 



 96 

 

5- Final temperature is set with 

random final acceptance 

probability between 0 and 10 
–10

. 

6- The cooling factor is calculated 

from the initial and final 

temperature of each PE. 

5- No final temperature, the SA 

algorithm stops when stagnation is 

reached. 

6- The cooling factor is taken from a 

predefined range in the initialization 

of the algorithm. 

Table 6. 5 A Comparison Between ADP-GASA and PGSA- cont’d
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Table 6. 6 A Comparison Between ADP-GASA and SAM/SAR 

 

SAM/SAR 

(Adler,1993) 

ADP-GASA 

1- The crossover and mutation operators 

use the SA acceptance probability, 

based on a global temperature to 

select between parents and children. 

 

 

 

2- All individuals have the same initial 

temperature, and the same annealing 

reduction factor. 

 

3- The parameters of SA are fixed, and 

do not change during processing. 

1- Crossover and mutation work like 

regular GA crossover operators. 

Children replace the worst individuals 

in the population without checking 

any probability. Mutation is diverted 

to SA with a certain probability 

attached to the individual. 

2- Each individual has its own initial 

temperature, its own reduction factor, 

and its own probability of performing 

SA. 

3- The parameters of SA are adaptive, 

and evolve with time. 
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Table 6. 7 A Comparison Between ADP-GASA and NPOSA 

 

NPOSA 

(Cho et al., 1998) 

ADP-GASA 

1- A population oriented SA. No GA 

operators are used. 

 

 

2- Each individual has its own 

temperature. 

 

 

3- No reduction of temperature values. 

Temperature changes according to 

the rank of the individual in the 

population. The temperature is 

increased if the individual’s rank is 

low. The temperature is decreased 

if the individual’s rank is high. 

4- A new solution replaces the 

original one with a probability of 

acceptance that depends on the 

current temperature. 

1- A hybrid GA/SA approach. Regular 

GA mutation and crossover are 

used. Mutation is diverted to SA 

with a certain probability. 

2- Each individual has its own initial 

temperature, its own reduction 

factor, and its own probability of 

performing SA. 

3- The parameters of SA are adaptive, 

and evolve with time. 

 

 

 

 

 

4- Full annealing process is performed 

on the selected individual, until 

stagnation is reached. 
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Chapter 7 

7 Algorithm Design and Implementation  

7.1 GAlib overview 

 The implementation of the technique described in the previous chapter uses 

GAlib, which is a C++ library of genetic algorithm objects produced by MIT laboratory 

of genetic algorithms (Wall, 1999). With GAlib we can add evolutionary algorithm 

optimization to almost any program using any data representation and standard or custom 

selection, crossover, mutation, scaling, and termination methods. 

 An evolutionary program developed with GAlib will work primarily with two 

classes: 

1- The genome class: each genome instance represents a single solution to the problem 

under consideration. 

2- The genetic algorithm class: which defines how the evolution should take place. 

A problem solved using genetic algorithms with the help of GAlib must be 

represent a single solution in a single data structure, this is called a genome in GAlib. The 

genetic algorithm will create a population of solutions based on a sample genome that is 

provided. The genetic algorithm will then evolve the population to obtain the best 

solution. 

7.1.1 Genome Types 

 GAlib provides four genome types: binary string genome, list genome, array 

genome and tree genome. The user can also create genomes with multiple dimensions of 

these types. For example, by creating a 2-d array genome, or a 3-d binary string genome. 
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 After defining the type of the genome, the objective function of the genome 

should be defined. This is completely up to the user, and is not created with the help of 

the library. The objective function should return a positive real value that is used to 

evaluate the genome. 

 In addition to the objective function, the genome has three primary operators: 

initialization, mutation and crossover. These operators are defined differently for each 

type of genome. The user has the option to use built in operators, or to write his own 

operators. A genome may also have a comparator that is used to compare two genomes 

together. 

7.1.2 Genetic Algorithms Types 

 The library also provides different types of genetic algorithms: the simple GA, the 

steady state GA, the incremental GA, and the deme GA. These types differ in the way 

that they create individuals and replace old individuals in the course of an evolution. 

 The simple GA, defined by Goldberg (1989), uses non overlapping populations 

and optional elitism. Each generation of the algorithm creates an entirely new population 

of individuals. If elitism is used, the best individual(s) is carried from one generation to 

the next. 

 The steady-state GA uses overlapping populations. In this technique the new 

population is added to the old one, and the worst individuals are then destroyed. The 

degree of overlap, which is the percentage of population that should be replaced each 

generation, is user defined. 
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 In the incremental GA, only one or two children are created each generation. The 

user can specify what individuals should be replaced in each generation, such as 

replacing parents, replacing worst or random individuals in the population. 

 The last type, the deme GA, evolves multiple populations in parallel using a 

steady state GA. Each generation, the algorithm migrates some of the individuals from 

each population to one of the other populations. 

 The library also provides several termination methods. These include terminate-

upon-generation, in which the user specifies a certain number of generations for which 

the algorithm should run, and terminate-upon-convergence in which the user specifies a 

value to which the best of generation score should converge. The termination function 

can also be customized depending on the problem type. 

 The library has several selection strategies that are used to select parents for 

mating. For example, roulette wheel selection picks an individual depending on the 

magnitude of the fitness score relative to the rest of the population, while uniform 

selection picks individuals randomly from the population. 

 GAlib is thus very easy to use and connect to existing optimization problems. The 

user has the ability to customize any component in the library to suit the current problem. 

In addition, the library provides useful statistical information about the population that 

will help the user to easily analyze the performance of the algorithm. 
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7.2 Implementation Details of the Adaptive GASA algorithm 

 

The adaptive hybrid GA and SA technique was tested on the MAP problem on 

BBNs described in chapter 4. The objective is to find a network assignment that 

maximizes the overall joint probability. 

Without loss of generality, the following simplifying assumptions were made: 

1- All nodes in the network are binary valued, i.e. each node can assume either True or 

False only. 

2- The evidence set is empty, i.e. no nodes are pre-instantiated. 

3- The maximum number of parents for each node in the network is 15 parents. 

7.2.1 Genome Representation 

 The genome in our problem represents a candidate solution to the MAP problem. 

In our representation, the genome consists of two parts: 

1- BBN part: which is a binary string consisting of truth assignments to all nodes in the 

network. Each gene in this part can have a value of either 0 or 1. 

2- SA part: consisting of the parameters of SA that will be optimized during the search. 

The selected parameters are the annealing reduction factor , and the probability of 

performing SA on that individual PSA. Each of these two genes is a real valued gene 

taken from a specific range determined by the user. For example, The gene 

corresponding to the parameter  can take values in the range [0.990,0.999], while 

the gene corresponding to the parameter PSA can take values in the range [0.0,1.0], or 

any other suitable probability range. 

The following is an example of a genome in our implementation 
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             PSA 

 

    

 

 

BBN part   SA part 

Figure 7. 1 The Genome Representation 

 

 

7.2.2 Objective Function 

The objective function is the joint probability corresponding to the truth 

assignment of the nodes as they appear in the current genome. To calculate the objective 

function, the conditional probability for each node in the network is calculated by finding 

the combined “truth values” of the parents of this node. This combined “truth values” is 

transformed to a binary value that corresponds to the entry in the conditional probability 

table (CPT) of the required node. The joint probability is then found by accumulating the 

product of all conditional probability values of all nodes. 

For example, assume we want to calculate the conditional probability of node x, 

given that x has three parents whose truth assignments are T F F.  The binary value “100” 

is calculated from the truth assignments of the parents, and entry number 4 of the CPT of 

node x is retrieved. If x has a truth assignment of F rather than T, the probability value is 

negated before being multiplied with other conditional probabilities. 

Observe that the extra genes, which correspond to SA parameters, do not have a 

direct role in the calculation of genome objective. Instead, they play an indirect role, 

because their presence affects the offspring created by an annealing operator that uses 

these parameters.  

1 1 0 1 1 0 0 1 0 1    .995 .3 
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7.2.3 Initialization 

 

 GAlib initializes a population of genomes (solutions), by creating several 

genomes of the predefined structure. The initialization uses random gene values with a 

uniform distribution. The user can specify a seed for randomization. Doing so, the 

processing will be exactly the same every time the program is run. 

7.2.4  The Genetic Algorithm 

 The genetic algorithm selected was a steady state GA (described in section 7.1.2), 

with overlapping populations. Each generation, 20% of individuals in the population, 

which are the worst among the population, are replaced by new offspring.  

Selecting parents for mating is based on Roulette Wheel selection, in which 

selection is based on the fitness of the individual, i.e. higher fitness individuals have a 

higher chance of being selected. 

 The termination criterion was to terminate upon convergence, i.e. when the 

maximum fitness has not changed for a specified number of generations. 

7.2.5 Outline of the Hybrid GA-SA Algorithm 

1- Read the BBN network, from an input file. 

2- Create all data structures needed for processing. 

3- Define a genome representation. 

4- Define the objective function. 

5- Define GA parameters and functions: probability of mutation (Pmut), probability of 

crossover (Pcross), population size (n), termination criterion, initialization method, 

mutation method, and crossover method. 

6- Initialize a population of individuals by cloning the required number of genomes. 
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7- Initialize the number of generations. 

8- Do n/2 times 

{ 

 Select two individuals parent1 & parent2 for mating 

 With probability Pcross, perform crossover between parent1 and parent2 to 

produce two children. 

 child1 = Crossover(parent1,parent2)  

 child2 = Crossover(parent1,parent2) 

 If  crossover is not performed 

 child1=parent1  

 child2=parent2 

 Perform mutation on child1 with probability Pmut. 

 Perform mutation on child2 with probability Pmut. 

 Insert resulting children in the population according to the predefined 

replacement strategy 

} 

9- If termination is reached, terminate the algorithm. 

10- Otherwise, increment number of generations and return to step 8. 

7.2.6 Crossover Method: 

 The crossover method used is the cluster-based crossover, described in (Rojas- 

Guzman & Kramer, 1993). In this technique, a random node is selected as the center of a 

cluster, and then all nodes that fall within a certain number of links away from the center 
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node are exchanged between the two children. The required number of links is a user-

defined parameter called ClusterLimit. 

 A 2-d array, called Cost array, is created from the network under consideration. 

This array contains the shortest path between each pair of nodes in the network, in terms 

of number of links between them. The Cost array is created only once at the beginning of 

the run. 

The following steps are performed during crossover for the BBN part. 

1- child1= parent1   // child1 becomes a copy of parent1 

child2= parent2  // child2 becomes a copy of parent2 

2- Select a random node as the center of the cluster, call this node the Root. 

3- Do the following for every node i in the network. 

If (Cost [Root][i]   Cluster_Limit)   // if  node i falls within the cluster  

   child1 inherits gene i from parent2 

    child2 inherits gene i from parent1 

For the SA part, which consists of two genes corresponding to  and PSA, regular one 

point crossover is performed with probability PSAcross 

7.2.7 Mutation Method 

 The mutation function is the part in which SA comes to play. The following steps 

are performed during mutation: 

1. Check the value of the gene corresponding to PSA in the individual to be mutated. 

2. Perform SA on the current individual (solution) with probability PSA specific to 

this individual. 

3. If SA is not performed call regular mutation operator. 
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7.2.8 Regular Mutation Operator 

 The regular mutation operator is called in two cases: first, to create a random 

move during annealing, and second, when SA is not performed and regular GA mutation 

operator is to be performed on the current individual. 

 The regular mutation operator is the flip bit mutation defined in (Goldberg, 1989). 

Each bit in the BBN part of the genome is flipped with probability Pmut. The SA part, on 

the other hand, is mutated, with probability PSAmut, by adding or subtracting a random 

fraction of the range from which the gene is defined to the original gene value. The 

maximum allowed change is 20% of the current range, i.e. the new gene value is 

calculated as follows: 

New gene value = old gene value +  { r  (MaxValue-MinValue)  0.2} 

Where r is a random real number between 0 and 1, MaxValue is the maximum allowed 

gene value, MinValue is the minimum allowed gene value. 

7.2.9 Simulated Annealing Operator 

 The simulated annealing operator performs a full annealing schedule on the 

current solution. The neighborhood operator used to generate a random neighbor of the 

current solution is identical to the regular mutation operator of GA, except that only the 

BBN part of the genome is mutated, the SA part is left unchanged, when a random move 

is created. The idea is that while SA is performed, we do not want to change the 

annealing schedule used to initialize SA at the beginning, i.e. it makes no sense to change 

the annealing parameters (PSA and ) that we started with. In addition, we want all 

random solutions created during SA to have the same annealing parameters as their seed 

(starting solution). When the final solution replaces the initial solution, the SA part will 
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be the same as the initial solution, while the BBN part will be different. The fitness of the 

resulting solution reflects whether the annealing parameters used were good or bad. 

 As mentioned above, the probability of performing SA, and the reduction factor  

are taken from the current solution. It remains to determine the initial temperature value. 

One of the options that were considered when the algorithm was designed was to include 

the initial temperature among the SA parameters that will evolve. It was found, however, 

that it is very difficult to define a suitable temperature range that will work for all 

solutions and for all phases of the run. The initial temperature is very problem specific 

and very greatly affects the final result. The alternative was to calculate the initial 

temperature adaptively during the run. When SA is performed, a large change in fitness 

() is calculated as:  

 = Objective (current solution) – smallest possible fitness. 

The smallest possible fitness was set to the extreme case of zero. 

Thus   = Objective (current solution) (1) 

From the equation of calculating the probability of acceptance 

Paccept = exp (-/T)  (2) 

We can calculate the initial temperature T0 as 

T0 = - / ln(Paccept)  (3) 

The initial probability of acceptance Paccept was then set using trial and error to some 

small value like 0.05 or 0.1. 

Calculating the initial temperature using the above method gives initial 

temperature values that are smaller than usual. This in fact what we need in the current 

algorithm. The initial solution with which SA starts is usually a good solution, because it 
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has gone through several modifications by GA operators. Starting the annealing process 

with high temperature values may destroy the good starting solution, because any bad 

move may be accepted. On the other hand, when the initial temperature is relatively 

small, the good starting solution is protected, since the probability of accepting a very bad 

move becomes lower. 

The SA operator performs the following steps: 

1- Initialize the initial temperature value T0 using the above method. 

2- Set current temperature T = T0 

3- Determine the annealing reduction factor  from the corresponding gene in the 

current solution. 

4- While stagnation is not reached do the following. 

 Create a new solution using regular GA mutation. 

 If the new solution improves fitness replace current solution 

 Otherwise, replace current solution with probability exp (-/T) 

 Decrement current temperature by setting T=   T  

 Observe that the algorithm performs only one iteration per temperature. This 

choice was made because the cooling factor  is chosen sufficiently high to guarantee 

very slow cooling, which is equivalent to performing several iterations per temperature 

with faster cooling.  The termination criterion of the algorithm is reaching stagnation 

when the fitness of the current solution does not change for a specific number of 

iterations.  
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Chapter 8 

8 Results and Discussion 

8.1 How the Algorithm was Tested 

The technique was tested by comparing three versions of the algorithm: 

1- GA-alone: A regular genetic algorithm without simulated annealing. 

2- Non-adaptive GASA: A fixed genetic-annealing algorithm without evolving 

parameters. 

3- Adaptive GASA: a hybrid GA-SA algorithm with evolving SA parameters. 

Problems Faced During Testing 

 One of the problems faced during implementation and testing of the program was 

the premature convergence problem, which is one of the classical problems in GAs. It 

was found that the algorithm converges very rapidly to a sub-optimal solution. This 

problem had a more profound effect on the adaptive version than the other two versions 

of the program. This is due to the fact the adaptation and the learning process requires an 

adequate number of generations to demonstrate its effect. Premature convergence would 

stop the learning process before the parameters reach their optimal values.  

 The cause of the problem was the large number of duplicates that result during 

processing. A sub-optimal solution could easily dominate the whole population, and 

diversity is lost as a result. To overcome the problem and increase diversity in the 

population we did the following: an individual resulting from crossover was first checked 

for having a duplicate in the population. If this was the case, that individual is forced to 

undergo mutation before being inserted in the population. The process is repeated as long 

as the individual still have copies in the population. 
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 The second problem was the task of parameter adjustment. The algorithm 

contains so many parameters, some of them are related to the GA like probability of 

mutation, probability of crossover, population size...etc. Other parameters are related to 

SA like initial temperature, reduction factor , probability of performing SA, and the 

number of iterations required for declaring stagnation. Other parameters are related to the 

BBN problem like the cluster limit parameter. Finally, other parameters are related to 

adaptation like probabilities of performing crossover and mutation for SA parameters 

(genes), and the rate with which these parameters should change during mutation. 

 During experimentation, it was possible to identify the critical parameters that 

affect performance. These parameters are: population size, the number of generations 

required for declaring convergence, probability of GA mutation, initial SA temperature, 

SA reduction factor , and probability of performing SA. These parameters were 

adjusted for each data file separately. All other parameters were fixed for all data files 

after approximately finding the best possible parameters, since they do not have much 

effect on performance. 

8.2 Data Files 

 Each of the three versions was tested on three different data sets. Each data set 

represented a different BBN characteristic. 

Set  A: consists of three BBNs, each with a large number of cycles. Three data files were 

created manually and were called: 

“50a”: which consists of a 50-node subset chosen from the 80-node network shown in 

Appendix B. 
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“60a”: which consists of a 60-node subset from the original 80-node network shown in 

Appendix B. 

 “70a”: which consists of a 70-node subset from the original 80-node network shown in 

Appendix B. 

Set B: consists of three BBNs, each is a layered network and each node in the network 

has 3 to 5 parents. These three networks correspond to network structures with a large 

number of cycles as well, but in a layered structure. The first data file, which contains 70 

nodes, is called “70b” and is shown in Appendix B,  the second data file is a subset form 

the first file with 60 nodes, and is called “60b”. The third data file is a subset from the 

second file with 50 nodes, and is called “50b”. The files in this set were also created 

manually. 

Set C: consists of four BBNs, each is characterized by having nodes with a very large 

number of parents. The maximum number of parents was 15 nodes. These files 

correspond to network structures with heavy connectivity. The files were created using a 

program that creates random BBN files. The files were a 60-node network called “60c”, a 

70-node network called “70c”, a 90-node network called ”90c”, and a 100-node network 

called “100c”.  

8.3 The Testing Process 

The following steps were carried out to test the algorithm on each of the above mentioned 

data files. 

1. The same random seed was selected for all three versions. This will make the 

processing identical each time the program is run. 

2. The following GA parameters were fixed for all data files 
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Crossover rate = 0.99 

Percentage of population overlap = 0.2 

The number of links defining a cluster = 1 

3. Other parameters of the GA-alone version were adjusted to give the best possible 

result. These parameters are population size, mutation rate and the number of 

generations required for declaring convergence. 

4. The best set of GA parameters was used in both the GASA adaptive and non-adaptive 

versions. 

5. For the non-adaptive version, the following parameters were adjusted to give the best 

possible result:  

Initial SA temperature: which was calculated heuristically from a large  and a small 

initial probability of acceptance. 

SA reduction factor  : which was set to some value between 0.992 and 0.996 

SA rate (Probability of performing SA): which was set to some value between 0.002 

and 0.2 depending on the population size.  A large population size required a smaller SA 

rate to avoid very large processing time. 

6. for the adaptive version the following parameters were adjusted for best possible 

result:  

The reduction factor range: which was set to [0.990,0.999] for all data files. 

The SA probability range: which was set differently for each date file depending on 

the population size, as in the non-adaptive version, to avoid large processing time. 

The largest range was [0.005, 0.05] 
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The task of adjusting parameters for the adaptive version was much easier than 

for the non-adaptive version. The non-adaptive version required finding one optimum 

value for each parameter, while the adaptive version only required suggesting a suitable 

range of parameter values. In addition, the adaptive version did ot require adjusting the 

initial temperature value, because this value was calculated heuristically from the fitness 

value of the current solution as explained in the implementation chapter (chapter 7). 

8.4 Crossover Effect 

The effect of crossover was tested by comparing three types of crossover 

1- Regular one-point crossover 

2- Cluster-based crossover, explained in section 7.2.6 

3- A modified version of cluster-based crossover, in which a child that has a 

duplicate in the population is forced to undergo mutation before being inserted in 

the population. We call this type of crossover “modified cluster-based crossover”. 

The GA alone version was tested, using each type of crossover, on 6 data files: 50a, 50b, 

60b, 60c, 70a, and 70b. 
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8.5 Summary of results 

The results obtained my be summarized as follows 

8.5.1 Results for Set A 

Maximum Fitness 

 All three versions obtained the same result in 2/3 cases (50a,70a) 

 The GA alone version and the adaptive version reached the same result while the 

non- adaptive GASA obtained a slightly less value in 1/3 cases (60a). 

Average Fitness 

 GA alone obtained the best final average in 3/3 cases (50a, 60a, 70a), although the 

average fitness grew faster in the adaptive version than in the other two versions. 

However, since the adaptive version converged in a less number of generations, it did 

not reach the same final average value as GA alone. See for example average fitness 

chart 60a (figure 8.5) 

 The non-adaptive version performed better than GA alone, in terms of the rate of 

average fitness improvement but not the final average value, in 1/3 cases (70a). 

Evolving Parameters 

 The average SA factor tends towards decreasing in all 3/3 cases (50, 60a, 70a), 

with more fluctuations in 1/3 cases (60a). 

 The average SA probability shows a slight tendency towards increasing at the 

beginning of the run, and then stabilizes throughout the run in 3/3 cases (50a, 60a, 

70a), with more fluctuations noticed in 1/3 cases (70a). 
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8.5.2 Results for Set B 

Maximum Fitness 

 All three versions obtained the same result in 2/3 cases (50b,60b) 

 The adaptive version obtained better result than the other two versions in 1/3 cases 

(70b). 

 The non-adaptive version obtained better result than GA alone in 1/3 cases(70b) 

 

Average Fitness 

 GA alone obtained the best final average in 1/3 cases (50b) 

 Non-adaptive GASA obtained the best final average in 1/3 cases (60b) 

 Adaptive GASA obtained the best final average in 1/3 cases (70b) 

 The average fitness grew much faster in the adaptive version than in the other two 

versions (See for example average fitness chart 70b figure 8.21). However, since the 

adaptive version converged in a less number of generations, it did not reach the same 

final average value as GA alone.  

 The average fitness grew faster in the non-adaptive version than GA alone in 2/3 

cases (50b, 60b). 

Evolving Parameters 

 

 No specific pattern can be observed for the SA factor, In case 50b, it started by 

increasing and then started to decrease. In case 60b, the tendency was towards 

increasing. In case 70b, the tendency was towards slight decreasing. 

 The average SA probability showed a slight tendency towards increasing at the 

beginning of the run and then stabilizes throughout the run in all three cases (50b, 

60b, 70b). 
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8.5.3 Results for Set C 

 

Maximum Fitness 

 The adaptive version obtained the same result as GA alone, but better than non-

adaptive GASA, in 1/4 cases (60c). 

 The adaptive version obtained better result than both GA and non-adaptive GASA 

in    ¾ cases (70c, 90c, 100c). 

 The non-adaptive version obtained better result than GA alone in ¾ cases (70c, 

90c, 100c). 

 GA alone obtained better result than non-adaptive version in ¼ cases (60c). 

Average Fitness 

 
 The adaptive GASA obtained much better average fitness, in terms of both the 

final value and the rate of improvement, in 4/4 cases (60c, 70c, 90c, 100c). 

 The non-adaptive version obtained better results than GA alone, in terms of final 

average fitness, in ¾ cases (70c, 90c, 100c). The rate of average fitness improvement 

was similar for both versions in these three cases. 

 GA alone obtained better result than non-adaptive GASA, in terms of both final 

average fitness value and rate of average fitness improvement, in ¼ cases (60c). 
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Evolving Parameters 

 In ¾ cases (60c, 70c, 100c), the average SA factor started by fluctuation between 

increasing and decreasing at the beginning of the run, and then tended towards 

increasing at the end of the run. 

 In ¼ cases (90c), the average SA factor started by increasing and then started to 

decrease until the end of the run. 

 The average SA probability showed a slight tendency towards increasing at the 

beginning of the run and then stabilized throughout the run in all four cases (60c, 70c, 

90c, 100c). 

8.5.4 Effect of Crossover 

 The cluster modified crossover operator performed better than the other two 

types of crossover in 4/6 cases (60b, 60c, 70a, 70b). It gave the same result as the 

cluster-based crossover operator in 1/6 cases (50a), and the same result as the one-

point crossover operator in 1/6 cases (50b). 

 The cluster-based crossover operator performed better than one-point crossover 

in 3/6 cases (50a, 60c, 70a). 

 One-point crossover performed better than cluster-based crossover in 3/6 cases 

(50b, 60b, 70b). 
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8.6 Experimental Results 

SET A 

Data File 50_a 

Figure 8. 1 Average Fitness Chart 50a 

Figure 8. 2 Maximum Fitness Chart 50a
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Figure 8. 3 Evolving Average SA factor 50a 

Figure 8. 4 Evolving Average SA Probability 50a 
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Data File 60_a 

 

 

Figure 8. 5 Average Fitness Chart 60a 

 

Figure 8. 6 Maximum Fitness Chart 60a 
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Figure 8. 7 Evolving Average SA Factor 60a 

 

Figure 8. 8 Evolving Average SA Probability 60a 
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Data File 70_a 

 

Figure 8. 9 Average Fitness Chart 70a 

 

 

Figure 8. 10 Maximum Fitness Chart 70a 
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Figure 8. 11 Evolving Average SA Factor 70a 
 

 

 

 

Figure 8. 12 Evolving Average SA Probability 70a 
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SET B 

Data File 50_b 

 

Figure 8. 13 Average Fitness Chart 50b 

 

 

 

Figure 8. 14 Maximum Fitness Chart 50b 
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Figure 8. 15 Evolving Average SA Factor 50b 

 

 

 

 

 

Figure 8. 16 Evolving Average SA Probability 50b 
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Data File 60_b 

 

 

 

Figure 8. 17 Average Fitness Chart 60b 

 

 

 

Figure 8. 18 Maximum Fitness Chart 60b 
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Figure 8. 19 Evolving Average SA Factor 60b 

 

 

 

 

Figure 8. 20 Evolving Average SA Probability 60b 
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Data File 70_b 

 

 

Figure 8. 21 Average Fitness Chart 70b 

 

 

Figure 8. 22 Maximum Fitness Chart 70b 
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Figure 8. 23 Evolving Average SA Factor 70b 

 

 

Figure 8. 24 Evolving Average SA probability 70b 
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SET C 

Data File 60_c 

 

Figure 8. 25 Average Fitness Chart 60c 

 

 

 

Figure 8. 26 Maximum Fitness Chart 60c 
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Figure 8. 27 Evolving Average SA Factor 60c 

 

 

 

 

Figure 8. 28 Evolving Average SA Probability 60c 

 

 

 

 

0.9928

0.993

0.9932

0.9934

0.9936

0.9938

0.994

0.9942

0.9944

0.9946

0.9948

0.995

1

4
3

8
5

1
2
7

1
6
9

2
1
1

2
5
3

2
9
5

3
3
7

3
7
9

4
2
1

4
6
3

5
0
5

5
4
7

5
8
9

6
3
1

6
7
3

7
1
5

Generation

A
v
g
 S

A
 F

a
c
to

r

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1

42 83

12
4

16
5

20
6

24
7

28
8

32
9

37
0

41
1

45
2

49
3

53
4

57
5

61
6

65
7

69
8

Generation

A
ve

ra
ge

 S
A

 p
ro

ba
bi

lit
y



 133 

 

 

Data File 70_c 

 

 

 

 

Figure 8. 29 Average Fitness Chart 70c 

 

 

 

Figure 8. 30 Maximum Fitness Chart 70c 
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Figure 8. 31 Evolving Average SA Factor 70c 

 

Figure 8. 32 Evolving Average SA Probability 70c 
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Data File 90_c 

 

Figure 8. 33 Average Fitness Chart 90c 

 

 

Figure 8. 34 Maximum Fitness chart 90c 
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Figure 8. 35 Evolving Average SA Factor 90c 

 

Figure 8. 36 Evolving Average SA Probability 90c 
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Data File 100_c 

Figure 8. 37 Average Fitness Chart 100c 

Figure 8. 38 Maximum Fitness Chart 100c 

0.00E+00

7.00E-17

1.40E-16

2.10E-16

2.80E-16

3.50E-16

4.20E-16

4.90E-16

5.60E-16

6.30E-16

7.00E-16

7.70E-16

8.40E-16

9.10E-16

9.80E-16

1.05E-15

1.12E-15

1.19E-15

1.26E-15
1

7
3

1
45

2
17

2
89

3
61

4
33

5
05

5
77

6
49

7
21

7
93

8
65

9
37

1
00

9

1
08

1

1
15

3

1
22

5

1
29

7

1
36

9

1
44

1

1
51

3

Generation

A
v
er

ag
e
 F

itn
e
ss

Adaptive

GASA

Non

Adaptive

GASA

GA

alone

0.00E+00

1.00E-15

2.00E-15

3.00E-15

4.00E-15

5.00E-15

6.00E-15

7.00E-15

8.00E-15

9.00E-15

Max Fitness

1

Algorithm Type

GASA Adaptive

GASA

GA alone



 138 

 

 

Figure 8. 39 Evolving Average SA Factor 100c 

 

Figure 8. 40 Evolving Average SA Probability 100c 
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Figure 8. 41 Crossover Effect 60c 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. 42 Crossover Effect 70a 
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Figure 8. 43 Crossover Effect 70b 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. 44 Crossover Effect 60b 
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Figure 8. 45 Crossover Effect 50a 

 

 

 

 

 

 

 

 

 

 

Figure 8. 46 Crossover Effect 50b 
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8.7 Discussion 

 The results obtained from comparing the three versions of the algorithm on the 

three data sets indicate that the adaptive GASA algorithm gives the same results as the 

best of the other two versions for sets A and B, while it outperforms the other two 

versions for set C. 

 For sets A and B, adding SA to the basic genetic algorithm did not offer much in 

terms of improving maximum fitness. In fact, in some cases the GA used alone was able 

to obtain better results. There could be several reasons for this observation. First, the 

structure of the BBN data files used in these two sets, which includes a large number of 

cycles, may offer more difficulty for annealing than for GA. Singly connected BBNs, in 

which the graph is also acyclic in the undirected sense, are easy to solve in linear time. 

The complexity generally increases with the number of cycles in the graph. More 

specifically, the complexity increases with the number of nodes that if removed would 

transform the graph to a singly connected graph. This set of nodes is called the node cut-

set. Traditional algorithms are highly affected by the number of nodes in the node cut-set. 

We would expect GA to be affected similarly. However, there is no evidence that this is 

actually the case. Traditional GA is highly affected by gene interaction, called epistasis in 

GA terminology. Gene interaction in the BBN representation corresponds to high 

connectivity between nodes and not to the large number of cycles.  

 The above results, for sets A and B, indicate that having a large number of cycles 

did not affect the genetic algorithm in a way that would be expected. The GA alone was 

able to obtain results better or equal to the other two versions. Adding simulated 

annealing did not help in obtaining better results. In fact, in some cases degraded 
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performance.  Adding adaptation to annealing helped to remedy the defects of annealing, 

and also helped a great deal in improving annealing performance in terms of improving 

average fitness rapidly. It did not help though in improving the final result (maximum 

fitness). This may indicate that the GA alone in these two sets performed so well that 

annealing as well as adaptation did not have much to offer. 

 The second possible reason that the non-adaptive GASA did not perform well in 

these two sets is the annealing parameters. The search space and the population size are 

very large in these problems. In addition, the range of fitness values changes very rapidly 

from one generation to another. All these factors make it difficult to find optimal 

annealing parameters that work well for all individuals in the population and all stages of 

the search process. It is inevitable that the chosen annealing parameters will not lead to 

improvement for some individuals and some particular situations of the search. In fact, 

annealing may degrade performance in these cases. 

 This observation is supported by noticing the improvement provided by adding 

adaptation to the algorithm. Besides being much easier to adjust, the adaptive parameters 

offered a great help in improving the performance of annealing. This improvement is 

clear in average fitness and also in maximum fitness to a lesser extent. 

 The results obtained for set C indicate that adding annealing to the basic genetic 

algorithm helped in obtaining better final results. Adding adaptation in this case had a 

very impressive effect in terms of improving both average and maximum fitness. This is 

particularly true for the data files with very large number of nodes (70c, 90c, 100c). 

 This behavior is more or less what we had expected when we started the research. 

Adding annealing would improve the quality of the search, and adding adaptation would 
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help even better. The fact that the performance met our expectations only in this set 

indicates that this particular data set offers a challenge for the GA alone version. The 

genetic algorithm alone was not able to reach results as good as the GA-SA hybrid 

algorithm, especially the adaptive version of it. 

 Data set C has two distinctive characteristics. First, the files in this set have a very 

large number of nodes. Second, each node has a very large number of parents. Which of 

these two features represented a difficulty for the GA alone? 

 Observing the results obtained for the first data file in this set (60c), we can see 

that both GA alone and adaptive GASA versions obtained the same result, while the non-

adaptive GASA obtained an inferior result. This indicates that this data file did not offer 

much difficulty for GA alone similar to the case for sets A and B.  This happened despite 

the fact that each node has a very large number of parents. 

 The other three data files (70c, 90c, 100c) are in fact the ones that were very 

difficult for the genetic algorithm alone. Adding annealing helped to improve the quality 

of the solution, but adding adaptation was really the magic spell that resulted in a great 

improvement in terms of both average and maximum fitness. 

 We can conclude from these results that, after all, the factor that actually affected 

the performance of GA is the number of nodes in the network. Of course, this is not 

surprising, since the MAP problem is NP-hard. What is surprising is that a large number 

of nodes in our case did not mean 30, 40, 50 or even 60 nodes, it meant something like 

70, 80, 90 and 100 nodes. This number of nodes far exceeds the number of nodes tested 

in any previous research like (Rojas-Guzman & Kramer, 1993), (Abdelbar & Hedetniemi, 

1997), and (Abdelbar & Attia, 1999). 
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 The result obtained by Abdelbar & Attia (1999) indicated that the hybrid GASA 

algorithm performed better than GA alone when tested on a 50-node network. While the 

results obtained on 30-node and 40-node networks did not show significant improvement. 

Although no clear reasons were given for obtaining these results, we can now see that 

they do not contradict with the results obtained in this research. The fact that our results 

favored GA alone in many cases might be due to the improvements that had been added 

to the basic GA-alone algorithm in this research. We have given GA alone all the tools 

needed for optimal performance like large population size, an improved crossover 

operator, and a tool to increase diversity and avoid premature convergence. 

 It is very essential, however, to make an important distinction. When we talk 

about GA performance here we do not mean its performance in terms of obtaining the 

optimal result. All what concerns us here is the result obtained in comparison with the 

hybrid and adaptive hybrid techniques. Whether the GA is able to obtain the optimal 

result is still an open question.  

 We can thus summarize our observations by saying that for smaller networks the 

GA alone can do the required job of obtaining good solutions in a small amount of time. 

Adding annealing or adaptation in this case does not have much to offer, especially with 

the added processing time that they impose on the algorithm. On the other hand, 

obtaining good solutions for larger networks is a difficult task for GA alone. Adding 

annealing in this case may help in improving the quality of the solution. However, 

simulated annealing itself suffers from the problem of parameter adjustment. The solution 

that will alleviate this problem and at the same time improves the quality of the solution 

further is to add adaptation to the annealing parameters. 



147 

 Before we finish this discussion it is important to provide some analysis for the 

behavior of the adaptive annealing parameters. For sets A and B the average SA factor in 

general tended towards decreasing in most cases. This may indicate that slower annealing 

in this case did not help in improving the solutions. For set C the tendency was towards 

increasing especially at the end of the run, which means that as we approach 

convergence, slower annealing gave better results, possibly because more fine search is 

needed. An exception was the case 90c in which the average SA factor started to decrease 

and continued to do so until the end of the run. One possible reason is that the process of 

obtaining good solutions was slow at the beginning of the run (see average fitness chart 

90c figure 8.33). Faster annealing at the end of the run was sufficient to obtain an 

improvement of the relatively poor quality solutions obtained so far. 

 The average SA probability in all cases did not show a significant change. This 

may indicate that adaptation in this case did not have much to offer. Having a fixed 

annealing probability may achieve similar results. 

 It is also important to remember that adaptation is not restricted to these two 

parameters. The initial temperature value also changed adaptively for each individual 

solution, as explained in chapter 7. This of course also contributed to the improvement 

achieved in the adaptive version. Calculating the initial temperature value heuristically 

for each individual produces smaller initial temperature values that help to protect good 

solutions from disruption. Although the side effect of this is reducing diversity in the 

population, the task of maintaining diversity is left to the mutation and crossover 

operators of GA. Maintaining a balance between disruption and diversity is very critical 

for the performance of the algorithm. 
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 Finally, the comparison of the different crossover operators was inconclusive. In 

some cases the cluster-based crossover operator performed better than the one point 

crossover operator. This, however, was not always the case. One point crossover 

performed better in set B. One possible reason is that the cluster limit may need 

adjustment for each individual case. The modified cluster based crossover operator 

performed better than both operators in most cases, which indicates the importance of 

increasing diversity in the population. 
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Chapter 9 

9 Conclusions and Future Research 
 

 

 In this research we examined the potential of adding adaptation to a hybrid 

genetic-annealing approach to solving the MAP problem on Bayesian Belief Networks. 

In this context, annealing was used as a special case of GA mutation operator, which is 

intended to improve the quality of the solutions obtained by the basic genetic algorithm. 

Adaptation was introduced with the aim of facilitating the task of parameter adjustment 

for annealing, in addition to guiding the search towards better solutions. 

 The technique was tested by comparing three versions of the algorithm, GA alone, 

non-adaptive GASA and adaptive GASA, on a different BBNs with different structures. 

The results obtained indicate that the factor that highly affects solution quality is the 

number of nodes in the network. For smaller size networks GA alone can obtain good 

solutions in a small amount of time. Adding annealing does not help in obtaining better 

solutions in this case. Adding adaptation may speed up the rate of average fitness 

improvement, but does not help in obtaining better final results. 

 On the other hand, networks with a very large number of nodes represent a 

difficulty for GA alone. Adding annealing helps to improve the quality of the solution 

obtained. Adding adaptation provides a very significant improvement in terms of both 

average and maximum fitness. 

 It is thus clear that introducing adaptation has a great potential. It has offered a 

remedy for the defects of having fixed annealing schedule for all individuals in the 

population and all stages of the search. Its effect is more profound for difficult problems 

that GA alone cannot do much about. 
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 Many areas in the research still need further investigation as well as improvement. 

First, processing time is still a major drawback for the hybrid GASA algorithm. One 

possible solution is to optimize the calculations used in the objective function of the 

solution, or to calculate the objective value for a solution only once. It is also possible to 

limit the maximum number of iterations performed by annealing without affecting the 

quality of the solution. 

 Second, we still need to know how far the solutions obtained are from the optimal 

solution. Although this task will not be easy, since it requires performing an exhaustive 

search for all these large networks, it will help to judge whether the solutions obtained are 

fair enough. 

 The factors that affect the performance of the GA still need further investigation. 

Although in our research the greatest effect was to the number of nodes in the network, 

there is still no sufficient evidence to eliminate the effect of other factors. Specifically, 

the effect the number of nodes in the node cut-set needs further testing. 

 The effect of problem specific crossover operators is still not clear. We need to 

test whether the extra cost of performing such operators is justified.  

 Finally, it remains to test the adaptive algorithm on other problem types. This will 

help in judging the robustness of the algorithm, and in deciding whether to adopt and 

apply it to other difficult combinatorial optimization problems. 
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APPENDIX A:  Source Code 
 

Source Code for GA alone 

The declaration file “declaration.h” 

#ifndef DECLARATION_H 

#define DECLARATION_H 

const int MAXNODES = 70; 

const int   MAXPARENTS= 15; 

const int   MAXPROB  = 1<<MAXPARENTS; 

#define     NETFILE "60_a_nod.net" 

#define     SCOREFILE "scorefile_60a.out" 

#define RESFILE "myres_60a.out" 

#define     TRUE  1 

#define     FALSE 0 

 

typedef int ParentArray[MAXPARENTS]; 

typedef float ProbArray[MAXPROB]; 

typedef struct NodeType 

{ 

 int NumParents; 

 ParentArray Parents; 

 ProbArray   Prob; 

}; 

typedef NodeType BeliefNetType[MAXNODES]; 

 

typedef int CostArray [MAXNODES][MAXNODES]; 

CostArray Cost; 

 

 

int PopSize=1000; 

int GenToConverge=500 // declare convergence after this number of 

generations 

float ProbMutation = 0.02; 

float ProbCrossover=0.99; 

float PercentReplace=0.2; //replace 20% of population each generation 

float Cluster_Limit =1; 

 

int   GenNum=0; 

int   Infinity; 

float FitArray[1000]; 

 

#endif 
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The main program for the GA alone version “GA.cpp” 

#include <stdio.h> 

#include "iostream.h" 

#include <fstream.h> 

#include <stdlib.h> 

#include <math.h> 

#include <time.h> 

#include"ga.h" 

#include"GARealGe.h" 

#include"GARealGe.cpp" 

#include "declaration.h" 

 

int NumNodes; 

 

BeliefNetType Net;  

void ReadNet(); 

void FindCost(); 

void FindShortPaths(); 

float Objective(GAGenome&); 

void MyInitializer(GAGenome&); 

int FlipMutator(GAGenome& ,float ); 

int  MyCrossover(const  GAGenome& , const GAGenome& , GAGenome* , 

GAGenome* ); 

GAAlleleSetArray<float> allelset; 

ofstream ScoreFile(SCOREFILE); 

 

int main() 

{   

 unsigned int seed=5; 

 GARandomSeed(seed); 

 ReadNet(); 

 FindCost(); 

 FindShortPaths(); 

 

 for (int k=0; k<NumNodes; k++)  

   allelset.add(FALSE,TRUE,1);   

 

  //define the genome as a 1d array of real with the values 

  // of genes derived from the allelset array 

  GA1DArrayAlleleGenome<float> genome(allelset,Objective); 

   

  //define the GA methods and parameters 

  genome.initializer(MyInitializer); 

  genome.mutator(FlipMutator); 

  genome.crossover(MyCrossover); 

  GASteadyStateGA ga(genome); 

  ga.populationSize(PopSize)  ; 

  ga.nConvergence(GenToConverge); 

ga.terminator(GAGeneticAlgorithm::TerminateUponConvergence)

; 

  ga.pMutation (ProbMutation); 

  ga.pCrossover(ProbCrossover); 

  ga.pReplacement(PercentReplace); 
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  //get current CPU time 

  clock_t CPU_time; 

  CPU_time=clock(); 

ScoreFile<<"generation \t mean \t max \t min \t deviation 

\t diversity \n"; 

  ga.scoreFilename(SCOREFILE); 

ga.scoreFrequency(1); //keep the scores of every 

//generation 

  ga.flushFrequency(1); //flush scores every generation 

  ga.selectScores(GAStatistics::AllScores); 

  ga.initialize(); 

  while (!ga.done()) 

  {  

   GenNum= ga.statistics().generation(); 

 

   GAPopulation current_pop = ga.population(); 

 

   for (int num1=0;num1<PopSize;num1++) 

 

   {  

FitArray[num1]=Objective(current_pop.individual

(num1)); 

   } 

   ga.step(); 

 

  } 

  ga.flushScores(); 

 

  CPU_time=clock() - CPU_time; 

cout<<" \n\n THE GA FOUND : " 

<<ga.statistics().bestIndividual() << "\n"; 

  cout<<ga.statistics().bestIndividual().score() << "\n\n"; 

cout<<"Processing Time=  "<<(CPU_time/1000)/60<<"  mins\n"; 

 

  //write results to file 

  ofstream ResultFile; 

  ResultFile.open(RESFILE,ios::app);//append the results 

  ResultFile<<"PopSize   = "<<PopSize<<"\t"; 

  ResultFile<<"NumGenerations= "<<GenNum+1<<"\t"; 

  ResultFile<<"ProbMutation= "<<ProbMutation<<"\t";  

  ResultFile<<"ProbCrossover= "<<ProbCrossover<<"\n"; 

  ResultFile<<"ClusterLimit= "<<Cluster_Limit<<"\t"; 

  ResultFile<<"GenToConverge= "<<GenToConverge<<"\t"; 

ResultFile<<"Bestindividual = 

"<<ga.statistics().bestIndividual()<<"\n";  

ResultFile<<"Processing Time=  "<<(CPU_time/1000)/60<<"  

mins\n"; 

ResultFile<<"BestScore  = 

"<<ga.statistics().bestIndividual().score()<<"\n";  

  

 

 ScoreFile.close(); 

 

 return 0; 

} 

/////////////////////////////////////////////////// 
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GABoolean MyTerminator(GAGeneticAlgorithm & ga) 

{ 

  if(ga.statistics().current(GAStatistics::Maximum) == 

     ga.statistics().current(GAStatistics::Minimum)  ) 

    return gaTrue; 

  else 

    return gaFalse; 

 

} 

/////////////////////////////////////////////// 

void MyInitializer(GAGenome& g) 

{ 

 

 GA1DArrayAlleleGenome<float>& genome 

=(GA1DArrayAlleleGenome<float>&)g; 

 

 for (int i=0;i<NumNodes;i++) 

  genome.gene(i, float(GARandomInt(0,1))); 

 

} 

//////////////////////////////////////////////////// 

void ReadNet() 

{ 

ifstream InFile(NETFILE); 

if (!InFile) 

    { 

  cout<<"Could Not Read Input File"<<NETFILE<<"\n"; 

  exit(1); 

    } 

InFile>>NumNodes; //read number of nodes 

for (int node=0; node<NumNodes; node++) 

{ 

 InFile>>Net[node].NumParents; // read number of parents for this 

node 

 for (int p=0; p<Net[node].NumParents;p++) // read parent numbers 

for this node 

 { 

  InFile>>Net[node].Parents[p]; 

  Net[node].Parents[p]--; // decrement parent number to start 

from 0 instead of 1 

 }//end for p 

 int probs = (1<< Net[node].NumParents) ; // calculate number of 

entries in prob table 

  for (int pr=0; pr<probs; pr++)  //read probabilities 

     InFile>> Net[node].Prob[pr];  

     

} //end for node 

InFile.close(); 

 

}// end ReadNet 

 

 

 

/////////////////////////////////////////////////// 
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void FindCost() 

{ 

 

Infinity=NumNodes;  

//initialize Cost Array 

for(int i=0;i<MAXNODES;i++) 

 for(int j=0;j<MAXNODES;j++) 

 { 

  if(i==j) Cost[i][j]=0; 

  else Cost[i][j]=Infinity; 

 } 

 

 

for (int node=0;node<NumNodes;node++) 

 { 

       

  for(int p=0;p<Net[node].NumParents;p++) 

  { 

 

   int this_parent =Net[node].Parents[p]; 

         Cost[this_parent][node]=1; 

       

  } 

 } 

} 

 

/////////////////////////////////////////////////// 

int min (int val1, int val2) 

{ 

 int minimum; 

 if(val1<=val2) minimum=val1; 

 else     minimum=val2;  

return minimum;   

} 

/////////////////////////////////////////////////// 

 

void FindShortPaths() //find the shortest path between all nodes in the 

net  

{ 

 

for (int k=0;k<NumNodes;k++) 

 for (int i=0;i<NumNodes;i++) 

  for (int j=0;j<NumNodes;j++) 

  Cost[i][j]=min(Cost[i][j],Cost[i][k]+Cost[k][j]); 

 

} 

 

////////////////////////////////////////////////// 

////////////////////////////////////////////////// 

 

 

 

float Objective(GAGenome& g) //calculate the objective value of the 

genome 

{ 

 float score=1.0; 
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GA1DArrayAlleleGenome<float> genome =(GA1DArrayAlleleGenome<float>&) g; 

 

for (int node=0; node<NumNodes;node++) 

 {    

     int power=1; 

  int index=0; 

  int node_truth = (int) genome.gene(node); 

  for(int p= Net[node].NumParents -1; p>=0 ; p--) 

  { 

            int parent_num= Net[node].Parents[p]; 

   int parent_truth = int (genome.gene(parent_num)); 

    index = index + parent_truth*power; 

    power = power*2; 

  }//end for p 

     

  if (node_truth== TRUE) 

   score = score*Net[node].Prob[index]; 

  else score = score* (1- Net[node].Prob[index]); 

 }//end for node 

 

 return score; 

} 

 

 

 

//////////////////////////////////////////////////// 

 

//////////////////////////////////////////////////// 

 

int FlipMutator(GAGenome& g, float pmut) 

{ 

 

 GA1DArrayAlleleGenome<float>& child 

=(GA1DArrayAlleleGenome<float>&)g; 

 if (pmut<=0.0) return(0); 

 int nMut=0; 

 for (int i=0; i<NumNodes; i++) 

 { 

  if (GAFlipCoin(pmut)) 

  { 

    child.gene(i, ((child.gene(i) == 0) ? 1 : 0)); 

    nMut++; 

  } 

 

 } 

  

return(nMut); 

} 

 

//////////////////////////////////////////////// 

 

int  MyCrossover(const  GAGenome& g1, const GAGenome& g2, GAGenome* c1, 

GAGenome* c2) 

{ 

 

GA1DArrayAlleleGenome<float>& mom =(GA1DArrayAlleleGenome<float>&)g1; 
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GA1DArrayAlleleGenome<float>&dad=(GA1DArrayAlleleGenome<flo)g2; 

GA1DArrayAlleleGenome<float>& 

child1=(GA1DArrayAlleleGenome<float>&)*c1; 

 GA1DArrayAlleleGenome<float>& child2 

=(GA1DArrayAlleleGenome<float>&)*c2; 

//select a random root 

int root=GARandomInt(0,NumNodes-1); 

child1.copy(mom); //child1 is a copy of parent1 

child2.copy(dad); //child2 is a copy of parent2 

// now exchange the cluster the random root betweeen 

// the children 

 

 

for (int i=0;i<NumNodes;i++) 

{ 

 if (Cost[root][i]<=Cluster_Limit) 

  { 

   child1.gene(i,dad.gene(i)); 

   child2.gene(i,mom.gene(i)); 

  }//end if 

 

}//for  

 

// if the children have duplicates in the population , force a change 

in them 

float fit1=Objective(child1); 

float fit2=Objective(child2); 

 

for (int count=0;count<PopSize;count++) 

{ 

 if (fit1==FitArray[count]) 

  FlipMutator(child1,ProbMutation*2); 

 if (fit2==FitArray[count]) 

  FlipMutator(child2,ProbMutation*2); 

}//for  

 

 return 1; 

}  

 

 

///////////////////////////////////////////////// 

 

//////////////////////////////////////////////// 
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Source Code for Non-Adaptive GASA 

 

Declaration File “declaration.h” 

#ifndef DECLARATION_H 

#define DECLARATION_H 

const int MAXNODES = 70; 

const int   MAXPARENTS= 15; 

const int   MAXPROB  = 1<<MAXPARENTS; 

#define     NETFILE "60_a_nod.net" 

#define     SCOREFILE "scorefile_60a.out" 

#define RESFILE "myres_60a.out" 

#define     TRUE  1 

#define     FALSE 0 

#define     MAXSTAGNATION   500 // no. Of iterations required to  

declare stagnation in SA 

#define PROB_SA 0.005 // probability of   performing SA 

#define  SAFACTOR      0.993 // reduction factor for SA 

#define      INIT_TEMP 0.00005 // initial temperature for SA 

typedef int ParentArray[MAXPARENTS]; 

typedef float ProbArray[MAXPROB]; 

typedef struct NodeType 

{ 

 int NumParents; 

 ParentArray Parents; 

 ProbArray   Prob; 

}; 

typedef NodeType BeliefNetType[MAXNODES]; 

typedef CostArray [MAXNODES][MAXNODES]; 

typedef int DescendArray[MAXNODES][MAXNODES] ;  

CostArray Cost; 

CostArray Children; 

int Child_Count[MAXNODES]; 

int Processed[MAXNODES]; 

DescendArray Descend; 

DescendArray GrandParents; 

int PopSize=1000; 

int GenToConverge=500; // to converge look back this number of 

generations 

float ProbMutation = 0.02; 

float ProbCrossover=0.99; 

float PercentReplace=0.2; //replace 20% of population each generation 

float Cluster_Limit =1; 

float Psam= 0.01; // probability of flipping a bit when creating a 

random move during SA 

int   GenNum=0; 

int   Infinity; 

int NMut; 

float FitArray [1000]; 

#endif 
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The main program for the GASA non adaptive version “GASA.cpp” 

#include <stdio.h> 

#include "iostream.h" 

#include <fstream.h> 

#include <stdlib.h> 

#include <math.h> 

#include <time.h> 

#include"ga.h" 

#include"GARealGe.h" 

#include"GARealGe.cpp" 

#include "declaration.h" 

int NumNodes; 

 

BeliefNetType Net;  

void ReadNet(); 

void FindCost(); 

void FindShortPaths(); 

float Objective(GAGenome&); 

void MyInitializer(GAGenome&); 

int MyMutation(GAGenome& ,float ); 

int  MyCrossover(const  GAGenome& , const GAGenome& , GAGenome* , 

GAGenome* ); 

 

 GAAlleleSetArray<float> allelset; 

 ofstream ScoreFile(SCOREFILE); 

 

 

int main() 

{   

 unsigned int seed=5; 

 GARandomSeed(seed); 

 ReadNet(); 

 FindCost(); 

 FindShortPaths(); 

  

 

  for (int k=0; k<NumNodes; k++) 

   allelset.add(FALSE,TRUE,1);  

  //define the genome as a 1d array of real with the values 

  // of genes derived from the allelset array 

  GA1DArrayAlleleGenome<float> genome(allelset,Objective); 

 

  genome.initializer(MyInitializer); 

  genome.mutator(MyMutation); 

  genome.crossover(MyCrossover); 

  GASteadyStateGA ga(genome); 

  ga.populationSize(PopSize)  ; 

 

  //stop when the score of the best genome has 

  //not changed for the specified number of generations 

  ga.nConvergence(GenToConverge); 

   

 ga.terminator(GAGeneticAlgorithm::TerminateUponConvergence); 

  ga.pMutation (ProbMutation); 
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  ga.pCrossover(ProbCrossover); 

  ga.pReplacement(PercentReplace); 

 

 

  //get current CPU time 

  clock_t CPU_time; 

  CPU_time=clock(); 

  ScoreFile<<"generation \t mean \t max \t min \t deviation 

\t diversity \n"; 

 

  ga.scoreFilename(SCOREFILE); 

  ga.scoreFrequency(1); //keep the scores of every generation 

  ga.flushFrequency(1); //flush scores every generation 

  ga.selectScores(GAStatistics::AllScores); 

  ga.initialize(seed); 

  //ga.evolve(); //start processing 

  while (!ga.done()) 

  {  

    GenNum= ga.statistics().generation(); 

   GAPopulation current_pop = ga.population(); 

 

   for (int num1=0;num1<PopSize;num1++) 

 

   {  

   

 FitArray[num1]=Objective(current_pop.individual(num1)); 

   } 

    ga.step(); 

 

  } 

  ga.flushScores(); 

 

  CPU_time=clock() - CPU_time; 

  cout<<" \n\n THE GA FOUND : " 

<<ga.statistics().bestIndividual() << "\n"; 

  cout<<ga.statistics().bestIndividual().score() << "\n\n"; 

  cout<<"Processing Time=  "<<(CPU_time/1000)/60<<"  mins\n"; 

 

  //write results to file 

  ofstream ResultFile; 

  ResultFile.open(RESFILE,ios::app);//append the results 

  ResultFile<<"PopSize   = "<<PopSize<<"\t"; 

  ResultFile<<"InitTemp= "<<INIT_TEMP<<"\t";  

  ResultFile<<"NumGenerations= "<<GenNum+1<<"\t"; 

  ResultFile<<"ProbMutation= "<<ProbMutation<<"\t";  

  ResultFile<<"ProbCrossover= "<<ProbCrossover<<"\n"; 

  ResultFile<<"MaxStagnation= "<<MAXSTAGNATION<<"\t"; 

  ResultFile<<"ProbSA= "<<PROB_SA<<"\t"; 

  ResultFile<<"SAFactor= "<<SAFACTOR<<"\n"; 

  ResultFile<<"ClusterLimit= "<<Cluster_Limit<<"\t"; 

  ResultFile<<"GenToConverge= "<<GenToConverge<<"\t"; 

  ResultFile<<"Psam= "<<Psam<<"\n"; 

ResultFile<<"Bestindividual = 

"<<ga.statistics().bestIndividual()<<"\n";  

ResultFile<<"Processing Time=  "<<(CPU_time/1000)/60<<"  

mins\n"; 
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ResultFile<<"BestScore  = 

"<<ga.statistics().bestIndividual().score()<<"\n";  

  

  ScoreFile.close(); 

 return 0; 

} 

/////////////////////////////////////////////////// 

void MyInitializer(GAGenome& g) 

{ 

 

 GA1DArrayAlleleGenome<float>& genome 

=(GA1DArrayAlleleGenome<float>&)g; 

 

 for (int i=0;i<NumNodes;i++) 

  genome.gene(i, float(GARandomInt(0,1))); 

 

} 

 

///////////////////////////////////////////////////// 

void ReadNet() 

{ 

ifstream InFile(NETFILE); 

if (!InFile) 

    { 

  cout<<"Could Not Read Input File"<<NETFILE<<"\n"; 

  exit(1); 

    } 

InFile>>NumNodes; //read number of nodes 

for (int node=0; node<NumNodes; node++) 

{ 

 InFile>>Net[node].NumParents; // read number of parents for this 

node 

 for (int p=0; p<Net[node].NumParents;p++) // read parent numbers 

for this node 

 { 

  InFile>>Net[node].Parents[p]; 

  Net[node].Parents[p]--; // decrement parent number to start 

from 0 instead of 1 

 }//end for p 

 int probs = (1<< Net[node].NumParents) ; // calculate number of 

entries in prob table 

  for (int pr=0; pr<probs; pr++)  //read probabilities 

     InFile>> Net[node].Prob[pr];  

     

} //end for node 

InFile.close(); 

 

}// end ReadNet 

 

 

 

/////////////////////////////////////////////////// 

 

void FindCost() 

{ 

 

Infinity=NumNodes;  
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//initialize Cost Array 

for(int i=0;i<MAXNODES;i++) 

 for(int j=0;j<MAXNODES;j++) 

 { 

  if(i==j) Cost[i][j]=0; 

  else Cost[i][j]=Infinity; 

 } 

 

 

for (int node=0;node<NumNodes;node++) 

 { 

       

  for(int p=0;p<Net[node].NumParents;p++) 

  { 

 

   int this_parent =Net[node].Parents[p]; 

         Cost[this_parent][node]=1; 

        

  } 

 } 

 

} 

 

/////////////////////////////////////////////////// 

int min (int val1, int val2) 

{ 

 int minimum; 

 if(val1<=val2) minimum=val1; 

 else     minimum=val2;  

return minimum;   

} 

/////////////////////////////////////////////////// 

 

void FindShortPaths() 

{ 

 

for (int k=0;k<NumNodes;k++) 

 for (int i=0;i<NumNodes;i++) 

  for (int j=0;j<NumNodes;j++) 

  Cost[i][j]=min(Cost[i][j],Cost[i][k]+Cost[k][j]); 

 

} 

 

////////////////////////////////////////////////// 

void FindChildren() 

{ 

 

for(int i=0;i<MAXNODES;i++) 

 for(int j=0;j<MAXNODES;j++) 

 Children[i][j]=-1; 

 

 

for( i=0;i<MAXNODES;i++) 

Child_Count[i]=0; 

 

 

for (int node=0;node<NumNodes;node++) 
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 { 

   

  for(int p=0;p<Net[node].NumParents;p++) 

  { 

 

   int this_parent =Net[node].Parents[p]; 

   int location= Child_Count[this_parent]; 

 

         Children[this_parent][location]=node; 

          Child_Count[this_parent]++; 

  } 

 } 

} 

 

////////////////////////////////////////////////// 

 

float Objective(GAGenome& g) 

{ 

 float score=1.0; 

 

GA1DArrayAlleleGenome<float> genome =(GA1DArrayAlleleGenome<float>&) g; 

 

for (int node=0; node<NumNodes;node++) 

 {    

     int power=1; 

  int index=0; 

  int node_truth = (int) genome.gene(node); 

  for(int p= Net[node].NumParents -1; p>=0 ; p--) 

  { 

            int parent_num= Net[node].Parents[p]; 

   int parent_truth = int (genome.gene(parent_num)); 

    index = index + parent_truth*power; 

    power = power*2; 

  }//end for p 

     

  if (node_truth== TRUE) 

   score = score*Net[node].Prob[index]; 

  else score = score* (1- Net[node].Prob[index]); 

 }//end for node 

 

 return score; 

} 

//////////////////////////////////////////////////// 

void FlipMutator(GAGenome& g, float pmut) 

{ //regular GA mutation 

 

 GA1DArrayAlleleGenome<float>& child 

=(GA1DArrayAlleleGenome<float>&)g; 

 if (pmut>0.0)  

 { 

 for (int i=0; i<NumNodes; i++) 

 { 

  if (GAFlipCoin(pmut)) 

   

    child.gene(i, ((child.gene(i) == 0) ? 1 : 0)); 
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 }//for 

  

}//if 

}//flipmutator 

 

//////////////////////////////////////////////////// 

 

int MyMutation(GAGenome& g,float pmut) 

{  // mutation diverted to SA if needed 

 

 

 cout<<"\n\n"<<GenNum<<"\n\n"; 

GA1DArrayAlleleGenome<float>& genome 

=(GA1DArrayAlleleGenome<float>&)g; 

 GA1DArrayAlleleGenome<float> newgenome(allelset,Objective); 

 //GA1DArrayAlleleGenome<float> bestgenome(allelset,Objective); 

 float oldfitness; 

 float newfitness; 

 //float bestscore; 

 

  if(GAFlipCoin(PROB_SA)) 

 { 

  

 float T0 = INIT_TEMP; 

 float factor  = SAFACTOR; 

 float T= T0; 

 int stagnation=0; 

  while( (stagnation< MAXSTAGNATION)) 

  { 

   stagnation++; 

   newgenome.copy(genome); 

   FlipMutator(newgenome,Psam); 

   oldfitness= Objective(genome); 

   newfitness= Objective(newgenome); 

   if (newfitness<=oldfitness) 

   { 

      

float paccept= exp (- (oldfitness-newfitness)/T); 

   paccept= paccept/(1.0+paccept); 

   if (GAFlipCoin(paccept)) 

    { 

        

    genome.copy(newgenome); 

    if (newfitness!=oldfitness) 

     stagnation=0;   

        

    } //inner if 

     }// outer if 

    else {  

      genome.copy(newgenome);  

      stagnation=0; 

         } //end else 

       

  T= T*factor; 

 } // end while 

  

 } // end if 
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else // if SA not performed 

 FlipMutator(genome,pmut); 

return 1; 

} 

 

 

//////////////////////////////////////////////// 

 

int  MyCrossover(const  GAGenome& g1, const GAGenome& g2, GAGenome* c1, 

GAGenome* c2) 

{ 

 

 GA1DArrayAlleleGenome<float>& mom 

=(GA1DArrayAlleleGenome<float>&)g1; 

 GA1DArrayAlleleGenome<float>& dad 

=(GA1DArrayAlleleGenome<float>&)g2; 

 GA1DArrayAlleleGenome<float>& child1 

=(GA1DArrayAlleleGenome<float>&)*c1; 

 GA1DArrayAlleleGenome<float>& child2 

=(GA1DArrayAlleleGenome<float>&)*c2; 

//select a random root 

int root=GARandomInt(0,NumNodes-1); 

child1.copy(mom); //child1 is a copy of parent1 

child2.copy(dad); //child2 is a copy of parent2 

// now exchange the decendents of the random root betweeen 

// the children 

 

 

for (int i=0;i<NumNodes;i++) 

{ 

       

 if (Cost[root][i]<Cluster_Limit) 

  { 

   child1.gene(i,dad.gene(i)); 

   child2.gene(i,mom.gene(i)); 

  }//end if 

 

}//for  

   

//if children have duplicates, force a change in them 

float fit1=Objective(child1); 

float fit2=Objective(child2); 

for (int count=0;count<PopSize;count++) 

{ 

 if (fit1==FitArray[count]) 

  FlipMutator(child1,ProbMutation*2); 

 if (fit2==FitArray[count]) 

  FlipMutator(child2,ProbMutation*2); 

}//for 

 

 

 return 1; 

}  

 

 

///////////////////////////////////////////////// 

 



172 

 

Source Code for Adaptive GASA 

 

Declaration File “declaration.h” 

#ifndef DECLARATION_H 

#define DECLARATION_H 

const int MAXNODES = 70; 

const int   MAXPARENTS= 15; 

const int   MAXPROB  = 1<<MAXPARENTS; 

#define     NETFILE "60_a_nod.net" 

#define     STATISFILE "statis_60a.out" 

#define RESFILE "myres_60a.out" 

#define SCOREFILE "scorefile_60a.out" 

#define     TRUE  1 

#define     FALSE 0 

#define MINFACTOR 0.990 //min SA factor 

#define     MAXFACTOR 0.999 //max SA factor 

#define     MINSAPROB   0.005 //min SA probability 

#define     MAXSAPROB   0.05  //max SA probability  

#define     MAXSTAGNATION 500 // no. Of iterations needed to declare            

stagnation 

#define PERCENT_CHANGE  0.2 //max change in SA parameters during          

mutation. 

typedef int ParentArray[MAXPARENTS]; 

typedef float ProbArray[MAXPROB]; 

typedef struct NodeType 

{ 

 int NumParents; 

 ParentArray Parents; 

 ProbArray   Prob; 

}; 

typedef NodeType BeliefNetType[MAXNODES]; 

typedef int CostArray [MAXNODES][MAXNODES]; 

CostArray Cost; 

int PopSize=1000; 

int GenToConverge=500;  

float ProbMutation = 0.02; 

float ProbCrossover=0.99; 

float PercentReplace=0.2;  

float Cluster_Limit =1; 

float ProbSACross=0.1; //probability of performing crossover of SA 

parameters 

float ProbSAMut= 0.05; // probability of performing mutation of SA 

parameters. 

float Psam=0.01; // probability of flipping a bit when creating a 

random move for SA 

float InitProb=0.01;// initial probability of acceptance used to 

calculate T0 for SA 

int   GenNum=0; 

int   Infinity; 

float FitArray[1000]; 

#endif 
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The main program for the GASA adaptive version “GASA_adpt.cpp” 

 

#include <stdio.h> 

#include "iostream.h" 

#include <fstream.h> 

#include <stdlib.h> 

#include <math.h> 

#include <time.h> 

 

#include"ga.h" 

#include"GARealGe.h" 

#include"GARealGe.cpp" 

 

#include "declaration.h" 

 

int NumNodes; 

 

BeliefNetType Net;  

void ReadNet(); 

void FindCost(); 

void FindShortPaths(); 

float Objective(GAGenome&); 

void MyInitializer(GAGenome&); 

int MyMutation(GAGenome& ,float ); 

int  MyCrossover(const  GAGenome& , const GAGenome& , GAGenome* , 

GAGenome* ); 

 

 GAAlleleSetArray<float> allelset; 

 ofstream ScoreFile(SCOREFILE); 

 

int main() 

{   

 unsigned int seed=5; 

 GARandomSeed(seed); 

 ReadNet(); 

 FindCost(); 

 FindShortPaths(); 

 float results [10000][4]; 

  

 for (int k=0; k<NumNodes; k++) 

allelset.add(FALSE,TRUE,1); //the BBN part has binary 

values  only 

allelset.add(MINFACTOR,MAXFACTOR);     // range of  cooling 

factor 

  allelset.add(MINSAPROB,MAXSAPROB); // range of Prob of SA  

 

  //define the genome as a 1d array of real with the values 

  // of genes derived from the allelset array 

  GA1DArrayAlleleGenome<float> genome(allelset,Objective); 

   

  genome.initializer(MyInitializer); 

  genome.mutator(MyMutation); 

  genome.crossover(MyCrossover); 

  GASteadyStateGA ga(genome); 
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  ga.populationSize(PopSize) ; 

 ga.nConvergence(GenToConverge); 

ga.terminator(GAGeneticAlgorithm::TerminateUponConvergence)

; 

  ga.pMutation (ProbMutation); 

  ga.pCrossover(ProbCrossover); 

  ga.pReplacement(PercentReplace); 

  ScoreFile<<"generation \t mean \t max \t min\n"; 

  ga.scoreFilename(SCOREFILE); 

ga.scoreFrequency(1); //keep the scores of every generation 

  ga.flushFrequency(1); //flush scores every generation 

ga.selectScores(GAStatistics::Mean|GAStatistics::Minimum|GA

Statistics::Maximum); 

 

  //get current CPU time 

  clock_t CPU_time; 

  CPU_time=clock(); 

  ga.initialize(); 

   

  while (!ga.done()) 

  {  

 

   float sum1=0; 

   float sum2=0; 

 

   GenNum= ga.statistics().generation(); 

   GAPopulation current_pop = ga.population(); 

GA1DArrayAlleleGenome<float> 

tempgenome(allelset,Objective); 

// the following loop is used to calculate the 

average of the genes representing SA parameters. 

   for (int indiv=0; indiv<PopSize; indiv++ ) 

   { 

     tempgenome= current_pop.individual(indiv); 

     FitArray[indiv]=Objective(tempgenome); 

     sum1+= tempgenome.gene(NumNodes); 

     sum2+= tempgenome.gene(NumNodes+1); 

     } 

 

  results[GenNum][0]= sum1/PopSize; 

     results[GenNum][1]= sum2/PopSize; 

     results[GenNum][2]= current_pop.ave(); 

     results[GenNum][3]= current_pop.max(); 

 

 

    ga.step(); 

 

  } 

  ga.flushScores(); 

  ScoreFile.close(); 

 

  CPU_time=clock() - CPU_time; 

cout<<" \n\n THE GA FOUND : "   

<<ga.statistics().bestIndividual() << "\n"; 

  cout<<ga.statistics().bestIndividual().score() << "\n\n"; 

cout<<"Processing Time=  "<<(CPU_time/1000)/60<<"  mins\n"; 
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  //write results to file 

  ofstream ResultFile; 

  ResultFile.open(RESFILE,ios::app);//append the results 

  ResultFile<<"MINFACTOR = "<<MINFACTOR<<"\t"; 

  ResultFile<<"MAXFACTOR = "<<MAXFACTOR<<"\t";  

  ResultFile<<"MINSAPROB = "<<MINSAPROB<<"\t"; 

  ResultFile<<"MAXSAPROB = "<<MAXSAPROB<<"\t"; 

  ResultFile<<"MAXSTAGNATION = "<<MAXSTAGNATION<<"\t"; 

  ResultFile<<"PopSize   = "<<PopSize<<"\t"; 

  ResultFile<<"NumGenerations= "<<GenNum<<"\n"; 

  ResultFile<<"GenToConverge= "<<GenToConverge<<"\t"; 

  ResultFile<<"ProbMutation= "<<ProbMutation<<"\t";  

  ResultFile<<"ProbCrossover= "<<ProbCrossover<<"\n"; 

  ResultFile<<"ProbSAMut= "<<ProbSAMut<<"\t"; 

  ResultFile<<"Psam = "<<Psam<<"\t"; 

  ResultFile<<"InitProb = "<<InitProb<<"\t"; 

  ResultFile<<"ProbSACross= "<<ProbSACross<<"\t"; 

  ResultFile<<"ClusterLimit= "<<Cluster_Limit<<"\n"; 

ResultFile<<"Bestindividual = 

"<<ga.statistics().bestIndividual()<<"\n";  

ResultFile<<"Processing Time=  "<<(CPU_time/1000)/60<<"  

mins\n"; 

ResultFile<<"BestScore  = 

"<<ga.statistics().bestIndividual().score()<<"\n";  

  ResultFile.close(); 

 

 

  ofstream StatisFile; 

  StatisFile.open(STATISFILE,ios::app);//append the results 

  StatisFile<<"Statistics for File : "<<NETFILE<<"\n\n"; 

  StatisFile.width(3); 

  StatisFile<<"Gen"<<"\t"; 

  StatisFile.width(15); 

  StatisFile<<"avg_SAf"<<"\t"; 

  StatisFile.width(15); 

  StatisFile<<"avg_probSA"<<"\t"; 

  StatisFile.width(15); 

  StatisFile<<"fit_avg"<<"\t"; 

  StatisFile.width(15); 

  StatisFile<<"fit_max"<<"\n\n"; 

 

  for (int gen=0; gen<GenNum; gen++) 

  { 

   StatisFile.width(3); 

   StatisFile<<gen<<"\t";  

 

   for (int r=0;r<4;r++) 

   { 

   StatisFile.width(15); 

   StatisFile<<results[gen][r]<<"\t";  

   } 

  StatisFile<<"\n"; 

  } 

  StatisFile.flush(); 

  StatisFile.close(); 

 

 return 0; 
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} 

/////////////////////////////////////////////////// 

void MyInitializer(GAGenome& g) 

{ 

 

 GA1DArrayAlleleGenome<float>& genome 

=(GA1DArrayAlleleGenome<float>&)g; 

 

 for (int i=0;i<NumNodes;i++) 

  genome.gene(i, float(GARandomInt(0,1))); 

 genome.gene(NumNodes,GARandomFloat(MINFACTOR,MAXFACTOR)); 

 genome.gene(NumNodes+1,GARandomFloat(MINSAPROB,MAXSAPROB)); 

 

} 

 

////////////////////////////////////////////////////// 

void ReadNet() 

{ 

ifstream InFile(NETFILE); 

if (!InFile) 

    { 

  cout<<"Could Not Read Input File"<<NETFILE<<"\n"; 

  exit(1); 

    } 

InFile>>NumNodes; //read number of nodes 

for (int node=0; node<NumNodes; node++) 

{ 

 InFile>>Net[node].NumParents; // read number of parents for this 

node 

 for (int p=0; p<Net[node].NumParents;p++) // read parent numbers 

for this node 

 { 

  InFile>>Net[node].Parents[p]; 

  Net[node].Parents[p]--; // decrement parent number to start 

from 0 instead of 1 

 }//end for p 

 int probs = (1<< Net[node].NumParents) ; // calculate number of 

entries in prob table 

  for (int pr=0; pr<probs; pr++)  //read probabilities 

     InFile>> Net[node].Prob[pr];  

     

} //end for node 

InFile.close(); 

 

}// end ReadNet 

 

 

 

/////////////////////////////////////////////////// 

 

void FindCost() 

{ 

 

Infinity=NumNodes;  

//initialize Cost Array 

for(int i=0;i<MAXNODES;i++) 

 for(int j=0;j<MAXNODES;j++) 
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 { 

  if(i==j) Cost[i][j]=0; 

  else Cost[i][j]=Infinity; 

 } 

 

 

for (int node=0;node<NumNodes;node++) 

 { 

       

  for(int p=0;p<Net[node].NumParents;p++) 

  { 

 

   int this_parent =Net[node].Parents[p]; 

         Cost[this_parent][node]=1; 

        

  } 

 } 

} 

 

/////////////////////////////////////////////////// 

int min (int val1, int val2) 

{ 

 int minimum; 

 if(val1<=val2) minimum=val1; 

 else     minimum=val2;  

return minimum;   

} 

/////////////////////////////////////////////////// 

 

void FindShortPaths() 

{ 

 

for (int k=0;k<NumNodes;k++) 

 for (int i=0;i<NumNodes;i++) 

  for (int j=0;j<NumNodes;j++) 

  Cost[i][j]=min(Cost[i][j],Cost[i][k]+Cost[k][j]); 

 

} 

 

 

 

float Objective(GAGenome& g) 

{ 

 float score=1.0; 

 

GA1DArrayAlleleGenome<float> genome =(GA1DArrayAlleleGenome<float>&) g; 

 

for (int node=0; node<NumNodes;node++) 

 {    

     int power=1; 

  int index=0; 

  int node_truth = (int) genome.gene(node); 

  for(int p= Net[node].NumParents -1; p>=0 ; p--) 

  { 

            int parent_num= Net[node].Parents[p]; 

   int parent_truth = int (genome.gene(parent_num)); 

    index = index + parent_truth*power; 



178 

    power = power*2; 

  }//end for p 

     

  if (node_truth== TRUE) 

   score = score*Net[node].Prob[index]; 

  else score = score* (1- Net[node].Prob[index]); 

 }//end for node 

 

 return score; 

} 

 

 

 

 

 void mutate_regular(GAGenome& g,int mutSAparams, float pmut) 

{ //regular GA mutation 

 GA1DArrayAlleleGenome<float>& child 

=(GA1DArrayAlleleGenome<float>&)g; 

int nMut=0; 

if (pmut>0) 

{ 

 for (int i=0; i<NumNodes; i++) 

 { 

  if (GAFlipCoin(pmut)) 

  { 

    nMut++; 

    child.gene(i, ((child.gene(i) == 0) ? 1 : 0)); 

  } 

   

 }// for   

 

}// if 

 

  

 float randval,geneval,new_geneval,minval,maxval; 

 

if ((mutSAparams==TRUE) ) //if mutation of SA parameters is 

required 

 { 

for (int location=NumNodes;location<=NumNodes+1; location++ 

) 

  { 

  if (GAFlipCoin(ProbSAMut)) 

  { 

   if (location==NumNodes) 

   { 

   minval=MINFACTOR; 

   maxval=MAXFACTOR; 

 

   }   

   else  

   { 

   minval=MINSAPROB; 

   maxval=MAXSAPROB; 

   } 

  

    randval= GARandomFloat(-1.0,1.0); 
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    geneval= child.gene(location); 

new_geneval= 

float(geneval+randval*PERCENT_CHANGE*(maxval-

minval)*geneval); 

    if(new_geneval>maxval) new_geneval=maxval; 

    else if (new_geneval< minval) new_geneval=minval; 

   child.gene(location,new_geneval); 

 

  }// if GAflipcoin(ProbSAMut) 

 

  }// for 

 

 } // if mutSAparams 

} 

 

//////////////////////////////////////////////////// 

int MyMutation(GAGenome& g,float pmut) 

//mutation diverted to SA if needed 

{ 

 cout<<"\n\n"<<GenNum<<"\n\n"; 

GA1DArrayAlleleGenome<float>& genome 

=(GA1DArrayAlleleGenome<float>&)g; 

 GA1DArrayAlleleGenome<float> newgenome(allelset,Objective); 

 GA1DArrayAlleleGenome<float> bestever(allelset,Objective); 

 

float pSA= genome.gene(NumNodes+1); //take PSA from the specified 

gene in the current genome 

 float oldfitness; 

 float newfitness; 

 

 if(GAFlipCoin(pSA)) 

 { 

 

  float T0=-1*Objective(genome)/(log(InitProb));    

  float factor= genome.gene(NumNodes); 

  float T= T0; 

  int stagnation=0; 

   while( stagnation< MAXSTAGNATION) 

   { 

    stagnation++; 

    newgenome.copy(genome); 

    mutate_regular(newgenome,FALSE,Psam); 

 

    oldfitness= Objective(genome); 

    newfitness= Objective(newgenome); 

    if (newfitness<= oldfitness) 

    { 

float paccept=exp (- (oldfitness 

newfitness)/T); 

     paccept= paccept/(1.0+paccept); 

     if (GAFlipCoin(paccept)) 

     { 

      

      genome.copy(newgenome); 

       if (newfitness != oldfitness) 

      stagnation=0;   

     }//inner if (flipcoin) 
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     }//  if (newfitness < oldfiyness) 

else { // if newfitness>oldfitness accept new 

solution 

      genome.copy(newgenome);  

      stagnation=0; 

         } //end else 

       

  T= T*factor;  //reduce temperature 

 } // end while 

 

 } // end if GAFlipCoin(pSA) 

else // if SA not performed 

 mutate_regular(genome,TRUE,pmut); 

 

return 1; 

} 

 

//////////////////////////////////////////////////// 

//////////////////////////////////////////////// 

 

int  MyCrossover(const  GAGenome& g1, const GAGenome& g2, GAGenome* c1, 

GAGenome* c2) 

{ 

 

 GA1DArrayAlleleGenome<float>& mom 

=(GA1DArrayAlleleGenome<float>&)g1; 

 GA1DArrayAlleleGenome<float>& dad 

=(GA1DArrayAlleleGenome<float>&)g2; 

 GA1DArrayAlleleGenome<float>& child1 

=(GA1DArrayAlleleGenome<float>&)*c1; 

 GA1DArrayAlleleGenome<float>& child2 

=(GA1DArrayAlleleGenome<float>&)*c2; 

//select a random root 

int root=GARandomInt(0,NumNodes-1); 

child1.copy(mom); //child1 is a copy of parent1 

child2.copy(dad); //child2 is a copy of parent2 

// now exchange the decendents of the random root betweeen 

// the children 

 

for (int i=0;i<NumNodes;i++) 

{ 

       

 if (Cost[root][i]<Cluster_Limit) 

  { 

   child1.gene(i,dad.gene(i)); 

   child2.gene(i,mom.gene(i)); 

  }//end if 

 

}//end for 

// if children have duplicates, force a change in them 

float fit1=Objective(child1); 

float fit2=Objective(child2); 

for (int count=0;count<PopSize;count++) 

{ 

 if (fit1==FitArray[count]) 

  mutate_regular(child1,TRUE,ProbMutation*2); 
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 if (fit2==FitArray[count]) 

  mutate_regular(child2,TRUE,ProbMutation*2); 

}//for 

 

// now perform crossover for the SA parameters 

if (GAFlipCoin(ProbSACross)) 

{ 

 int cutpoint=GARandomInt(NumNodes-1,NumNodes); 

 for (int i=cutpoint+1;i<= NumNodes+1;i++) 

 { 

   child1.gene(i,dad.gene(i)); 

   child2.gene(i,mom.gene(i)); 

   

 } 

} 

 

 return 1; 

}  
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 Appendix B: BBN Topologies 
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