Marshal Mix Design Cheat Sheet

General Work Flow

- 1- Prepare three pills.
- 2- Prepare a loose specimen.
- 3- Using the compacted pills, determine the specific gravity for each of the compacted pills and calculate the average (G_{mb}) .
- 4- Using the loose specimen, determine the theoretical maximum density (G_{mm}).
- 5- Carry out the Stability and Flow test for each pill and calculate the average.
- 6- Prepare a table containing the data obtained by your group and pass it to the laboratory supervisor. A complete table (results for all binder contents) will be established and provided to all groups.
- 7- As soon as receiving the complete table, student shall carryout the Marshall analysis and provide a complete report.

Lab. Work Steps

- 1- Collect aggregate of different sizes. 1200 gm.
- 2- Find the weight percentage and specific gravity of each size.
- 3- Find the bulk specific gravity of aggregate mixture (G_{sb}) .
- 4- Heat the aggregate to 160 °C for 3 to 4 h.
- 5- Find the weight of the asphalt based on the designated asphalt content percentage.
- 6- Find the specific gravity of asphalt G_b.
- 7- Heat the asphalt cement to 155 °C for not more than one hour to prevent overheating.
- 8- Mix all four specimens at temperature not less (145 °C).
- 9- Use 75 blows on each side of the specimen to compact three specimens for heavy traffic.

CE 432: Highway Laboratory. Marshal Mix Design

- 10- Do not mix the fourth specimen.
- 11-Leave the specimens to cool.
- 12- Find the mix bulk specific gravity (G_{mb}) using the three bills.
- 13- Find the theoretical maximum density (G_{mm}) using the loose specimen.
- 14- Cary out the Stability and Flow test and make stability correction.
- 15- Tabulate the results and hand it to the lab. supervisor.

Marshal Analysis Steps

Pb	4						
Specimen	1	2	3	1	2	3	
Weight in air							
Weight in water							
Weight in SSD							
Volume							
G _{mb}							
Average G _{mb}							
Measured stability							
Correlation factor							
Corrected stability							
Average stability							
Flow							
Average flow							

	Asphalt Content							
	4.0	4.5	5.0	5.5	6.0	6.5		
Stability								
Flow								
G _{mb}								
G _{mm}								

- 1- Find effective specific gravity of aggregate G_{se} using G_{mm} obtained from lab.
- 2- Find calculated G_{mm}.
- 3- Find absorbed asphalt percentage Pba.
- 4- Find effective asphalt content of a mixture Pbe.
- 5- Find percentage of void in mineral aggregate VMA.
- 6- Find percentage of air voids in compacted mixture V_a .
- 7- Find percentage of voids filled with asphalt VFA.
- 8- Plot trends and relations of test data.
- 9- Find optimum asphalt content OAC.

Pb	G _{mm} Measured	Gse	G _{mm} calculated	P _{ba}	P _{be}	G _{mb}	VMA	Va	VFA	Stability	Flow
4											
4.5											
5											
5.5											
6											